JPH0366035B2 - - Google Patents

Info

Publication number
JPH0366035B2
JPH0366035B2 JP57199048A JP19904882A JPH0366035B2 JP H0366035 B2 JPH0366035 B2 JP H0366035B2 JP 57199048 A JP57199048 A JP 57199048A JP 19904882 A JP19904882 A JP 19904882A JP H0366035 B2 JPH0366035 B2 JP H0366035B2
Authority
JP
Japan
Prior art keywords
silica
water
reverse osmosis
membrane
osmosis membrane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57199048A
Other languages
Japanese (ja)
Other versions
JPS5990688A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP19904882A priority Critical patent/JPS5990688A/en
Publication of JPS5990688A publication Critical patent/JPS5990688A/en
Publication of JPH0366035B2 publication Critical patent/JPH0366035B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、河川水、市水、井水、湖水等の比較
的清浄であるが、シリカを含有する原水に主とし
適用し、シリカを除去し精製水とするシリカ含有
水処理方法に関する。 従来、河川水、市水、井水、湖水等の原水より
含有シリカ成分を除くには、直接逆浸透膜で濾過
処理を行うか、予め凝集沈殿、砂濾過、活性炭処
理等の事前除去処理を行つてから逆浸透膜で濾過
処理を行いシリカ成分の除去された精製水を得る
シリカ含有水処理方法が知られているが、逆浸透
膜での濾過の過程でその処理すべき含有水中の溶
解シリカ濃度は高くなり、通常、常温で約100
mg/(SiO2として)が最大限度であり、これ
以上に濃縮されると沈殿し始め、逆浸透膜に目詰
まりを生じ、その濾過性能が低下し逆浸透膜を早
期に交換する必要をもたらし、又逆浸透膜に沈殿
したシリカは薬品による洗浄溶解が困難なために
逆浸透膜を再使用することが出来ない。一方、そ
のシリカ濃度をその溶解度に達しないように濾過
処理すると、精製水の取得量は減少し、逆に排水
量が増大しそれだけ無駄に廃棄されることとな
り、不経済である等の欠点を有する。 本発明者らは鋭意検討した結果、原水中では溶
解しているが逆浸透膜で溶解度以上にまで濃縮さ
れることによつて生ずるであろうシリカの沈殿の
核となる物質例えば非溶解性のシリカ微粒子、鉄
等の金属又はその酸化物コロイド、粘土微粒子、
微生物等の微細粒子を除去することによつてシリ
カが溶解度以上になつても沈殿しないことを知見
した。 本発明は、前記知見に基づいてなされたもので
あつて、簡単な方法で、逆浸透膜での濾過処理時
のシリカ含有水より溶解性シリカの沈殿を防止
し、シリカ含有水を従来実現出来なかつた高濃度
にまでシリカを濃縮してしかも円滑に高能率に精
製水を回収する経済的なシリカ含有水処理方法を
提供するもので、シリカ含有水を逆浸透膜で濾過
処理してシリカを除去し精製水を得るシリカ含有
水処理方法において、シリカ含有水を微細孔膜又
は限外濾過膜を通過せしめた後の濾過水をシリカ
の溶解濃度が100mg/〜500mg/の範囲に達す
るまで逆浸透膜で濃縮濾過処理を行うことを特徴
とする。 精製処理すべき原水は、一般には何川水、市
水、井水、湖水等の比較的清浄な水であり、この
中にはシリカが10mg/(SiO2として)程度の
低濃度に溶解したものから、火山灰地のような場
所では50mg/(SiO2として)以上の高濃度に
溶解したものまであり、その他非溶解性のシリカ
微粒子、鉄等の金属又はその酸化物コロイド、粘
土微粒子、微生物等の微細粒子を含有するのが一
般的である。 かかるシリカ含有水、例えば60mg/程度のシ
リカを溶解する河川水を直接微細孔膜又は限外濾
過膜(UF膜とも称する)により濾過し、含有す
る微細粒子を除去する。用いる微細孔膜としては
孔径が0.45μ以下の膜が適しており、例えばシー
ト状のニユークリポア社製、商品名ニユークリポ
アN−040、セラニーズ社製、商品名ジユラガー
ドSW−2400W、プリーツ状の富士写真フイルム
(株)製、商品名ミクロフイルタFCC−22、湯浅電
池(株)製、商品名ユミクロンMF−40、ホローフア
イバー状の(株)クラレ製、商品名SFフイルタSF−
301が挙げられる。また用いる限外濾過膜として
は例えばシート状のアルバツクサービス(株)製、商
品名ダイアフイルタG−10T、アミコン社製、商
品名ダイアフローPM−10、スパイラル状のアブ
コー社製、商品名HFK−130、デサリネーシヨン
社製、商品名G−50、チユーブ状の三菱レーヨン
エンジニアリング(株)製、商品名PS−015、アブコ
ー社製、商品名HFM−251、日東電工(株)製、商
品名NTU−3020、ホローフアイバー状の旭化成
工業(株)製、商品名SIP−3013が挙げられる。 次いでこのように微細粒子の除去処理を経たシ
リカ含有濾過水を逆浸透膜で濾過処理する。 そして前記微細孔膜又は限外濾過膜を通過され
た濾過水を処理する逆浸透膜(RO膜とも称す
る)としては、平板型のアルバツクサービス(株)
製、商品名ダイアフイルタRM−97、中空糸型の
東洋紡績(株)製、商品名ホロセツプHR5230、デユ
ポン社製、商品名パーマセツプB−9 0440、ス
パイラル型の東レ(株)製、商品名ロメンブラSC−
110、チユーブ型の日東電工(株)製、商品名NTR−
197、アブコー社製、商品名AS−197等が挙げら
れる。 この場合濾過水に溶解しているシリカ濃度が
100mg/を越えても沈殿を生じることなく、過
飽和状態に溶解し、そのシリカ濃度の上限は、含
有水や装置の運転状態により異なるが350〜500
mg/まで過飽和状態で溶解し、沈殿を生じな
い。また本発明方法によれば、シリカ含有水を直
接逆浸透膜で処理する場合約100mg/でシリカ
の沈殿を起こすことによる従来法の不都合を解消
し、充分な余裕をもつてシリカ除去が出来る有利
をもたらす。 かくして新しい有利な処理方法を実現したもの
で、即ち、微細孔膜又は限外濾過膜を通過せしめ
た後のそのシリカ含有濾過水を逆浸透膜によりそ
のシリカ濃度が100mg/〜500mg/の過飽和状
態の範囲まで濃縮する濾過処理を行うようにし、
これにより、高収率に精製水を得ると共に濃縮水
の量を減少させて経済的にシリカ含有水の処理を
行うことが出来る。 又本発明によれば、上記から明らかなように、
逆浸透膜の長期に亘る良好な濾過性能の維持、使
用寿命の延長をもたらす。 次に本発明に使用する装置の1例を添付図面に
つき説明する。 1は処理すべきシリカ含有水aの供給タンクを
示し、該タンク1はポンプ2を介在させた導管3
により内部に微細孔膜4又は限外濾過膜4を中間
に介入させた濾過容器5の流入端に接続してい
る。かくして該濾過容器5の内部は該膜4により
その1側に流入用空室5a、その他側に濾過側の
空室5bとに区劃形成されている。該流入側空室
5aの1側には、必要に応じ、流出管6を設ける
ことが出来る。また濾過側の空室5bの1側に供
給管7を設け、これを受容タンク8の上部開口に
連通開口し、該受容タンク8の底部より導出の供
給管9をポンプ12を介し、内部に逆浸透膜10
を中間に介在させた濾過耐圧性濾過容器11の流
入端に接続する。該容器11の内部は、該膜10
によりその1側に供給管9に接続の濾水流入用空
室11aとその他側に精製水取得用空室11bと
に区劃形成されている。 尚、図中、13は該濾水流入用空室11aの他
側から導出の濃縮水排出用導管、14は空室11
bから導出の精製水導出管を示す。また、夫々の
導管には開閉弁を介入されている。 次に上記装置の作動を説明する。 該タンク1内に連続的に処理すべき河川水や市
水、即ちシリカ含有水aを供給し、ポンプ2によ
りこれを濾過容器5の流入用空室5aに流入さ
せ、その該微細孔膜(又は限外濾過膜)4で水中
の1μ以上の微細粒子を除去し、その他側に該微
細粒子を含まない濾水を得る。これを供給管7に
よりその下方のタンク8内に供給する。タンク8
内にはかかる該濾水を適当の高さに常に溜めた状
態でポンプ12により徐々にこれを逆浸透膜内臓
濾過容器11の流入用空室11a内に加圧供給
し、その逆浸透膜10で濃縮濾過処理を行い、空
室11b側に精製水を得るがこの際、ポンプ12
や排出管13の弁を適当に調節してその空室11
a内の濾水に溶解しているシリカの濃度が、例え
ば300mg/の濃縮水となるようにして濾過処理
を続ける。 かくして、その逆浸透膜10の濾過側の空室1
1bには、シリカが僅か5mg/含有の精製水が
連続して得られた。この連続精製水の製造終了後
逆浸透膜10を調べたがシリカの沈殿は全く認め
られなかつた。 次に本発明の実施例を比較例と共に説明する。 実施例 1 市水に、水ガラスを添加し溶解シリカ濃度が95
mg/になるように、PH6.5に調節したシリカ含
有水を作成し、これを孔径が0.4μの微細孔膜「ニ
ユークリポア社製、商品名ニユークリポアN−
040」で濾過し、その得られた濾液を逆浸透膜
「アルバツクサービス(株)製、商品名ダイアフイル
タRM−97」で濾過し精製水を得た。その各処理
工程におけるシリカ濃度、目詰まり指数(FI値)
を測定した。その結果は下表の通りである。
The present invention relates to a method for treating silica-containing water, which is mainly applied to relatively clean raw water containing silica, such as river water, city water, well water, lake water, etc., and which removes silica and produces purified water. Conventionally, in order to remove silica components from raw water such as river water, city water, well water, lake water, etc., it has been necessary to perform filtration treatment directly with a reverse osmosis membrane, or to perform pre-removal treatment such as coagulation sedimentation, sand filtration, or activated carbon treatment. There is a known method for treating silica-containing water that is then filtered using a reverse osmosis membrane to obtain purified water from which silica components have been removed. The silica concentration is high, typically around 100 at room temperature.
mg/(as SiO 2 ) is the maximum limit; if concentrated beyond this point, it will begin to precipitate, clogging the reverse osmosis membrane, reducing its filtration performance and requiring early replacement of the reverse osmosis membrane. Furthermore, the silica precipitated on the reverse osmosis membrane cannot be reused because it is difficult to wash and dissolve it with chemicals. On the other hand, if the silica concentration is filtered so that it does not reach its solubility, the amount of purified water obtained will decrease, and conversely, the amount of waste water will increase, resulting in wasted waste, which has disadvantages such as being uneconomical. . As a result of intensive studies, the present inventors found that substances that are dissolved in the raw water but become the core of silica precipitation that would occur when concentrated to a level exceeding the solubility in the reverse osmosis membrane, such as insoluble Silica particles, colloids of metals such as iron or their oxides, clay particles,
It has been found that by removing microscopic particles such as microorganisms, silica does not precipitate even if its solubility is exceeded. The present invention has been made based on the above knowledge, and uses a simple method to prevent the precipitation of soluble silica from silica-containing water during filtration with a reverse osmosis membrane, making it possible to produce silica-containing water that was previously impossible to achieve. This method provides an economical method for treating silica-containing water that concentrates silica to a high concentration and smoothly recovers purified water with high efficiency. In a method for treating silica-containing water to remove purified water, the silica-containing water is passed through a microporous membrane or an ultrafiltration membrane, and then the filtered water is inverted until the dissolved concentration of silica reaches a range of 100 mg/~500 mg/ It is characterized by performing concentration filtration treatment using a permeable membrane. The raw water to be purified is generally relatively clean water such as river water, city water, well water, lake water, etc. In this water, silica is dissolved at a low concentration of about 10 mg/(as SiO 2 ). In places such as volcanic ash areas, there are substances dissolved at high concentrations of 50mg/(as SiO 2 ) or more, and other insoluble silica particles, colloids of metals such as iron or their oxides, clay particles, and microorganisms. It generally contains fine particles such as. Such silica-containing water, for example, river water in which about 60 mg of silica is dissolved, is directly filtered through a microporous membrane or an ultrafiltration membrane (also referred to as a UF membrane) to remove contained fine particles. As the microporous membrane to be used, membranes with a pore diameter of 0.45μ or less are suitable, such as sheet-like membranes manufactured by Nucleipore Co., Ltd., trade name Nucleipore N-040, manufactured by Celanese Co., Ltd., trade name Jyuraguard SW-2400W, and pleated Fuji Photo Film.
Co., Ltd., product name Microfilter FCC-22, Yuasa Battery Co., Ltd., product name Yumicron MF-40, hollow fiber-shaped product made by Kuraray Co., Ltd., product name SF Filter SF-
301 are mentioned. The ultrafiltration membranes to be used include, for example, sheet-shaped ultrafiltration membranes made by Albac Service Co., Ltd., trade name Diafilter G-10T, manufactured by Amicon Corporation, trade name Diaflow PM-10, spiral-shaped made by Abcor, trade name HFK. -130, manufactured by Desalination Co., Ltd., product name G-50, tube-shaped manufactured by Mitsubishi Rayon Engineering Co., Ltd., product name PS-015, manufactured by Abcor Co., Ltd., product name HFM-251, manufactured by Nitto Denko Co., Ltd., product name NTU -3020, a hollow ivory product manufactured by Asahi Kasei Kogyo Co., Ltd., and trade name SIP-3013. Next, the silica-containing filtered water that has undergone the fine particle removal treatment in this manner is filtered using a reverse osmosis membrane. The reverse osmosis membrane (also referred to as RO membrane) that processes the filtered water that has passed through the microporous membrane or ultrafiltration membrane is a flat-plate type manufactured by Albac Service Co., Ltd.
Diafilter RM-97, hollow fiber type, manufactured by Toyobo Co., Ltd., product name HoloSep HR5230, manufactured by DuPont, product name PermaSep B-9 0440, spiral type manufactured by Toray Industries, Inc., product name Romembra SC−
110, tube type manufactured by Nitto Denko Corporation, product name NTR−
197, manufactured by Abcor, trade name AS-197, etc. In this case, the concentration of silica dissolved in the filtered water is
It dissolves in a supersaturated state without forming a precipitate even if it exceeds 100 mg/ml, and the upper limit of the silica concentration varies depending on the water content and the operating conditions of the equipment, but it is 350 to 500.
It dissolves in a supersaturated state up to mg/ml and does not form a precipitate. Furthermore, according to the method of the present invention, when silica-containing water is directly treated with a reverse osmosis membrane, the disadvantage of the conventional method due to precipitation of silica occurring at approximately 100 mg/ml is overcome, and the silica can be removed with sufficient margin. bring about. In this way, a new and advantageous treatment method has been realized, namely, the silica-containing filtrate after passing through a microporous membrane or an ultrafiltration membrane is subjected to a reverse osmosis membrane in a supersaturated state with a silica concentration of 100 mg/~500 mg/ Perform filtration treatment to concentrate to a range of
Thereby, purified water can be obtained in high yield, and the amount of concentrated water can be reduced, so that silica-containing water can be treated economically. Further, according to the present invention, as is clear from the above,
Maintains good filtration performance of the reverse osmosis membrane over a long period of time and extends its service life. Next, one example of the apparatus used in the present invention will be explained with reference to the accompanying drawings. 1 designates a supply tank for the silica-containing water a to be treated, which tank 1 is connected to a conduit 3 with a pump 2 interposed therebetween.
It is connected to the inflow end of a filtration container 5 in which a microporous membrane 4 or an ultrafiltration membrane 4 is interposed. Thus, the inside of the filtration container 5 is divided by the membrane 4 into an inflow chamber 5a on one side and a filtration side chamber 5b on the other side. An outflow pipe 6 can be provided on one side of the inflow side cavity 5a, if necessary. Further, a supply pipe 7 is provided on one side of the empty chamber 5b on the filtration side, and this is opened to communicate with the upper opening of the receiving tank 8. reverse osmosis membrane 10
is connected to the inflow end of a pressure-resistant filtration container 11 with a filtration filter interposed therebetween. Inside the container 11, the membrane 10
This partition is formed into a filtrate inflow chamber 11a connected to the supply pipe 9 on one side and a purified water acquisition chamber 11b on the other side. In the figure, 13 is a concentrated water discharge conduit led out from the other side of the filtrate inflow chamber 11a, and 14 is a conduit for draining the concentrated water from the other side of the filtrate inflow chamber 11a.
The purified water outlet pipe derived from b is shown. Further, each conduit is provided with an on-off valve. Next, the operation of the above device will be explained. River water or city water to be treated, that is, silica-containing water a, is continuously supplied into the tank 1, and the pump 2 causes it to flow into the inflow chamber 5a of the filtration container 5, and the microporous membrane ( (or ultrafiltration membrane) 4 to remove fine particles of 1μ or more from the water, and obtain filtrate free of the fine particles on the other side. This is supplied through the supply pipe 7 into the tank 8 below. tank 8
The filtrate is always stored at an appropriate height inside and is gradually supplied under pressure into the inflow chamber 11a of the filtration container 11 with a built-in reverse osmosis membrane using the pump 12. The concentration filtration process is performed to obtain purified water in the empty chamber 11b, but at this time, the pump 12
The empty space 11 is removed by appropriately adjusting the valve of the discharge pipe 13.
The filtration process is continued so that the concentration of silica dissolved in the filtrate in a becomes, for example, 300 mg/concentrated water. Thus, the empty chamber 1 on the filtration side of the reverse osmosis membrane 10
In 1b, purified water containing only 5 mg of silica was continuously obtained. After the continuous production of purified water was completed, the reverse osmosis membrane 10 was examined, but no silica precipitation was observed. Next, examples of the present invention will be described together with comparative examples. Example 1 Water glass was added to city water to increase the dissolved silica concentration to 95
Prepare silica-containing water adjusted to pH 6.5 so that the pH is 6.5, and apply it to a microporous membrane with a pore size of 0.4μ, manufactured by Nuclepore Co., Ltd., trade name Nuclepore N-
040" and the resulting filtrate was filtered through a reverse osmosis membrane "Diafilter RM-97, manufactured by Albac Service Co., Ltd." to obtain purified water. Silica concentration and clogging index (FI value) in each treatment process
was measured. The results are shown in the table below.

【表】 処理終了後の逆浸透膜を調べたが、シリカの沈
殿は全く認められなかつた。 比較例 1 微細孔膜を使用せず、実施例1と同じシリカ含
有水を直接上記と同じ逆浸透膜でシリカ濃度を
132mg/として濾過処理を行つた。次にその各
処理工程における測定結果は下表の通りである。
[Table] The reverse osmosis membrane was examined after the treatment, but no silica precipitation was observed. Comparative Example 1 Without using a microporous membrane, the same silica-containing water as in Example 1 was directly passed through the same reverse osmosis membrane as above to adjust the silica concentration.
Filtration treatment was carried out at a concentration of 132 mg/ml. Next, the measurement results for each treatment step are shown in the table below.

【表】 処理終了後の逆浸透膜を調べたところ、シリカ
の沈殿が認められた。 実施例 2 微細孔膜の代わりに分子量1万以下のものを通
す限外濾過膜「アルバツクサービス(株)製、商品名
ダイアフイルタG−10T」を使用した他は実施例
1と同様シリカ含有水の処理を行つた。各処理工
程に於ける測定結果は下表の通にである。
[Table] When the reverse osmosis membrane was examined after the treatment, silica precipitation was observed. Example 2 Same as in Example 1 except that an ultrafiltration membrane "Diafilter G-10T, manufactured by Albac Service Co., Ltd." which passes substances with a molecular weight of 10,000 or less was used instead of the microporous membrane. The water was treated. The measurement results in each treatment step are shown in the table below.

【表】 処理終了後の逆浸透膜を調べたが、実施例1と
同様にシリカの沈殿は全く認められなかつた。 実施例 3 井水(シリカ濃度56mg/)を孔径が0.04μの
微細孔膜「(株)クラレ製、商品名SF−301」で濾過
した後、その濾過液を逆浸透膜「東洋紡績(株)製、
商品名ホロセツプHR5230」で濾過し、連続処理
を行つた。各処理工程に於ける測定結果は下表の
通りである。
[Table] The reverse osmosis membrane was examined after the treatment, and as in Example 1, no silica precipitation was observed. Example 3 After filtering well water (silica concentration 56 mg/) using a microporous membrane with a pore size of 0.04μ "manufactured by Kuraray Co., Ltd., trade name: SF-301", the filtrate was filtered using a reverse osmosis membrane "Toyobo Co., Ltd. ) made,
The product was filtered using a product called Holosep HR5230 and subjected to continuous processing. The measurement results in each treatment step are shown in the table below.

【表】 処理終了後の逆浸透膜を調べたが、実施例1と
同様にシリカの沈殿は全く認められなかつた。 比較例 2 実施例3と同じ井水を微細孔膜を用いずに、直
接実施例3と同じ逆浸透膜で濾過し連続処理を行
つたところ、逆浸透膜の濾過性能は1週間後には
20%低下し、又濃縮液中にシリカの微結晶が認め
られるようになつた。 本発明に適用される処理すべきシリカ含有水
は、比較的清浄な河川水、市水、井水、湖水等を
直接微細孔膜又は限外濾過膜で濾過処理した後、
逆浸透膜で処理することが一般で有利であるが、
やや不純物を多く含む場合は、一旦、凝集沈殿、
砂濾過、活性炭、イオン交換樹脂等の1つ又はそ
れ以上を組み合わせて事前処理をし、適度に清浄
化したシリカ含有水にも適用しても差支えない。 このように本発明によるときは、シリカ含有水
を微細孔膜又は限外濾過膜で濾過した後、逆浸透
膜で処理するようにしたので、シリカ含有水を直
接逆浸透膜で処理する従来法に比し、著しく高い
シリカ濃度まで濃縮してもシリカの沈殿は生ぜ
ず、円滑且つ高収率に精製水を連続的に製造でき
る効果を有する。
[Table] The reverse osmosis membrane was examined after the treatment, and as in Example 1, no silica precipitation was observed. Comparative Example 2 When the same well water as in Example 3 was directly filtered through the same reverse osmosis membrane as in Example 3 without using a microporous membrane and subjected to continuous treatment, the filtration performance of the reverse osmosis membrane decreased after one week.
The concentration decreased by 20%, and microcrystals of silica began to be observed in the concentrated solution. The silica-containing water to be treated that is applied to the present invention is obtained by directly filtering relatively clean river water, city water, well water, lake water, etc. using a microporous membrane or an ultrafiltration membrane.
Treatment with reverse osmosis membranes is common and advantageous, but
If it contains a relatively large amount of impurities, try coagulating and precipitating it.
It may also be applied to silica-containing water that has been pretreated with a combination of one or more of sand filtration, activated carbon, ion exchange resin, etc., and has been appropriately purified. In this way, according to the present invention, silica-containing water is filtered with a microporous membrane or an ultrafiltration membrane and then treated with a reverse osmosis membrane, which eliminates the conventional method of directly treating silica-containing water with a reverse osmosis membrane. Compared to this method, silica does not precipitate even when concentrated to a significantly high silica concentration, and it has the effect of continuously producing purified water smoothly and at a high yield.

【図面の簡単な説明】[Brief explanation of drawings]

図面は本発明方法を実施するための装置の1例
を示す線図である。 1……原水供給タンク、4……微細孔膜又は限
外濾過膜、10……逆浸透膜。
The drawing is a diagram showing an example of an apparatus for carrying out the method of the invention. 1... Raw water supply tank, 4... Microporous membrane or ultrafiltration membrane, 10... Reverse osmosis membrane.

Claims (1)

【特許請求の範囲】[Claims] 1 シリカ含有水を逆浸透膜で濾過処理してシリ
カを除去し精製水を得るシリカ含有水処理方法に
おいて、シリカ含有水を微細孔膜又は限外濾過膜
を通過せしめた後の濾過水をシリカの溶解濃度が
100mg/〜500mg/の範囲に達するまで逆浸透
膜で濃縮濾過処理を行うことを特徴とするシリカ
含有水処理方法。
1. In a silica-containing water treatment method in which silica-containing water is filtered through a reverse osmosis membrane to remove silica and purified water is obtained, the filtered water after passing the silica-containing water through a microporous membrane or an ultrafiltration membrane is treated with silica. The dissolved concentration of
A method for treating silica-containing water, characterized by performing concentration filtration treatment using a reverse osmosis membrane until the concentration reaches a range of 100 mg/ to 500 mg/.
JP19904882A 1982-11-15 1982-11-15 Device and method for treating silica-containing water Granted JPS5990688A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19904882A JPS5990688A (en) 1982-11-15 1982-11-15 Device and method for treating silica-containing water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19904882A JPS5990688A (en) 1982-11-15 1982-11-15 Device and method for treating silica-containing water

Publications (2)

Publication Number Publication Date
JPS5990688A JPS5990688A (en) 1984-05-25
JPH0366035B2 true JPH0366035B2 (en) 1991-10-15

Family

ID=16401241

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19904882A Granted JPS5990688A (en) 1982-11-15 1982-11-15 Device and method for treating silica-containing water

Country Status (1)

Country Link
JP (1) JPS5990688A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0698276B2 (en) * 1989-04-05 1994-12-07 栗田工業株式会社 Membrane separation method
AT395408B (en) * 1991-05-13 1992-12-28 Andritz Patentverwaltung MICROFILTRATION
KR100313455B1 (en) * 1998-12-19 2003-03-15 노수홍 Livestock Wastewater Treatment Method Using Membrane Process

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50152984A (en) * 1974-05-31 1975-12-09
JPS51100976A (en) * 1975-03-04 1976-09-06 Kurita Water Ind Ltd
US4000065A (en) * 1974-11-18 1976-12-28 Basf Wyandotte Corporation Method and apparatus for purifying aqueous streams contaminated with organic materials
JPS52104472A (en) * 1976-01-27 1977-09-01 Ebara Infilco Co Ltd Desalting method for seawater and brine
JPS52149271A (en) * 1976-06-07 1977-12-12 Ebara Infilco Co Ltd Production of purified water
US4083779A (en) * 1975-07-22 1978-04-11 S.E.F.C.A.L. Societe d'Etudes, de Fabrication et de Commercialisation de Colorants Alimentaires Process for treatment of anthocyane extracts
JPS5432179A (en) * 1977-08-15 1979-03-09 Ebara Infilco Co Ltd Controlling method for operation of fresh water making apparatus
JPS5496485A (en) * 1978-01-17 1979-07-30 Yasuhiro Sakaguchi Membrane water production method and its manufacture apparatus
JPS54158057A (en) * 1978-06-02 1979-12-13 Japan Metals & Chem Co Ltd Method of disposing cutting oil agent
JPS5513103A (en) * 1978-07-07 1980-01-30 Mitsui Toatsu Chem Inc Treatment of sewage
JPS57167786A (en) * 1981-04-08 1982-10-15 Hajime Nakato Treating device for industrial waste water containing colloidal materials

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50152984A (en) * 1974-05-31 1975-12-09
US4000065A (en) * 1974-11-18 1976-12-28 Basf Wyandotte Corporation Method and apparatus for purifying aqueous streams contaminated with organic materials
JPS51100976A (en) * 1975-03-04 1976-09-06 Kurita Water Ind Ltd
US4083779A (en) * 1975-07-22 1978-04-11 S.E.F.C.A.L. Societe d'Etudes, de Fabrication et de Commercialisation de Colorants Alimentaires Process for treatment of anthocyane extracts
JPS52104472A (en) * 1976-01-27 1977-09-01 Ebara Infilco Co Ltd Desalting method for seawater and brine
JPS52149271A (en) * 1976-06-07 1977-12-12 Ebara Infilco Co Ltd Production of purified water
JPS5432179A (en) * 1977-08-15 1979-03-09 Ebara Infilco Co Ltd Controlling method for operation of fresh water making apparatus
JPS5496485A (en) * 1978-01-17 1979-07-30 Yasuhiro Sakaguchi Membrane water production method and its manufacture apparatus
JPS54158057A (en) * 1978-06-02 1979-12-13 Japan Metals & Chem Co Ltd Method of disposing cutting oil agent
JPS5513103A (en) * 1978-07-07 1980-01-30 Mitsui Toatsu Chem Inc Treatment of sewage
JPS57167786A (en) * 1981-04-08 1982-10-15 Hajime Nakato Treating device for industrial waste water containing colloidal materials

Also Published As

Publication number Publication date
JPS5990688A (en) 1984-05-25

Similar Documents

Publication Publication Date Title
KR100575113B1 (en) Porous hollow fiber membranes and method of making the same
JPH07112185A (en) Waste water treating device and washing method therefor
WO2007097046A1 (en) Method and apparatus for treating silicon particle
JP5261090B2 (en) Method and apparatus for treating wastewater containing silicon
JPH10225682A (en) Method of removing boron in reverse osmosis seawater desalination
JPH0366035B2 (en)
JP3838689B2 (en) Water treatment system
JP7403387B2 (en) Coagulation membrane filtration system and coagulation membrane filtration method
JP4454922B2 (en) Control method of filtration apparatus using hollow fiber type separation membrane
CN112744955A (en) Integrated device and integrated process for resource utilization of purified terephthalic acid mother solid waste liquid
JPS6261691A (en) Filtering method by filter membrane
JP2000140842A (en) Waste water treating method using ceramic filter for waste water from silicon polishing and waste water treating system
CN206666266U (en) A kind of Multipurpose water processing equipment
CN214528448U (en) Integrated device for resource utilization of mother solid waste liquid of purified terephthalic acid
JP3185398B2 (en) Water purification equipment
CN217498890U (en) Graphene ultrafiltration membrane sewage treatment system
JPH0679147A (en) Filtration method
JP2514930B2 (en) Membrane separation device with backwash ejector
CN214159181U (en) Cross-flow MSF microfiltration membrane device
JP2717458B2 (en) Filtration method
JP2002001331A (en) Production method of purified water
JPS6211507A (en) Treatment of suspended matters in water and treating device therefor
JPH04271817A (en) Filtering method
JPH02129010A (en) Method for recovering sulfuric acid from titanium sulfate waste liquor
JPH05329336A (en) Filtering method