JPS59162261A - Production of hard aluminum alloy plate for forming - Google Patents

Production of hard aluminum alloy plate for forming

Info

Publication number
JPS59162261A
JPS59162261A JP3671383A JP3671383A JPS59162261A JP S59162261 A JPS59162261 A JP S59162261A JP 3671383 A JP3671383 A JP 3671383A JP 3671383 A JP3671383 A JP 3671383A JP S59162261 A JPS59162261 A JP S59162261A
Authority
JP
Japan
Prior art keywords
rolling
hot
hot rolling
temperature
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3671383A
Other languages
Japanese (ja)
Inventor
Makoto Tsuchida
信 土田
Seiji Kumagai
誠二 熊谷
Masaaki Tobinaga
飛永 政秋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Sumitomo Light Metal Industries Ltd
Original Assignee
Sumitomo Light Metal Industries Ltd
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Light Metal Industries Ltd, Sumitomo Metal Industries Ltd filed Critical Sumitomo Light Metal Industries Ltd
Priority to JP3671383A priority Critical patent/JPS59162261A/en
Publication of JPS59162261A publication Critical patent/JPS59162261A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To produce inexpensively a hard Al alloy plate for deep drawing having high strength by subjecting a cast ingot of an Al alloy having the specific compsn. contg. Mn, Mg, Si, Fe, Cu, etc. to a homogenizing treatment and hot working then, cooling slowly followed by cold rolling. CONSTITUTION:A cast ingot of an Al alloy contg. >=1 kind of 0.1-2.0% Mn and 0.1-2.0% Mg, and 0.1-0.7% Si, 0.1-0.7% Fe, and 0.05-0.3% Cu and the balance substantially Al is subjected to a homogenizing treatment and is then subjected to hot rolling to the thickness of >=2 times of the final thickness in such a way that the hot rolling ends at >=300 deg.C. The hot-rolled Al alloy is cooled for >=2hr in the succeeding cooling stage by insulating the heat with a heat insulating material according to need in the temp. region from the end temp. of the hot rolling to 280 deg.C and thereafter the Al alloy is cold-rolled down to the final thickness without annealing, by which the hard Al alloy plate for forming, particularly for deep drawing having high strength and low anisotropy is obtd.

Description

【発明の詳細な説明】 本発明は、アルミニウム合金製の缶、キャップ等の製造
のための深絞り加工材、その他の成形用材に供されるア
ルミニウム合金硬質根の製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing an aluminum alloy hard root used as a deep drawn material for producing aluminum alloy cans, caps, etc., and other forming materials.

缶、キャップ等に用いられるアルミニウム合金、例えば
A3003、A3004(Al−Mn系)合金で製造さ
れた硬質板では、深絞り成形の際に発生する圧延方向と
45°方向の耳を小さくすることが必要であり、耳率と
して3%以下が望まれる。
In hard plates made of aluminum alloys used for cans, caps, etc., such as A3003 and A3004 (Al-Mn-based) alloys, it is possible to reduce the selvage in the 45° direction to the rolling direction that occurs during deep drawing. It is necessary, and the ear percentage is desired to be 3% or less.

そこで従来、耳率が低い硬質反の製造には、造塊→均質
化処理→熱間圧延→中間焼鈍→冷間圧延からなる一連の
工程が採られている。
Conventionally, a series of steps consisting of ingot formation, homogenization treatment, hot rolling, intermediate annealing, and cold rolling has been adopted to manufacture hard fabrics with a low selvage ratio.

しかして硬質板の耳率ま、中間焼鈍とその後の冷間圧延
それぞれの条件によってはどんと決まる。上記一連の工
程においで、特に中間焼鈍を省略りるど、冷間圧延集合
組織の形成に起因して耳率か高くなるので、中間焼鈍が
硬質板製造工程において要所どなっている。ちし中間焼
鈍を行なわなくても、硬質板に所要の成形性を与えるこ
とを可能にする方法があれば、製造コストの著しい削減
が得られることになるが、いまだこのような方法は提案
されていない。
However, the selvage ratio of the hard plate is determined depending on the conditions of intermediate annealing and subsequent cold rolling. In the series of steps mentioned above, especially if intermediate annealing is omitted, the selvage ratio increases due to the formation of cold rolling texture, so intermediate annealing becomes an important part of the hard plate manufacturing process. If there were a method that could provide the required formability to a hard plate without intermediate annealing, it would be possible to significantly reduce manufacturing costs, but such a method has not yet been proposed. Not yet.

中間焼鈍後の冷間圧延は、合金板に十分な強度を与える
。一般には圧延率70〜90%で行なうが、これに伴な
って集合組織が形成されて深絞りによる45°方向の耳
が高くなる。そこで、冷間圧延の圧延率を低くして与え
る強度を下げ、45°耳を小さく抑える方法、又は冷間
圧延の前までに45°耳を小さくするだめの手段を施し
て、冷間圧延は圧延率を高くして板の強度を高める方法
が行なわれている。
Cold rolling after intermediate annealing gives the alloy plate sufficient strength. Generally, rolling is carried out at a rolling rate of 70 to 90%, and as a result, a texture is formed and the edges in the 45° direction due to deep drawing become high. Therefore, by reducing the rolling rate of cold rolling to reduce the strength and suppressing the 45° selvage, or by taking other measures to reduce the 45° selvage before cold rolling, cold rolling is improved. A method is being used to increase the strength of the plate by increasing the rolling rate.

本発明は、従来の製造方法における中間焼鈍を省略して
も、なおかつ製品硬質板の耳率を低くすることができる
とともに、その工程において十分な冷間加工を施すこと
ができる、高強度でかつ異方性の低い成形用、特に深絞
り用アルミニウム合金硬質板の製造方法を提供りること
を目的とするものである。
The present invention provides a high-strength product that can reduce the selvage ratio of the product hard plate even if the intermediate annealing in the conventional manufacturing method is omitted, and can perform sufficient cold working in the process. The object of the present invention is to provide a method for manufacturing an aluminum alloy hard plate for forming, particularly deep drawing, with low anisotropy.

すなわち、本発明の要旨とするものは次のとおりである
That is, the gist of the present invention is as follows.

Mn:0.1〜2.0%とMg:0.1〜2.0%の1
種以上と、Si:0.1〜0.7%、Fe:0.1〜0
.7%、Cu:0.05〜0.3%を含み、残部は実質
的にAlであるアルミニウム合金の鋳塊を均質化処理し
た後、熱間圧延を最終板厚の2倍以上の厚さに、かつ3
00℃以上の温度で終了するように行ない、引き続く冷
却過程において、熱間圧延終了温度から280℃までの
温度域を2時間以上で冷却し、その後焼鈍工程を施すこ
となく最終板厚まで冷間圧延を施すことを特徴とづる、
成形用アルミニウム合金硬質板の製造方法。
Mn: 0.1-2.0% and Mg: 0.1-2.0% 1
species or more, Si: 0.1-0.7%, Fe: 0.1-0
.. After homogenizing an aluminum alloy ingot containing 7% Cu, 0.05 to 0.3% Cu, and the remainder being substantially Al, it is hot rolled to a thickness more than twice the final plate thickness. ni, and 3
In the subsequent cooling process, the temperature range from the hot rolling end temperature to 280°C is cooled for 2 hours or more, and then cold rolling is performed to the final thickness without annealing. It is characterized by applying rolling.
A method for manufacturing aluminum alloy hard plates for forming.

以下、本発明について説明する。The present invention will be explained below.

アルミニウム合金硬質板の強度と異方性(深絞りの際の
耳)は、はとんど最終の冷間圧延の圧延量に依存する。
The strength and anisotropy (ears during deep drawing) of aluminum alloy hard plates mostly depend on the amount of final cold rolling.

第1図は、冷間圧延量(圧延率)と仕上げ硬質反の耳率
及び強度との関係を相対的に概略的に示すもので、イは
中間焼鈍を行なった場合の耳率、口は中間焼鈍なしの場
合、ハは引張強さ(単位なし)をそれぞれ示すものであ
る。この図に見られるように、硬質板の強度を高めるよ
うに冷延率を増すと、必然的に45°方向の耳率が高く
なる。これは成形用月料として好ましくない。
Figure 1 relatively schematically shows the relationship between the amount of cold rolling (rolling ratio) and the selvage ratio and strength of the finished hard fabric. In the case without intermediate annealing, C indicates the tensile strength (no unit). As seen in this figure, when the cold rolling rate is increased to increase the strength of the hard plate, the edge ratio in the 45° direction inevitably increases. This is not preferable as a monthly charge for molding.

そこで、曲線イのように中間焼鈍を工程に付加すること
によって耳率を制御し、これにより異方性と強度との調
和を計ることか従来から行なわれている。
Therefore, it has been conventional practice to control the selvedge ratio by adding intermediate annealing to the process as shown by curve A, thereby achieving a balance between anisotropy and strength.

ここにおいて、本発明者らは、耳率に対する中間焼鈍の
効果を解析した結果、中間焼鈍を行なわずに、熱間圧延
の終了温度と終了後の冷却速度を規制することににって
、曲線イと同等の効果をもち、仕上げ硬質板に低い異方
性が亡られることを見い出した。本発明はかかる知見に
基づくものである。
Here, as a result of analyzing the effect of intermediate annealing on the selvage ratio, the present inventors found that by regulating the end temperature of hot rolling and the cooling rate after the end of hot rolling without performing intermediate annealing, the curve It was found that this method has the same effect as A, and that low anisotropy is lost in the finished hard plate. The present invention is based on this knowledge.

次に、本発明の構成について述べる。Next, the configuration of the present invention will be described.

本発明は、まず出発素材としてのアルミニウム合金の成
分を規制する Mn、Mgは、耐食性、加工性を低下させることなく、
強度を高めるために添加される。共に0.1%より少な
いと、強度増加の効果はなく、一方2.0%を越える量
は加工性を損うことになる。
In the present invention, first, Mn and Mg, which regulate the components of the aluminum alloy as a starting material, can be used without reducing corrosion resistance and workability.
Added to increase strength. If both amounts are less than 0.1%, there will be no effect of increasing strength, while if the amount exceeds 2.0%, workability will be impaired.

Si、Fe、Cuは、通常不純物として扱われるが、S
i、Feを添加することにより、合金中にAl−Mn−
Fo−Si化合物の微粒子が形成され、この存在はしこ
ぎ加工のような成形における工具への焼付ぎを防止する
ことができる。この効果はSi、Fe共に0.1%より
少ないと十分発揮されず、使方0.7%を越える添加で
は該化合物が粗大粒子となって、成形性が損なわれるの
で好ましくない。CUの台布は、強度を高める効果があ
る。しかし0.05%より少ない場合には、この効果は
なく、他方0.3%を越えるように添加すると、加工硬
化性が増大して成形性を悪化させ、また耐食性も低下さ
せる。
Si, Fe, and Cu are usually treated as impurities, but S
By adding i, Fe, Al-Mn-
Fine particles of Fo--Si compounds are formed, the presence of which can prevent seizure of tools in forming operations such as sawing. This effect is not sufficiently exhibited when both Si and Fe are less than 0.1%, and when added in excess of 0.7%, the compound becomes coarse particles, which impairs moldability, which is not preferable. The CU base cloth has the effect of increasing strength. However, if it is less than 0.05%, this effect will not be achieved, while if it is added in an amount exceeding 0.3%, work hardening will increase and moldability will deteriorate, and corrosion resistance will also decrease.

次に製造条件について述べる。Next, the manufacturing conditions will be described.

均質化処理は、硬質板の成形性を向上するために行なう
ものであり、鋳塊を550C以上、5時間以上加熱して
、鋳塊の凝固時に生成した粗大な金属間化合物を熱分解
して微細化させることが特に成形性向上に好ましい。
Homogenization treatment is carried out to improve the formability of hard plates, and involves heating the ingot at 550C or higher for 5 hours or more to thermally decompose the coarse intermetallic compounds produced during solidification of the ingot. It is particularly preferable to make the particles finer in order to improve moldability.

熱間圧延は、後に詳しく説明するが、低くとも300℃
で終了させなければならない。熱間圧延は、その終了温
度が300℃以上になるように、鋳塊を十分高い温度に
加熱して行なうが、熱間圧延中に潤滑油により、また板
面からの放熱によって約200℃の温度低下を伴なうた
め、一般には500℃以上に鋳塊を加熱してから熱間圧
延を開始させる。
As will be explained in detail later, hot rolling is carried out at a temperature of at least 300°C.
must be terminated. Hot rolling is carried out by heating the ingot to a sufficiently high temperature so that the finishing temperature is 300°C or higher. Since this involves a temperature drop, hot rolling is generally started after the ingot is heated to 500° C. or higher.

なお、熱間圧延中に温度低下がでざるだけ少ないように
、潤滑油の使用量、温度の制御及び各スタンド圧下率の
配分、圧延速度等が調整される。
Note that the amount of lubricating oil used, temperature control, distribution of the rolling reduction ratio of each stand, rolling speed, etc. are adjusted so that the temperature drop is as small as possible during hot rolling.

また熱間厚風量は、最終工程の冷間圧延の圧延畢生なく
とも50%に対応して最終冷延板厚の2倍以上の熱延板
厚にする量とする。より好よしいのは上記50%が70
%であり、2倍は70%に対応する約3.3倍である。
Further, the hot thickness air volume is set to correspond to at least 50% of the rolling roughness in the final step of cold rolling, and to make the hot-rolled sheet thickness twice or more the final cold-rolled sheet thickness. It is more preferable that the above 50% is 70
%, and 2 times is approximately 3.3 times, which corresponds to 70%.

熱間圧延終了後の冷却は、以下に詳しく説明するが、本
発明において最も重要であって、280℃に至るまでの
冷却に2時間以上かがるように制御する。これによって
熱間圧延終了後の材料は280℃以上の温度域を通して
2時間以上あることになる。
Cooling after completion of hot rolling will be described in detail below, but is most important in the present invention, and is controlled so that cooling to 280° C. takes 2 hours or more. As a result, the material after hot rolling is passed through a temperature range of 280° C. or higher for 2 hours or more.

熱延板は、熱間圧延終了後の冷却過程において上記のよ
うに冷却側部されることにより、中間焼鈍を行なった場
合と同等に再結晶か進行して、この結果耳率低減の効果
が生ずる。
By cooling the hot-rolled sheet as described above in the cooling process after hot rolling, recrystallization progresses in the same way as when intermediate annealing is performed, and as a result, the effect of reducing the ear ratio is achieved. arise.

引き続き280℃以下の温度に冷却された熱延板は次い
で通常の方法で冷間圧延が施されて仕上げll!1!貿
板とされる。この件−Fげ冷間圧延は、深絞りに好まし
い耳率3%以下並びに高い強度を得るために、圧延率5
0%以上で施される。又、圧延率70%以上とするとよ
り高い強度を得ることができる。
The hot-rolled sheet is then cooled to a temperature below 280°C and then cold-rolled in the usual manner to finish it! 1! It is considered to be a trading board. This matter - In order to obtain a selvage ratio of 3% or less and high strength, which is preferable for deep drawing, the cold rolling is carried out at a rolling rate of 5%.
It is applied at 0% or more. Moreover, higher strength can be obtained when the rolling ratio is 70% or more.

次に、本発明において要所をなづところの、熱間圧延の
終了溜度及びその後の冷却を規制することの意義につい
て述べる。
Next, the significance of regulating the completion level of hot rolling and subsequent cooling, which is a key point in the present invention, will be described.

第2図のグラフは、Mn:1.05%、Mg:1.20
%、Si:0.20%、Fe:0.42%。
The graph in Figure 2 shows Mn: 1.05%, Mg: 1.20
%, Si: 0.20%, Fe: 0.42%.

Cu:0.12%を含むAl合金鋳塊(約5トン)を2
.5mm厚に熱間圧延した後の温度低下を示すしのであ
る。(外気温度28C) 温度曲線へは、330℃で熱間圧延を終了してコイルに
巻取り、特に保温処置を講じないで冷却した場合のもの
であり、この場合でも2時間後コイルの温度は294C
であった。この場合の冷却は本発明の条件を満たすもの
である。これに対し曲線Cは、309Cで圧延を終了し
て巻取ったコイルを保温手段を採らないで冷却した場合
のものであり、コイル湿度は2時間後に273℃であっ
た。この場合の冷却は本発明の条件を満たしていない。
Cu: 2 Al alloy ingots (approximately 5 tons) containing 0.12%
.. This chart shows the temperature drop after hot rolling to a thickness of 5 mm. (Outside air temperature 28C) The temperature curve shows the case where hot rolling was finished at 330℃, the coil was wound, and the coil was cooled without taking any particular heat insulation measures.Even in this case, the temperature of the coil after 2 hours was 294C
Met. Cooling in this case satisfies the conditions of the present invention. On the other hand, curve C shows the case where the coil was wound up after finishing rolling at 309C and was cooled without using any heat insulating means, and the coil humidity was 273°C after 2 hours. Cooling in this case does not satisfy the conditions of the present invention.

曲線Bは、圧延終了温度を更に低い304℃として巻取
ったコイルを耐熱グラスウールからなる保温カバーを掛
けることによって冷却を規制した例のものであり、2時
間後もコイル温度は286Cであった。この冷却は、本
発明の条件を満足づる。なお、この例で保温カバーは8
時間経過後に取り外された。一方、曲線Dは、コイルに
保温カバーを掛りで冷却した場合のものであるが、熱間
圧延終了温度を287℃として熱間圧延した例のもので
あり、2詩間後のコイル温度は277℃であって、この
例は本発明の条件を満たしていない。
Curve B is an example in which the rolling end temperature was lowered to 304°C and cooling was regulated by covering the wound coil with a heat-insulating cover made of heat-resistant glass wool, and the coil temperature remained 286°C even after 2 hours. This cooling satisfies the conditions of the present invention. In addition, in this example, the heat insulation cover is 8
It was removed after a period of time. On the other hand, curve D shows the case where the coil is cooled with a heat insulating cover, but it is an example of hot rolling with the hot rolling end temperature set at 287°C, and the coil temperature after 2 cycles is 277°C. ℃, and this example does not meet the conditions of the present invention.

すなわら、本発明では、第2図のグラフの縦、横両軸と
0Hr:300C,2Hr:280C及び2Hr:22
0Cの3点間を結ぶ線とで囲まれた、好ましくない領域
(図中斑点て示した領域)を温度曲線が通過しないよう
に冷却が規制されるのであり、この規制によって熱間圧
延されたアルミニウム合金板は、280C以上の温度域
を冷却されていく間に2時間以上保持されるごとになり
、熱間圧延の終了温度を低くども300℃とすることに
より、295℃以上には少なくとも数分間保持されるこ
とになる。
That is, in the present invention, both the vertical and horizontal axes of the graph in FIG.
Cooling is regulated so that the temperature curve does not pass through the unfavorable area (the area indicated by spots in the figure) surrounded by the line connecting the three points of 0C, and this regulation prevents the hot rolled Aluminum alloy sheets are kept at a temperature of 280C or higher for more than 2 hours each time they are cooled, and by setting the end temperature of hot rolling to at least 300C, the temperature range is at least several times higher than 295C. It will be held for minutes.

このように熱延後の冷却途上で、熱延板が295℃以上
に少なくとも数分間保持させることは、この時間及び温
度が熱延板に再結晶を起こさせるのに十分であり、28
0℃以上に2時間以上保持させることは、この間に合金
成分の析出を十分に起こさせるためである。これらの現
像によって仕上げ冷延板にあける異方性か弱化し、かつ
成形性が向上する。この点を以下に示す本発明の実施例
と比較例との対比によって明らかにする。
In this way, the hot-rolled sheet is held at 295° C. or higher for at least several minutes during cooling after hot-rolling, as this time and temperature are sufficient to cause recrystallization in the hot-rolled sheet.
The reason why the temperature is maintained at 0° C. or higher for 2 hours or more is to cause sufficient precipitation of alloy components during this time. These developments weaken the anisotropy in the finished cold-rolled sheet and improve formability. This point will be clarified by comparing the examples of the present invention and comparative examples shown below.

実施例1 表1に示す化学成分のアルミニウム合金の鋳塊を8個(
各約5トン)それぞれ580C×10Hrで均質化処理
を行なった後、540〜500℃で熱間圧延を開始して
終了温度は表2に示づように4通りに変えてそれぞれ2
.5mm厚さの熱延板にして巻取ってコイルにした。引
き続く冷却における条件、中間焼鈍の有無等の要因を表
2に示すように変え、最終的に冷間圧延を行なって各々
0.4mm厚さの硬質板に仕上げた。したがって冷間圧
延の圧延率は84%である。仕上げ硬質板の特性は表2
に示した。
Example 1 Eight ingots of aluminum alloy with the chemical composition shown in Table 1 (
After homogenizing at 580C x 10Hr, hot rolling was started at 540-500℃, and the finishing temperature was changed to 4 ways as shown in Table 2.
.. It was made into a hot-rolled plate with a thickness of 5 mm and wound into a coil. The conditions for subsequent cooling, the presence or absence of intermediate annealing, and other factors were changed as shown in Table 2, and finally cold rolling was performed to produce hard plates each having a thickness of 0.4 mm. Therefore, the rolling ratio of cold rolling is 84%. Table 2 shows the properties of the finished hard board.
It was shown to.

熱間圧延を300℃以上で終了し、2時間後も280C
より低くならない冷却を制御した本発明の実施例A、B
によって得られた硬質板は、比較例のC,Dによって得
られたものと比べて、耳率、LDR(限界絞り比)か優
れている。比較例中、A′、B′、C′、D′は、いず
れも中間焼鈍を仕上げ冷間圧延の前に施しており、従来
方法に相当するものである。これらの比較例におけるよ
うに中間焼鈍を行なう場合には、熱間圧延の終了温度と
その後の冷却の条件の如何によらず、耳率とLDRに見
られる成形性は良好性となるが、中間焼鈍なして、除用
条件、熱間圧延終了温度を規制しない場合は、比較例の
C,Dにおりるように硬質板の耳率は高くなり、LDR
も小さくすることになる。
Finished hot rolling at 300℃ or higher, and 280℃ after 2 hours.
Examples A and B of the present invention in which cooling is controlled so as not to become lower
The hard plate obtained by this method is superior in selvage ratio and LDR (limit drawing ratio) to those obtained by Comparative Examples C and D. Among the comparative examples, A', B', C', and D' all undergo intermediate annealing before final cold rolling, and correspond to the conventional method. When intermediate annealing is performed as in these comparative examples, the formability seen in the selvedge ratio and LDR is good regardless of the end temperature of hot rolling and the subsequent cooling conditions, but the intermediate annealing is If no annealing is performed and the removal conditions and hot rolling end temperature are not regulated, the selvage ratio of the hard plate will be high as shown in Comparative Examples C and D, and the LDR
will also be made smaller.

すなわち、中間焼鈍なしで仕上げ硬質板に良好な特性が
得られるのは、本発明実施例A、Bのように熱間圧延終
了温度と冷却を規制した場合に限られる。
That is, it is only when the hot rolling end temperature and cooling are regulated as in Examples A and B of the present invention that good properties can be obtained in the finished hard plate without intermediate annealing.

表3に示す化学成分の合金の鋳塊約5トンを合金毎に2
個、合計して6個つくり、それぞれ580℃x10Hr
で均質化処理した後、熱間圧延を540Cで開始して表
4に各個で示ず温度で熱間圧延を終了して2.0mm厚
の熱延反としてコイルに巻取った。
Approximately 5 tons of ingots of alloys with the chemical composition shown in Table 3 are used for each alloy.
Make 6 pieces in total, 580℃ x 10 hours each
After homogenization treatment, hot rolling was started at 540C, and hot rolling was completed at a temperature not shown individually in Table 4, and a hot rolled sheet having a thickness of 2.0 mm was wound into a coil.

6例中、E、F、Gの3例では、コイルに保温カバーを
掛けて放冷を防止しなから徐冷し、残りの3例E′、F
′、G′では保品カバーを用いないて治通に冷却した。
Of the 6 cases, 3 cases E, F, and G were slowly cooled by covering the coil with a heat insulating cover to prevent it from cooling, and the remaining 3 cases E' and F
′ and G′ were cooled to a normal temperature without using a safety cover.

引き続きそれぞれコイルを解いて冷間圧延を施して0.
40mm厚の硬質仮に仕上げた。熱間圧延終了後2時間
のコイル温度と仕上げ硬質憬の特性ま表4に承りとおり
である。
Subsequently, each coil was unwound and cold rolled to a 0.
Finished with 40mm thick hard material. Table 4 shows the coil temperature and the characteristics of the finished hard mold 2 hours after the end of hot rolling.

本発明の実施例E、F、Gによる仕上げ硬質板は、比較
例E′、F′、G′のように、熱間圧延終了温度及び熱
間圧延終了後2時間経過時の温度を規制しなかった揚台
の仕上げ硬質板と化べて、その耳率が低くかつLDRが
人さい。
The finished hard plates according to Examples E, F, and G of the present invention were prepared by regulating the hot rolling end temperature and the temperature after 2 hours elapsed after hot rolling, as in Comparative Examples E', F', and G'. The finish of the lifting platform that was not available has turned into a hard board, and the selvage rate is low and the LDR is difficult.

これら比較例による硬質扱では、藷力、引張強さは俄れ
でいるものの、その耳率は高くまたLDRか小さいため
、深絞り成形には適しない。
In the case of hard treatment according to these comparative examples, although the strength and tensile strength are excellent, the selvage ratio is high and the LDR is small, so that it is not suitable for deep drawing.

よつて本発明の効果は明らかに認められた。Therefore, the effects of the present invention were clearly recognized.

以上説名してきたとおり、本発明によれば、熱間圧延後
の合金伽が必然的に保有する熱量を冷却の途上においで
利用して中間焼鈍を行なったのど同様な効果が得られろ
ため、中間焼鈍を行なう従来方法によるものと変りかな
く、良好な耳率ど高い強度をもつアルミニウム合金硬質
仮が得られる。したがって、甲間焼鈍に要する加熱費が
いらなくなり、また焼鈍設備も必要としくい。なお、断
熱材による慄渇用奥は焼鈍設備に比しくはるかに安価で
うる。
As explained above, according to the present invention, the same effect can be obtained by performing intermediate annealing by utilizing the amount of heat necessarily held by the alloy after hot rolling during cooling. This method is no different from the conventional method of performing intermediate annealing, and it is possible to obtain a hard preform of aluminum alloy with good selvage and high strength. Therefore, there is no need for heating costs required for annealing between the two, and there is also no need for annealing equipment. Note that a cooling chamber using heat insulating material is much cheaper than annealing equipment.

すなわう、本発明により、従来の製造方法に対りる省エ
ネルギーが効果的に達成される。
In other words, the present invention effectively achieves energy savings compared to conventional manufacturing methods.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図が冷間圧延の圧延率と仕上げ硬質板の耳率及び強
度どの関係を相対的に表わしたグラフであり、第2図は
熱間圧延終了後の冷却過稈における熱延板の温度推移を
示すグラフである。 特許出願人 住友軽金属工業株式会社 代理人 弁理士 小松秀岳 ト0Lr>りつへ−+−6曽くい 1   1111 (7,)本証、9’F     (%)ヰ扛、Oθ−O
(つ。) 狙 N2
Figure 1 is a graph showing the relative relationship between the rolling ratio of cold rolling and the edge ratio and strength of the finished hard plate, and Figure 2 is a graph showing the temperature of the hot rolled plate at the cooling overculm after hot rolling. It is a graph showing the transition. Patent applicant Sumitomo Light Metal Industries Co., Ltd. Agent Patent attorney Hidetake Komatsu 0Lr>Ritsuhe−+−6 Sokui 1 1111 (7,) This certificate, 9'F (%) ヰ扛, Oθ−O
(Tsu.) Aim N2

Claims (1)

【特許請求の範囲】 1、Mn:0.1〜2.0%とMg:0.1〜2.0%
の1種以上と、Si:0.1〜0.7%、Fe:0.1
〜0.7%、Cu:0.05〜0.3%を含み、残部は
実質的にAlであるアルミニウム合金の鋳塊を均質化処
理した後、熱間圧延を最終板厚の2倍以上の厚さに、か
つ300℃上の温度で終了するように行ない、引き続く
冷却過程において、熱間圧延終了温度から280℃まで
の温度域を2時間以上で冷却し、その後焼鈍工程を施す
ことなく最終板厚まで冷間圧延を施すことを特徴とする
、成形用アルミニウム合金硬質板の製造方法。 2、熱間圧延終了温度から280Cまでの温度域の冷却
を断熱材で保温して行なう、特許請求の範囲第1項記載
の製造方法。
[Claims] 1. Mn: 0.1-2.0% and Mg: 0.1-2.0%
one or more of the following, Si: 0.1 to 0.7%, Fe: 0.1
After homogenizing an aluminum alloy ingot containing ~0.7% Cu, 0.05~0.3% Cu, and the remainder being substantially Al, it is hot rolled to a thickness of at least twice the final plate thickness. In the subsequent cooling process, the temperature range from the hot rolling end temperature to 280°C is cooled for more than 2 hours, without performing an annealing process. A method for producing a hard aluminum alloy plate for forming, characterized by cold rolling to the final thickness. 2. The manufacturing method according to claim 1, wherein cooling is carried out in a temperature range from the end temperature of hot rolling to 280C by keeping the temperature with a heat insulating material.
JP3671383A 1983-03-08 1983-03-08 Production of hard aluminum alloy plate for forming Pending JPS59162261A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3671383A JPS59162261A (en) 1983-03-08 1983-03-08 Production of hard aluminum alloy plate for forming

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3671383A JPS59162261A (en) 1983-03-08 1983-03-08 Production of hard aluminum alloy plate for forming

Publications (1)

Publication Number Publication Date
JPS59162261A true JPS59162261A (en) 1984-09-13

Family

ID=12477395

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3671383A Pending JPS59162261A (en) 1983-03-08 1983-03-08 Production of hard aluminum alloy plate for forming

Country Status (1)

Country Link
JP (1) JPS59162261A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61235532A (en) * 1985-04-08 1986-10-20 Sukai Alum Kk Rolled sheet of aluminum alloy for high-strength molding and processing and its production
JPH01176048A (en) * 1987-12-29 1989-07-12 Kobe Steel Ltd Aluminum alloy for deep drawing having excellent orientation characteristics and its manufacture
CN105483474A (en) * 2015-12-21 2016-04-13 河南明泰铝业股份有限公司 High-strength aluminum alloy deep-drawing bottle cap and production method thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56102568A (en) * 1980-01-21 1981-08-17 Sumitomo Light Metal Ind Ltd Manufacture of aluminum alloy hard plate with superior strength and anisotropy

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56102568A (en) * 1980-01-21 1981-08-17 Sumitomo Light Metal Ind Ltd Manufacture of aluminum alloy hard plate with superior strength and anisotropy

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61235532A (en) * 1985-04-08 1986-10-20 Sukai Alum Kk Rolled sheet of aluminum alloy for high-strength molding and processing and its production
JPH01176048A (en) * 1987-12-29 1989-07-12 Kobe Steel Ltd Aluminum alloy for deep drawing having excellent orientation characteristics and its manufacture
JPH0366382B2 (en) * 1987-12-29 1991-10-17 Kobe Steel Ltd
CN105483474A (en) * 2015-12-21 2016-04-13 河南明泰铝业股份有限公司 High-strength aluminum alloy deep-drawing bottle cap and production method thereof

Similar Documents

Publication Publication Date Title
US4238248A (en) Process for preparing low earing aluminum alloy strip on strip casting machine
CN112746204B (en) Aluminum alloy plate and preparation method thereof
US20070209739A1 (en) Method for producing Al-Mg-Si alloy sheet excellent in bake-hardenability and hemmability
CN104532077B (en) Short-flow preparation method for 6XXX-series aluminum alloy automotive body sheet without paint brushed lines
JP2009185386A (en) Method for producing non-grain-oriented electrical steel sheet
CN105063430A (en) 3003-H16 aluminum alloy plate strip and production method thereof
JP2007031819A (en) Method for producing aluminum alloy sheet
US5098490A (en) Super position aluminum alloy can stock manufacturing process
CN111069549A (en) Preparation method of aluminum veneer curtain wall plate base for architectural decoration
CN107177788B (en) A kind of secondary cold-rolling tin plate and its production method
JPS58224142A (en) Aluminum alloy plate with superior formability and its manufacture
JP2000087198A (en) MANUFACTURE OF Al-Mg-Si ALLOY SHEET EXCELLENT IN THERMAL CONDUCTIVITY AND STRENGTH
JPS59162261A (en) Production of hard aluminum alloy plate for forming
JP4214664B2 (en) Sheet steel for press forming and manufacturing method thereof
JPS61288056A (en) Manufacture of aluminum alloy sheet for deep drawing
JP2002129269A (en) Aluminum alloy sheet and its production method
JPH07252616A (en) Production of aluminum-magnesium-silicon alloy sheet
JP2612452B2 (en) Manufacturing method of high ductility and high strength cold rolled steel sheet
JPS5943986B2 (en) Manufacturing method of aluminum alloy hard plate with excellent strength and anisotropy
JPH07228957A (en) Production of aluminum alloy sheet having excellent formability and quench-hardenability
JPH07103423B2 (en) Highly efficient manufacturing method of cold rolled steel sheet with extremely excellent workability
JPH0369967B2 (en)
JP2024509070A (en) Variants of high-strength 5XXX aluminum alloys and their preparation method
TW202334449A (en) Method for producing aluminum-magnesium alloy with high elongation and high strength for construction
JP2813019B2 (en) Manufacturing method of hot rolled steel sheet with excellent deep drawability