JPH0365375B2 - - Google Patents

Info

Publication number
JPH0365375B2
JPH0365375B2 JP4752383A JP4752383A JPH0365375B2 JP H0365375 B2 JPH0365375 B2 JP H0365375B2 JP 4752383 A JP4752383 A JP 4752383A JP 4752383 A JP4752383 A JP 4752383A JP H0365375 B2 JPH0365375 B2 JP H0365375B2
Authority
JP
Japan
Prior art keywords
coagulating
latex
nozzle
substrate
polymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP4752383A
Other languages
Japanese (ja)
Other versions
JPS59172523A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP4752383A priority Critical patent/JPS59172523A/en
Priority to CA000449872A priority patent/CA1241797A/en
Priority to EP84103111A priority patent/EP0120456B1/en
Priority to DE8484103111T priority patent/DE3480991D1/en
Priority to US06/592,365 priority patent/US4744744A/en
Publication of JPS59172523A publication Critical patent/JPS59172523A/en
Priority to US07/226,526 priority patent/US4910850A/en
Publication of JPH0365375B2 publication Critical patent/JPH0365375B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Processes Of Treating Macromolecular Substances (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Description

【発明の詳細な説明】 本発明は重合体ラテツクスの凝固方法に関する
ものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for coagulating polymer latexes.

化学工業においては凝固性物質、例えば重合体
ラテツクス、ゴムラテツクス等は多量に扱われて
おり、その内一部は接着剤や塗料等として液状の
まま使用されているが大部分のものは凝固剤によ
り凝固した後使用されているのが現状である。従
つて凝固操作はこれらの分野では重要な位置を占
める操作であるにもかかわらず現状では凝固の方
法あるいは凝固装置は従来からの経験により得ら
れた古い技術に基くものが使用されている。
In the chemical industry, large quantities of coagulable substances, such as polymer latex and rubber latex, are handled, and some of them are used in liquid form as adhesives and paints, but most of them are treated with coagulants. Currently, it is used after solidifying. Therefore, although the coagulation operation is an important operation in these fields, currently the coagulation methods and coagulation apparatuses are based on old techniques obtained through conventional experience.

ところで樹脂工業に限つて述べるならば、乳化
重合法により製造された重合体ラテツクスから重
合体粉末を製造する場合一般にはラテツクスと酸
類あるいは無機質の多価塩類からなる凝固剤とを
接触せしめ凝析した後熱処理等の方法により重合
体を固化せしめ、しかる後に脱水、乾燥等の操作
を経て重合体の乾燥粉末とするのが通常である。
しかるに通常採用されている方法によれば得られ
る粉末の粒子は不定形をしており粒度分布も広
く、粗大粒子が含まれる反面微粉末も相当の量存
在する。従つて前記微粉末の飛散に基づく歩留り
の低下、あるいは環境問題、さらには粉末の低流
動性に基づく配管、貯槽出口等での詰り、粉塵発
生による作業環境の悪化、粉塵爆発の危険性の増
大等好ましからざる問題を有している。また重合
体粉末の嵩比重が小さく脱水機における脱水性が
悪いため輸送、貯蔵のコストが高く、しかも乾燥
工程で多大の熱エネルギーを消費しているのが現
状である。
By the way, speaking specifically in the resin industry, when producing polymer powder from polymer latex produced by emulsion polymerization, it is generally coagulated by bringing the latex into contact with a coagulant consisting of acids or inorganic polyvalent salts. Usually, the polymer is solidified by a method such as post-heat treatment, and then subjected to operations such as dehydration and drying to form a dry powder of the polymer.
However, according to the commonly used method, the particles of the powder obtained have an irregular shape and a wide particle size distribution, and while they contain coarse particles, a considerable amount of fine powder is also present. Therefore, there is a reduction in yield due to the scattering of the fine powder, or environmental problems, and furthermore, clogging at piping, storage tank outlet, etc. due to the low fluidity of the powder, deterioration of the working environment due to dust generation, and increased risk of dust explosion. It has some undesirable problems. In addition, the bulk specific gravity of the polymer powder is small and dehydration properties in a dehydrator are poor, so transportation and storage costs are high, and moreover, a large amount of thermal energy is consumed in the drying process.

ところで近年凝固操作の重要性に鑑み重合体粉
体の粉体特性を向上しようとする研究が多く見ら
れる。これらの研究開発の動向の一つとして従来
の凝固方法あるいは凝固装置の若干の改善、他の
ものとして気相反応を利用した噴霧乾燥や気相凝
固等の方法がある。しかしながらかかる方法は依
然として粉体として低品位なものであつたり、多
大なエネルギーコストと建設コストを強いるもの
であつたりするなど決定的な改善策とはなつてい
ない。
In recent years, in view of the importance of coagulation operations, many studies have been conducted to improve the powder properties of polymer powders. One of these trends in research and development is the slight improvement of conventional coagulation methods or coagulation equipment, and other methods include methods such as spray drying and vapor phase coagulation that utilize gas phase reactions. However, such methods still produce low-grade powders, impose large energy costs and construction costs, and have not yet become a definitive solution.

このような状況下において本発明者らは特定の
条件を満す細管より乳化ラテツクスを凝固液中に
吐出させることにより微粉および粗大粒子を実質
的に含まない高嵩比重粉粒体とし得る発明につい
て先に特願昭56−73115号(特開昭57−187322号)
として特許出願した。
Under these circumstances, the present inventors have developed an invention in which a high bulk specific gravity powder and granular material substantially free of fine powder and coarse particles can be obtained by discharging emulsified latex into a coagulating liquid from a capillary that satisfies specific conditions. Previously, patent application No. 1983-73115 (Japanese Patent Application No. 187322)
A patent application was filed as

本発明者らは先の発明に基づき、さらに鋭意検
討した結果ラテツクス凝固用ノズルとして特定の
間隙と特定の長さを有する細管を基板に設けたも
のを重合体ラテツクスの凝固に使用することによ
り粉体特性に極めて優れる重合体粉粒体とし得る
ことを見出し本発明に到達した。
Based on the previous invention, the present inventors conducted further intensive studies and found that a nozzle for coagulating latex, in which a thin tube having a specific gap and a specific length is provided on a substrate, can be used to coagulate polymer latex. The present invention was achieved by discovering that it is possible to produce a polymer powder with extremely excellent physical properties.

本発明は重合体ラテツクスを凝固液中で凝固さ
せて重合体粉粒体を得るに際し、基板に細管相互
の間隙が1mm以上で、且つ基板上の突出長が3mm
以上となるように複数本の細管が設けられたラテ
ツクス凝固用ノズルを使用し、該ラテツクス凝固
ノズルの細管より重合体ラテツクスを凝固液中に
吐出し、凝固させることを特徴とする重合体ラテ
ツクスの凝固方法にある。
In the present invention, when a polymer latex is coagulated in a coagulation liquid to obtain a polymer powder, the gap between the capillary tubes is 1 mm or more on the substrate, and the protrusion length on the substrate is 3 mm.
A latex coagulating nozzle provided with a plurality of thin tubes as described above is used, and the polymer latex is discharged into a coagulating liquid from the thin tubes of the latex coagulating nozzle and coagulated. It is in the coagulation method.

本発明において使用するラテツクス凝固用ノズ
ルの構造を図面に基づいて説明すると、第1図は
細管を基板の厚み分迄差し込んだ場合のもので、
且つ基板とホルダーが分離可能な構造の場合の第
三角法による側面断面図1−1と正面図1−2で
あつて、1は基板、2は細管、3は接着剤、4は
ガスケツト、5はホルダー、6は締結具である。
また第2図は基板が細管の中央部に位置するよう
組立てた場合のもので、且つ基板がホルダー兼用
となるように基板とホルダーが一体形成された場
合の断面図であり1′は基板、2は細管である。
The structure of the latex coagulating nozzle used in the present invention will be explained based on the drawings. Figure 1 shows the case where a thin tube is inserted to the thickness of the substrate.
In addition, a side cross-sectional view 1-1 and a front view 1-2 according to trigonometry in the case of a structure in which the substrate and the holder can be separated, in which 1 is the substrate, 2 is a thin tube, 3 is an adhesive, 4 is a gasket, and 5 is a holder, and 6 is a fastener.
FIG. 2 is a cross-sectional view of the case where the substrate is assembled so that it is located in the center of the thin tube, and the substrate and the holder are integrally formed so that the substrate also serves as a holder. 1' is the substrate; 2 is a tubule.

本発明におけるラテツクス凝固用ノズルの構造
は第1図及び第2図のものに限定されず、要は細
管相互の間隙が1mm以上で、且つ基板上の突起
長、即ち第1図におけるA、第2図におけるBの
長さが3mm以上となるように基板に複数本の細管
が設けられたものであれば基本的にはいかなる構
造でもよい。
The structure of the nozzle for latex coagulation in the present invention is not limited to that shown in FIGS. 1 and 2, but the key point is that the gap between the thin tubes is 1 mm or more, and the length of the protrusion on the substrate, that is, A in FIG. Basically, any structure may be used as long as a plurality of thin tubes are provided on the substrate so that the length of B in FIG. 2 is 3 mm or more.

本発明におけるラテツクス凝固用ノズルの外観
構造はその代表的な例として示した第1図及び第
2図からもわかるように複数本の細管から構成さ
れる生花で使用される剣山のような特徴ある構造
をしているものである。このような剣山様の構造
をすることで凝固性物質と凝固液の接触をよく
し、ノズルから吐出される凝固性物質を特徴ある
形状で凝固せしめ、粉体特性に極めて優れる重合
体粉粒体の製造が可能となるものである。即ち凝
固性物質なる重合体ラテツクスはノズルホルダー
内部から細管を経て凝固液中に吐出されるが、本
発明では、凝固液が重合体ラテツクスの吐出方向
と同方向に静かに流れるようにノズルの向きと凝
固液液量が調整される。一方凝固用ノズルから吐
出された重合体ラテツクスを層流の凝固液に乗せ
て静かに流しながら凝固反応させ、微粉及び粗大
粒子を実質的に含まない重合体粉粒体を得るため
に、凝固用ノズルの細管相互の間隙を1mm以上、
基板からの突出長を3mm以上としている。凝固液
は重合体ラテツクスの吐出方向と同方向に流され
るが凝固液の流れはノズルホルダーあるいは基板
に邪魔されてこれらの下流側、即ち細管付近で乱
れが生じ渦が発生する。この渦の影響をうけずに
凝固するため、細管の先端を渦域の外部に存在す
る層流域まで突出させる必要がある。層流域まで
達する突出長は、凝固液流量などにより異なる
が、鋭意検討した結果細管が基板より3mm以上、
好ましくは10mm以上突出していれば細管の先端は
渦域の外部に存在する層流域に達することになり
先端より吐出される重合体ラテツクスは層流の凝
固液に乗つて静かに流れながら凝固反応して微粉
及び粗大粒子を実質的に含まない特徴ある形状を
した高嵩比重の重合体粉粒体が得られることがわ
かつた。なお本発明においては細管の基板からの
突出長は実質的には制限されないものであるが工
業的生産性の見地からいつてその上限値は200mm
位である。
As can be seen from FIGS. 1 and 2, which are representative examples, the external structure of the nozzle for latex coagulation according to the present invention has a characteristic structure similar to that used for fresh flowers, which is composed of a plurality of thin tubes. It has a structure. This Kenzan-like structure improves the contact between the coagulable substance and the coagulating liquid, allowing the coagulable substance discharged from the nozzle to coagulate in a distinctive shape, resulting in a polymer powder with extremely excellent powder properties. This makes it possible to manufacture That is, the polymer latex, which is a coagulable substance, is discharged from inside the nozzle holder through a thin tube into the coagulating liquid. In the present invention, the nozzle is oriented so that the coagulating liquid flows quietly in the same direction as the polymer latex is discharged. and the amount of coagulating liquid is adjusted. On the other hand, the polymer latex discharged from the coagulation nozzle is placed on a laminar coagulation liquid and allowed to coagulate while flowing gently. The gap between the thin tubes of the nozzle should be 1 mm or more.
The protrusion length from the board is 3 mm or more. The coagulating liquid is flowed in the same direction as the discharge direction of the polymer latex, but the flow of the coagulating liquid is obstructed by the nozzle holder or the substrate, and turbulence occurs on the downstream side of these, that is, near the capillary, and a vortex is generated. In order to solidify without being affected by this vortex, it is necessary to make the tip of the thin tube protrude into the laminar region that exists outside the vortex region. The length of the protrusion that reaches the laminar region varies depending on the flow rate of the coagulating liquid, etc., but after careful consideration, we found that the length of the tube is 3 mm or more from the substrate.
Preferably, if it protrudes by 10 mm or more, the tip of the capillary will reach the laminar region that exists outside the vortex region, and the polymer latex discharged from the tip will undergo a coagulation reaction while quietly flowing on the laminar coagulation liquid. It has been found that a polymer powder with a characteristic shape and high bulk specific gravity, which is substantially free of fine powder and coarse particles, can be obtained. In the present invention, the protrusion length of the thin tube from the substrate is not substantially limited, but from the viewpoint of industrial productivity, the upper limit is 200 mm.
It is the rank.

細管相互の間隙が狭すぎると細管群間に凝固液
の流入が困難となり細管群の周辺部を除いて良好
な凝固が不可能となる。一方、仮に強制的手段に
より凝固液を細管群間に流入せしめた場合でも細
管相互の間隙が1mm未満となると吐出した凝固性
物質がもたらすジエツト流のゆらぎのため各細管
から吐出した凝固性物質は互いに合一しあい大き
な塊状粒子となつて良好な性状の粉体が製造不可
能となる。従つて本発明においては細管相互の間
隙は1mm以上であることが必要である。なお細管
相互の間隙は重合体粉粒体の生産速度を考慮する
とその範囲は20mm位迄、好ましくは10mm位迄であ
る。
If the gap between the capillary tubes is too narrow, it will be difficult for the coagulating liquid to flow between the capillary groups, making it impossible to achieve good coagulation except in the peripheral areas of the capillary groups. On the other hand, even if the coagulating liquid is forced to flow between the groups of capillary tubes, if the gap between the capillary tubes becomes less than 1 mm, the coagulable material discharged from each capillary will fluctuate due to fluctuations in the jet flow caused by the coagulable material discharged. They coalesce together to form large lumpy particles, making it impossible to produce powder with good properties. Therefore, in the present invention, it is necessary that the gap between the thin tubes be 1 mm or more. Note that the gap between the thin tubes is up to about 20 mm, preferably up to about 10 mm, considering the production rate of the polymer powder.

ラテツクス凝固用ノズルを構成する基板の材質
はガラス類、無機焼結体類;ポリメチルメタクリ
レート、ポリ塩化ビニル、ポリアミド、ポリエス
テル、ポリカーボネート、ポリプロピレン、ポリ
エチレン、ABS樹脂、ポリアセタール、AS樹
脂、フツ素樹脂等の合成樹脂類;ステンレススチ
ール、銅、白金、金、鉛等の金属類が好ましい
が、これらに限定されず凝固液及び凝固性物質に
対し化学的に安定な物質であればいかなるもので
も使用可能である。また基板の形状については円
形、正方形、矩形、長円形等任意の形状のものが
使用できる。
The materials of the substrate constituting the nozzle for latex coagulation include glasses and inorganic sintered bodies; polymethyl methacrylate, polyvinyl chloride, polyamide, polyester, polycarbonate, polypropylene, polyethylene, ABS resin, polyacetal, AS resin, fluororesin, etc. Synthetic resins; metals such as stainless steel, copper, platinum, gold, and lead are preferred, but any material can be used as long as it is chemically stable against coagulating liquids and coagulable substances. It is. Further, as for the shape of the substrate, any shape such as circular, square, rectangular, oval, etc. can be used.

さらにラテツクス凝固用ノズルを構成する細管
は先に出願した特願昭56−73115号(特開昭57−
187322号)によつて規定される細管であり、その
管径については特に制約ないが内径は3mm以下、
外径は5mm以下が好ましい。またその材質につい
ては前記基板を構成する材質を同じく用いること
ができ、その他凝固液及び凝固性物質に対し化学
的に安定な物質であればいかなるものでもよい。
Furthermore, the thin tube constituting the nozzle for latex coagulation was previously filed in Japanese Patent Application No. 56-73115 (Japanese Unexamined Patent Publication No. 57-731).
187322), and there are no particular restrictions on the tube diameter, but the inner diameter is 3 mm or less,
The outer diameter is preferably 5 mm or less. As for its material, the same material constituting the substrate as described above can be used, and any other material can be used as long as it is chemically stable against coagulating liquids and coagulable substances.

なお基板と細管との固着は第1図に示される場
合のように接着剤によるものでもよい。この場合
の接着剤は凝固液及び重合体ラテツクスに対し化
学的に安定であつて細管及び基板を接着せしめる
能力を有するものであればいかなるものであれば
いかなるものも使用することができ、例えばエポ
キシ系接着剤、ゴム系接着剤、ホツトメルト型接
着剤等が使用できる。なおこの接着剤は必しも必
要な部材ではない。
Note that the substrate and the thin tube may be fixed with adhesive as in the case shown in FIG. In this case, any adhesive can be used as long as it is chemically stable to the coagulating liquid and the polymer latex and has the ability to bond the capillary and the substrate, such as epoxy. Type adhesives, rubber adhesives, hot melt adhesives, etc. can be used. Note that this adhesive is not necessarily a necessary member.

一方基材と細管とが接着剤により固着されない
他の態様としては基板と細管が一体物となつてい
る場合、基板と細管が直接相互に密着している場
合等が挙げられ、前者の一体物の場合の成形は合
成樹脂を用いた射出成形、金属を用いた鋳込成形
等により成形することが可能であり、後者の場合
には細管を固定した型の中に基板を形成する重合
性物質を流し込み重合反応せしめることにより基
板と細管とを固着せしめる方法、さらには細管を
固定した型の中に基板を形成する溶融物質を流し
込んだ後冷却固化せしめることにより基板と細管
とを固着せしめる方法等がある。
On the other hand, other cases in which the base material and the capillary are not fixed with adhesive include cases where the substrate and the capillary are integrated, cases where the substrate and the capillary are directly in close contact with each other, etc. In this case, molding can be done by injection molding using synthetic resin, casting molding using metal, etc. In the latter case, a polymeric material is used to form the substrate in a mold in which the capillary is fixed. A method of fixing the substrate and the thin tube by pouring it into a mold and causing a polymerization reaction, and a method of fixing the substrate and the thin tube by pouring a molten substance forming the substrate into a mold in which the thin tube is fixed, and then cooling and solidifying it. There is.

また、ガスケツト、ホルダー、締結具の形状は
本発明において特に制限するものではない。ガス
ケツトとしてはゴム板、ポリテトラフルオロエチ
レン板、O−リング等が使用できる。ホルダーの
材質としては前述した基板の材質のガラス類、無
機焼結体類、合成樹脂類、金属類等が使用でき
る。さらに締結具としてはボルト、万力、締め付
けリング等通常の手段が利用でき、その材質とし
ては基板の材質のガラス類、無機焼結体類、合成
樹脂類、金属類等が使用できる。
Furthermore, the shapes of the gasket, holder, and fastener are not particularly limited in the present invention. As the gasket, a rubber plate, a polytetrafluoroethylene plate, an O-ring, etc. can be used. As the material of the holder, the above-mentioned substrate materials such as glasses, inorganic sintered bodies, synthetic resins, metals, etc. can be used. Furthermore, ordinary means such as bolts, vices, and tightening rings can be used as fasteners, and the materials used include glass, which is the material of the substrate, inorganic sintered bodies, synthetic resins, metals, and the like.

本発明において使用する重合体ラテツクスは乳
化重合で得られ回収しうる高分子ラテツクスのほ
とんどが適用可能である。特に効果を発揮する重
合体ラテツクスとしては、エチレン性単量体の乳
化重合によつて得られるラテツクス、ゴム状重合
体ラテツクス、ゴム状重合体にエチレン性単量体
をグラフト重合させたラテツクス、エチレン性単
量体の重合体にゴム形成単量体をグラフト重合さ
せたラテツクス及びこれらの混合ラテツクス等が
挙げられる。
As the polymer latex used in the present invention, most polymer latexes that can be obtained by emulsion polymerization and can be recovered can be used. Particularly effective polymer latexes include latexes obtained by emulsion polymerization of ethylenic monomers, rubbery polymer latexes, latexes obtained by graft polymerizing ethylenic monomers onto rubbery polymers, and ethylene. Latexes obtained by graft-polymerizing a rubber-forming monomer onto a polymer of a rubber-forming monomer, and mixed latexes thereof can be mentioned.

エチレン性単量体としては、スチレン、α−メ
チルスチレン、O−エチルスチレン、O−クロル
スチレン、P−クロルスチレン、ジビニルベンゼ
ンなどのスチレン系単量体、アクリロニトリル、
シアン化ビニリデンなどのアクリロニトリル系単
量体、アクリル酸やアクリル酸メチル、アクリル
酸エチルなどのアクリル酸エステル、メタクリル
酸やメタクリル酸メチル、メタクリル酸エチルな
どのメタクリル酸エステル、酢酸ビニルなどのビ
ニルエステル、塩化ビニリデンなどのビニリデ
ン、塩化ビニルなどのハロゲン化ビニルなどや他
にビニルケトン、アクリル酸アミド、無水マレイ
ン酸などが挙げられ、これらの単量体は単独で、
または混合して使用される。
Examples of ethylenic monomers include styrene monomers such as styrene, α-methylstyrene, O-ethylstyrene, O-chlorostyrene, P-chlorostyrene, and divinylbenzene, acrylonitrile,
Acrylonitrile monomers such as vinylidene cyanide, acrylic acid esters such as acrylic acid, methyl acrylate, and ethyl acrylate, methacrylic acid esters such as methacrylic acid, methyl methacrylate, and ethyl methacrylate, vinyl esters such as vinyl acetate, Examples include vinylidene such as vinylidene chloride, vinyl halides such as vinyl chloride, vinyl ketone, acrylamide, maleic anhydride, etc. These monomers can be used alone,
or used in combination.

ゴム状重合体としては、天然ゴム、ブタジエン
ゴム、スチレン−ブタジエン共重合体、アクリロ
ニトリル−ブタジエン共重合体、イソブレンゴ
ム、クロロブレンゴム、アクリルゴム、エチレン
−酢酸ビニル共重合体などの天然または合成ゴム
状重合体があげられる。
Examples of rubbery polymers include natural or synthetic rubbers such as natural rubber, butadiene rubber, styrene-butadiene copolymer, acrylonitrile-butadiene copolymer, isobrene rubber, chloroprene rubber, acrylic rubber, and ethylene-vinyl acetate copolymer. Examples include polymers.

本発明に用いられる高分子ラテツクスの凝固剤
としては、一般に使用される酸または水溶性無機
塩が全て使用可能であり、酸としては、硫酸・塩
酸類の鉱酸、酢酸等の解離定数10-6mol/以上
の有機酸(安息香酸、サルチル酸、ギ酸、酒石酸
を含む)、塩としては硫酸マグネシウム、硫酸ナ
トリウム等の硫酸塩や塩化物、酢酸塩を含み、こ
れらの混合物も使用可能である。
As a coagulant for the polymer latex used in the present invention, all commonly used acids or water-soluble inorganic salts can be used. Examples of acids include mineral acids such as sulfuric acid and hydrochloric acid, and acetic acid, which has a dissociation constant of 10 - 6 mol/or more of organic acids (including benzoic acid, salicylic acid, formic acid, and tartaric acid), salts include sulfates such as magnesium sulfate and sodium sulfate, chlorides, and acetates; mixtures of these can also be used. .

高分子ラテツクスに予め分散剤、滑剤、増粘
剤、界面活性剤、可塑剤、酸化防止剤、着色剤、
発泡剤などの公知の添加物を添加することもでき
る。特に分散剤は、凝固して形成された二次粒子
の粒子形状安定性に大きく影響を与える場合もあ
る。分散剤としては乳化重合や懸濁重合の安定剤
として通常使用される無機系分散剤や有機系分散
剤が使用可能である。無機系分散剤としては炭酸
マグネシウム、第三リン酸カルシウムなどが、ま
た有機系分散剤のうち、天然及び合成高分子分散
剤としてはデンプン、ゼラチン、アクリルアミ
ド、部分ケン化ポリビニルアルコール、部分ケン
化ポリメタクリル酸メチル、ポリアクリル酸及び
その塩、セルロース、メチルセルロース、ポリア
ルキレンオキシド、ポリビニルピロリドン、ポリ
ビニルイミダゾール、スルフオン化ポリスチレン
などが挙げられ、また低分子分散剤として、例え
ばアルキルベンゼンスルフオン酸塩、脂肪酸塩な
どの通常の乳化剤も使用可能である。
Dispersants, lubricants, thickeners, surfactants, plasticizers, antioxidants, colorants, etc. are added to the polymer latex in advance.
Known additives such as blowing agents can also be added. In particular, the dispersant may greatly affect the particle shape stability of the secondary particles formed by coagulation. As the dispersant, inorganic dispersants and organic dispersants that are commonly used as stabilizers for emulsion polymerization and suspension polymerization can be used. Examples of inorganic dispersants include magnesium carbonate and tribasic calcium phosphate, and among organic dispersants, natural and synthetic polymer dispersants include starch, gelatin, acrylamide, partially saponified polyvinyl alcohol, and partially saponified polymethacrylic acid. Methyl, polyacrylic acid and its salts, cellulose, methylcellulose, polyalkylene oxide, polyvinylpyrrolidone, polyvinylimidazole, sulfonated polystyrene, etc., and as low molecular dispersants, for example, common agents such as alkylbenzene sulfonates, fatty acid salts, etc. Emulsifiers can also be used.

また増粘剤として水あめ、パラフイン等を添加
することにより二次粒子の形成を容易にし、粒子
形状を制御することも可能である。
It is also possible to facilitate the formation of secondary particles and control the particle shape by adding starch syrup, paraffin, etc. as a thickener.

本発明を実施するにはラテツクス凝固用ノズル
全体を凝固浴の中に浸漬し、重合体ラテツクスを
ホルダーの内部より細管を経て凝固浴中に吐出せ
しめることにより微粉及び粗大粒子を実質的に含
まない特徴ある形状をした高嵩比重の重合体粉粒
体とすることができるなど優れた効果を奏する。
To carry out the present invention, the entire latex coagulating nozzle is immersed in a coagulating bath, and the polymer latex is discharged from the inside of the holder through a thin tube into the coagulating bath, so that the polymer latex is substantially free of fine powder and coarse particles. It has excellent effects such as being able to produce polymer powder with a characteristic shape and high bulk specific gravity.

以下実施例により本発明を具体的に説明する。
なお実施例、比較例中「部」及び「%」は全て
「重量部」及び「重量%」である。
The present invention will be specifically explained below using Examples.
In Examples and Comparative Examples, "parts" and "%" are all "parts by weight" and "% by weight."

実施例 1 内径1.0mm、外径2.5mm、長さ50mmのガラス製細
管150本を細管相互の間隙が5mm、基板上の突出
長が40mmとなるように辺の長さが120mm、厚さ10
mmのポリカーボネート製正方形基板に貫通せし
め、細管と基板をエポキシ系接着剤アラルダイト
(商品名、チバガイギー社製)で固着した。これ
をポリカーボネートで作成したホルダーにシリコ
ンゴム板をガスケツトとして介し万力を用いて接
合した。
Example 1 150 glass tubes with an inner diameter of 1.0 mm, an outer diameter of 2.5 mm, and a length of 50 mm were prepared with a side length of 120 mm and a thickness of 10 mm so that the gap between the tubes was 5 mm and the protrusion length on the substrate was 40 mm.
The thin tube was passed through a polycarbonate square substrate having a diameter of 1 mm, and the thin tube and the substrate were fixed using an epoxy adhesive Araldite (trade name, manufactured by Ciba Geigy). This was joined to a holder made of polycarbonate using a vise with a silicone rubber plate interposed as a gasket.

このような構成からなるラテツクス凝固用ノズ
ルを硫酸1%を含む凝固液が静かに流れる凝固浴
中に浸漬する。このとき凝固液の流れと吐出され
る重合体ラテツクスの流れが同一の方向となるよ
うにノズルを設置する。しかる後ブタジエン35
部、スチレン45部、アクリロニトリル20部からな
る重合体ラテツクスを前記凝固用ノズルに導入し
細管より吐出せしめた。吐出した重合体ラテツク
スは凝固液と接触して糸状に凝析したので、これ
を固化槽へ移し重合体の温度を93℃に昇温せしめ
て重合体粒子を固化し、その後遠心脱水機(遠心
力は600G)にて遠心脱水した。
A latex coagulating nozzle having such a structure is immersed in a coagulating bath in which a coagulating solution containing 1% sulfuric acid flows gently. At this time, the nozzle is installed so that the flow of the coagulating liquid and the flow of the discharged polymer latex are in the same direction. Then butadiene 35
A polymer latex consisting of 20 parts of coagulation, 45 parts of styrene, and 20 parts of acrylonitrile was introduced into the coagulation nozzle and discharged from the thin tube. The discharged polymer latex came into contact with the coagulation liquid and coagulated into threads, so it was transferred to a solidification tank and the temperature of the polymer was raised to 93℃ to solidify the polymer particles. Centrifugal dehydration was performed at a force of 600 G).

一連の操作は連続して24時間続けられたがその
間ラテツクスの吐出状態は非常に安定で、ノズル
の閉塞は観測されなかつた。
The series of operations continued for 24 hours, during which time the latex discharge condition was very stable and no nozzle clogging was observed.

得られた湿粉の水分は17%(ドライベース)で
あり、乾燥後の粉体の嵩比重は0.43、平均粒径は
0.92mm、250メツシユ標準篩通過量に全体の0.08
%であつた。
The moisture content of the obtained wet powder was 17% (dry base), the bulk specific gravity of the powder after drying was 0.43, and the average particle size was
0.92mm, 250 mesh standard sieve passing amount to total 0.08
It was %.

本実施例で得られた粉体は後述の比較例1で得
られた粉体と比べて極めて脱水性がよく、嵩比重
が大きく、且つ平均粒径が大きく、しかも極端に
微粉の少ないものであり粉体として良好なもので
あつた。
Compared to the powder obtained in Comparative Example 1 described later, the powder obtained in this example has extremely good dehydration properties, has a large bulk specific gravity, has a large average particle size, and has an extremely small amount of fine powder. It was a good powder.

実施例 2 内径0.8mm、外径1.2mm、長さ30mmのステンレス
スチール製細管60本を細管相互の間隙が4mmとな
るように治具で固定し、治具の中へメタクリル酸
メチルラツプの量を調節しながら流し込んだ後加
熱してメタクリル酸メチルを重合せしめ厚さ5
mm、直径80mmの円板状基板とし、細管と基板が固
着し、具つ基板上の細管の突出長が25mmなる構造
物を得た。次にこのものを第1図に示されるよう
な形状を有するポリメタクリル酸メチル製ホルダ
ーにネオプレンゴム製O−リングを介しボルトを
用いて接合した。
Example 2 60 stainless steel thin tubes with an inner diameter of 0.8 mm, an outer diameter of 1.2 mm, and a length of 30 mm were fixed with a jig so that the gap between the tubes was 4 mm, and an amount of methyl methacrylate lap was poured into the jig. After pouring the mixture while adjusting it, it is heated to polymerize the methyl methacrylate, resulting in a thickness of 5.
A structure was obtained in which a disk-shaped substrate with a diameter of 80 mm was used, and the thin tube and the substrate were fixed to each other, and the protruding length of the thin tube on the substrate was 25 mm. Next, this product was joined to a holder made of polymethyl methacrylate having the shape shown in FIG. 1 using a bolt via an O-ring made of neoprene rubber.

このような構成からなるラテツクス凝固用ノズ
ルを硫酸0.3%を含む凝固液が静かに流れる凝固
浴中に実施例1と同じように浸漬、設置する。し
かる後ブタジエン40部、メタクリル酸メチル20
部、スチレン40部からなる重合体ラテツクスを前
記凝固用ノズルに導入し細管より吐出せしめた。
重合体ラテツクスは糸状に凝析したので、これを
重合体の温度を85℃に変更する以外は実施例1と
同じ操作により固化、遠心脱水した。
The latex coagulating nozzle constructed as described above was immersed and installed in a coagulating bath in which a coagulating solution containing 0.3% sulfuric acid was flowing gently in the same manner as in Example 1. After that, 40 parts of butadiene, 20 parts of methyl methacrylate
A polymer latex consisting of 40 parts and 40 parts of styrene was introduced into the coagulation nozzle and discharged from the thin tube.
The polymer latex coagulated in the form of threads, so it was solidified and centrifugally dehydrated in the same manner as in Example 1, except that the temperature of the polymer was changed to 85°C.

一連の操作は連続して24時間続けられたがその
間ラテツクスの吐出状態は非常に安定で、ノズル
の閉塞は観測されなかつた。
The series of operations continued for 24 hours, during which time the latex discharge condition was very stable and no nozzle clogging was observed.

得られた湿粉の水分は15.5%(ドライベース)
であり、乾燥後の粉体の嵩比重は0.46、平均粒径
は0.71mm、250メツシユ標準篩通過量に全体の
0.04%であつた。
The moisture content of the obtained wet powder is 15.5% (dry base)
The bulk specific gravity of the powder after drying is 0.46, the average particle size is 0.71 mm, and the total amount passing through a 250-mesh standard sieve is
It was 0.04%.

実施例 3 第2図に示されるような形状を有するビン状の
ポリ塩化ビニル製基板(底部の直径が95mm)に直
径3.0mmの孔を相互間隙が2mmとなるように90個
開け夫々の孔に内径1.5mm、外径3.0mm、長さ90mm
の細管を貫通せしめ基板上の突出長を10mmに調整
した後、細管と基板をエポキシ系接着剤アラルダ
イト(商品名、チバガイギー社製)で固着し断面
が第2図のようなラテツクス凝固用ノズルを作成
した。
Example 3 Ninety holes with a diameter of 3.0 mm were made in a bottle-shaped polyvinyl chloride substrate (bottom diameter: 95 mm) having a shape as shown in Fig. 2, with a mutual gap of 2 mm. Inner diameter 1.5mm, outer diameter 3.0mm, length 90mm
After adjusting the protrusion length on the substrate to 10 mm, the tube and the substrate were fixed with epoxy adhesive Araldite (trade name, manufactured by Ciba Geigy), and a latex coagulating nozzle with a cross section as shown in Figure 2 was attached. Created.

次にこの凝固用ノズルを硫酸アルミニウム0.8
%を含む凝固液が静かに流れる凝固浴中に実施例
1と同じように浸漬、設置する。しかる後アクリ
ル酸ブチル50部、アクリロニトリル15部、スチレ
ン35部からなる重合体ラテツクスを前記凝固用ノ
ズルに導入し細管より吐出せしめた。重合体ラテ
ツクスは糸状に凝析したので、これを重合体の温
度を95℃に変更する以外は実施例1と同じ操作に
より固化、遠心脱水した。
Next, use this coagulation nozzle with aluminum sulfate 0.8
% in a coagulation bath in which the coagulation solution flows gently in the same manner as in Example 1. Thereafter, a polymer latex consisting of 50 parts of butyl acrylate, 15 parts of acrylonitrile, and 35 parts of styrene was introduced into the coagulation nozzle and discharged from the thin tube. Since the polymer latex coagulated into threads, it was solidified and centrifugally dehydrated in the same manner as in Example 1 except that the temperature of the polymer was changed to 95°C.

一連の操作は連続して50時間続けられたがその
間ラテツクスの吐出状態は非常に安定で、ノズル
の閉塞は観測されなかつた。
The series of operations continued for 50 hours, during which time the latex discharge condition was very stable and no nozzle clogging was observed.

得られた湿粉の水分は21%(ドライベース)で
あり、乾燥後の粉体の嵩比重は0.45、平均粒径は
1.54mm、250メツシユ標準篩通過量は全体の0.03
%であつた。
The moisture content of the obtained wet powder was 21% (dry base), the bulk specific gravity of the powder after drying was 0.45, and the average particle size was
1.54mm, 250 mesh standard sieve passing amount is 0.03 of the total
It was %.

比較例 1 80の容器に1%の硫酸水溶液を30入れ、こ
れを撹拌しながら、さらに実施例1で用いた重合
体ラテツクス20を注ぎ凝析スラリーをつくる。
Comparative Example 1 30ml of a 1% aqueous sulfuric acid solution was put into an 80ml container, and while stirring, 20ml of the polymer latex used in Example 1 was added to form a coagulated slurry.

この方法は従来より広く一般的に行なわれてき
た凝固方法である。該スラリーを93℃に昇温せし
めて重合体粒子を固化した後遠心脱水機(遠心力
は600G)で遠心脱水した。得られた湿粉の水分
は33%(ドライベース)であり乾燥後の粉体の嵩
比重は0.32、平均粒径は0.25mm、250メツシユ標
準篩通過量は全体の203重量%であつた。
This method is a coagulation method that has been widely used in the past. The slurry was heated to 93° C. to solidify the polymer particles, and then centrifugally dehydrated using a centrifugal dehydrator (centrifugal force: 600 G). The moisture content of the obtained wet powder was 33% (dry basis), the bulk specific gravity of the powder after drying was 0.32, the average particle size was 0.25 mm, and the amount passing through a 250 mesh standard sieve was 203% by weight of the total.

比較例 2 厚さ30mmのポリメタクリル酸メチル製円板に
夫々の孔の中心間距離が3mmとなるように直径1
mmの細孔を90個開けた。当然孔は板を貫通してお
り、該円板をネオプレンゴム製O−リングを介し
てホールダーに接合する。これを実施例1と同様
に凝固浴中に設置し、実施例1と同一条件で、重
合体ラテツクスの凝固を試みた。実験開始より13
秒後に凝固した重合体の粗大塊が確認され、それ
以後連続して重合体の粗大塊が発生し約1分後に
細孔の大部分は閉塞してしまつた。目視の結果凝
固ノズルの下流域に生ずる渦のために吐出したラ
テツクスが渦域に畜積するのがその原因であるこ
とが判明した。
Comparative Example 2 A disk made of polymethyl methacrylate with a thickness of 30 mm has a diameter of 1 so that the distance between the centers of each hole is 3 mm.
Ninety mm pores were drilled. Naturally, the holes pass through the plate and connect the disc to the holder via a neoprene rubber O-ring. This was placed in a coagulation bath in the same manner as in Example 1, and coagulation of the polymer latex was attempted under the same conditions as in Example 1. 13 from the start of the experiment
After a few seconds, coarse lumps of coagulated polymer were observed, and after that, coarse lumps of polymer were continuously generated, and after about 1 minute, most of the pores were blocked. Visual inspection revealed that the cause of the problem was that discharged latex accumulated in the vortex area due to the vortex generated in the downstream area of the coagulation nozzle.

比較例 3 細管相互の間隙が0.5mmである以外は実施例2
と同一のノズルを用い実施例2と同一の条件で凝
析を試みた。ラテツクスの吐出状態は不安定であ
り、実験開始後1分30秒で数本の糸状凝固物が合
一して出来た粗大塊が発生するようになつた。約
5分後には全体が合一しあつた粗大塊が発生する
ようになり粉体特性に優れる粉体の製造は不可能
であつた。これは明らかに細管相互の間隙が狭い
ために基づくものである。
Comparative example 3 Example 2 except that the gap between the thin tubes is 0.5 mm
Coagulation was attempted under the same conditions as in Example 2 using the same nozzle. The discharge state of the latex was unstable, and a coarse lump formed by coalescence of several filamentous coagulums began to form 1 minute and 30 seconds after the start of the experiment. After about 5 minutes, coarse lumps were formed, and it was impossible to produce a powder with excellent powder properties. This is apparently due to the narrow spacing between the tubules.

【図面の簡単な説明】[Brief explanation of drawings]

第1〜2図は本発明におけるラテツクス凝固用
ノズルの実施態様例であり、第1図は基板とホル
ダーが締結具で連結されたノズルの第三角法によ
る側面断面図1−1と正面図1−2であり、第2
図は基板とホルダーが一体であるノズルの断面図
である。 1……基板、1′……ホルダー兼用の基板、2
……細管、3……接着剤、4……ガスケツト、5
……ホルダー、6……締結具。
1 and 2 are embodiments of the latex solidifying nozzle according to the present invention, and FIG. 1 is a side cross-sectional view 1-1 and a front view 1-1 of the nozzle in which a substrate and a holder are connected by a fastener. -2, and the second
The figure is a sectional view of a nozzle in which the substrate and holder are integrated. 1... Board, 1'... Board that also serves as a holder, 2
... Thin tube, 3 ... Adhesive, 4 ... Gasket, 5
...Holder, 6...Fastener.

Claims (1)

【特許請求の範囲】 1 重合体ラテツクスを凝固液中で凝固させて重
合体粉粒体を得るに際し、基板に細管相互の間隙
が1mm以上で、且つ基板上の突出長が3mm以上と
なるように複数本の細管が設けられたラテツクス
凝固用ノズルを使用し、該ラテツクス凝固ノズル
の細管より重合体ラテツクスを凝固液中に吐出
し、凝固させることを特徴とする重合体ラテツク
スの凝固方法。 2 基板上の突出長が10mm以上となるラテツクス
凝固用ノズルであることを特徴とする特許請求の
範囲第1項記載の重合体ラテツクスの凝固方法。 3 基板と細管が接着剤により固着されたラテツ
クス凝固用ノズルであることを特徴とする特許請
求の範囲第1項又は第2項記載の重合体ラテツク
スの凝固方法。 4 基板と細管が一体成形により固着されたラテ
ツクス凝固用ノズルであることを特徴とする特許
請求の範囲第1項又は第2項記載の重合体ラテツ
クスの凝固方法。 5 基板と細管が重合反応により固着されたラテ
ツクス凝固用ノズルであることを特徴とする特許
請求の範囲第1項又は第2項記載の重合体ラテツ
クスの凝固方法。 6 基板と細管が、基板を形成する溶融物質を冷
却固化することによつて固着されたラテツクス凝
固用ノズルであることを特徴とする特許請求の範
囲第1項又は第2項記載の重合体ラテツクスの凝
固方法。
[Scope of Claims] 1. When coagulating a polymer latex in a coagulating liquid to obtain a polymer powder, the substrate is provided with a gap between the capillary tubes of 1 mm or more and a protruding length on the substrate of 3 mm or more. 1. A method for coagulating polymer latex, which comprises using a latex coagulating nozzle provided with a plurality of thin tubes, and discharging polymer latex from the thin tubes of the latex coagulating nozzle into a coagulating liquid and coagulating it. 2. The method for coagulating polymer latex according to claim 1, characterized in that the nozzle is a latex coagulating nozzle with a protruding length on the substrate of 10 mm or more. 3. A method for coagulating polymer latex according to claim 1 or 2, wherein the nozzle is a latex coagulating nozzle in which a substrate and a thin tube are fixed with an adhesive. 4. A method for coagulating polymer latex according to claim 1 or 2, characterized in that the latex coagulating nozzle is a latex coagulating nozzle in which a substrate and a thin tube are fixed by integral molding. 5. The method for coagulating polymer latex according to claim 1 or 2, wherein the nozzle is a latex coagulating nozzle in which a substrate and a thin tube are fixed together by a polymerization reaction. 6. The polymer latex according to claim 1 or 2, which is a latex solidifying nozzle in which the substrate and the thin tube are fixed by cooling and solidifying the molten substance forming the substrate. coagulation method.
JP4752383A 1983-03-22 1983-03-22 Coagulation of polymer latex Granted JPS59172523A (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP4752383A JPS59172523A (en) 1983-03-22 1983-03-22 Coagulation of polymer latex
CA000449872A CA1241797A (en) 1983-03-22 1984-03-19 Method for coagulation of polymer latices and extruder therefor
EP84103111A EP0120456B1 (en) 1983-03-22 1984-03-21 Method for coagulation of polymer latices and extruder therefor
DE8484103111T DE3480991D1 (en) 1983-03-22 1984-03-21 METHOD FOR COAGULATING POLYMER LATEX AND SUITABLE EXTRUDER.
US06/592,365 US4744744A (en) 1983-03-22 1984-03-22 Extrusion nozzle for coagulation of polymer latices
US07/226,526 US4910850A (en) 1983-03-22 1988-08-01 Method for coagulation of a polymer latex

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4752383A JPS59172523A (en) 1983-03-22 1983-03-22 Coagulation of polymer latex

Publications (2)

Publication Number Publication Date
JPS59172523A JPS59172523A (en) 1984-09-29
JPH0365375B2 true JPH0365375B2 (en) 1991-10-11

Family

ID=12777472

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4752383A Granted JPS59172523A (en) 1983-03-22 1983-03-22 Coagulation of polymer latex

Country Status (1)

Country Link
JP (1) JPS59172523A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104772597B (en) * 2015-04-20 2017-09-15 张均 A kind of restorative procedure of Bulk plastic pelletizing template working face

Also Published As

Publication number Publication date
JPS59172523A (en) 1984-09-29

Similar Documents

Publication Publication Date Title
EP0051210B2 (en) Process for preparing uniform size spheroidal polymer beads
US2934530A (en) Suspension polymerization
US4429114A (en) Method for treating emulsified latex
US4744744A (en) Extrusion nozzle for coagulation of polymer latices
JPH0365375B2 (en)
JPH032362B2 (en)
JPH0365376B2 (en)
US5064938A (en) Continuous production process of particulate polymer and control method of the particle size of said polymer
JPH032361B2 (en)
JPH032363B2 (en)
CA2027878A1 (en) Production process of particulate polymer
JPS606765B2 (en) Method and apparatus for encapsulating and coagulating Elastomer
KR100381929B1 (en) Process and apparatus for continuously producing polymer latex into granules
JP3970954B2 (en) Method for producing rubber-reinforced styrene resin
JPS60127311A (en) Manufacture of thermoplastic resin powder
JPH01230605A (en) Method and apparatus for production of coagulated resin
CA1042127A (en) Continuous method of agglomerating aqueous latices and apparatus therefor
JPH043414B2 (en)
JPH0459010B2 (en)
JPH043415B2 (en)
JPS60124626A (en) Production of polymer powder
JP4673085B2 (en) Polymer recovery method and polymer recovery apparatus from polymer latex
JPS5991103A (en) Recovery of thermoplastic resin
JPH0224295B2 (en)
JPS60124627A (en) Production of thermoplastic resin powder