JPS60127311A - Manufacture of thermoplastic resin powder - Google Patents

Manufacture of thermoplastic resin powder

Info

Publication number
JPS60127311A
JPS60127311A JP23467783A JP23467783A JPS60127311A JP S60127311 A JPS60127311 A JP S60127311A JP 23467783 A JP23467783 A JP 23467783A JP 23467783 A JP23467783 A JP 23467783A JP S60127311 A JPS60127311 A JP S60127311A
Authority
JP
Japan
Prior art keywords
coagulation
powder
temperature
latex
liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23467783A
Other languages
Japanese (ja)
Inventor
Teruhiko Sugimori
輝彦 杉森
Takayuki Tajiri
象運 田尻
Akio Hironaka
弘中 章夫
Hideaki Habara
英明 羽原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Rayon Co Ltd
Priority to JP23467783A priority Critical patent/JPS60127311A/en
Publication of JPS60127311A publication Critical patent/JPS60127311A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To attempt to reduce both operating cost of the equipment and its construction cost along with obtaining, in liquid medium, any size of titled power of good properties, by delivering ABS resin latex through nozzle into coagulating solution at specific temperature. CONSTITUTION:The objective power can be obtained by delivering (A) latex of the thermoplatic resin with butadiene, styrene and acrylonitririle as the monomer components totalling 90wt% or more through nozzle having many capillaries into coagulating solution at 40-88 deg.C (e.g. equeous solution of sulfuric acid). Said capillaries are preferably made of stainless steel.

Description

【発明の詳細な説明】 本発明は単量体成分としてプタジエ/、スチレン及びア
クリロニトリルの合計量が90重量係以上より構成され
る熱可塑性樹脂のラテックスを凝固ノズルより凝固液中
に吐出せしめてラテックスを凝固する際に凝固液の温度
が40℃〜88℃の範囲であることを特徴とする熱可塑
性樹脂粉末の製造方法に関するものである。尚本明細書
中、ラテックスとは乳化重合によって得られる液と熱可
塑性樹脂微粒子の混合物を指すO 重合反応により樹脂、塗料、接着剤等を製造する高分子
工業において用いられる重合手法は乳化重合法、塊状重
合法、懸濁重合法および溶液重合法が王なものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention produces a latex by discharging a thermoplastic resin latex composed of a total amount of 90% by weight or more of Petadier, styrene, and acrylonitrile as monomer components into a coagulating liquid from a coagulating nozzle. The present invention relates to a method for producing thermoplastic resin powder, characterized in that the temperature of the coagulating liquid during coagulation is in the range of 40°C to 88°C. In this specification, latex refers to a mixture of a liquid obtained by emulsion polymerization and thermoplastic resin fine particles.The polymerization method used in the polymer industry, which manufactures resins, paints, adhesives, etc. through polymerization reactions, is emulsion polymerization. , bulk polymerization, suspension polymerization and solution polymerization are the most popular.

これらの重合手法のうち塊状重合法、@濁重合法8よび
溶液重合法は夫々独自の短長所を有するものの重合挙動
が非常に類似している為製造された重合体は類似の物性
を有する。またこれ等三種の重合法は共重合組成をはじ
めとする重合体構造を設計する上で技術上あるいは操作
上の困難を有し実用上多くの制約を受けるため、ある種
の優れた機能をもつ樹脂を得ようとする場合に適用が難
かしいことが多い。
Among these polymerization methods, the bulk polymerization method, the @turbidity polymerization method8 and the solution polymerization method each have their own advantages and disadvantages, but the polymerization behavior is very similar, so the produced polymers have similar physical properties. In addition, these three polymerization methods have technical and operational difficulties in designing the polymer structure, including the copolymer composition, and are subject to many practical limitations. It is often difficult to apply when trying to obtain resins.

ところが、乳化重合法は乳化剤の使用により単量体を極
めて小さい粒子状になしてこれを重合せしめるために前
述の三種の重合法とは全く異った重合機構を有し、結果
として自由な重合体構造の設計を可能にする。
However, the emulsion polymerization method uses an emulsifier to form monomers into extremely small particles and polymerizes them, so it has a completely different polymerization mechanism from the three types of polymerization methods mentioned above, and as a result, free polymerization occurs. Enables the design of combined structures.

乳化重合法を操作面から見れば乳化剤使用による泡立ち
の対策や排水処理問題等の負担をかかえており、また品
質面では乳化剤の重合体への混入等好ましからざる問題
が存在するが、乳化重合法は先にも述べた通り優れた機
能を持つ樹脂の製造手法として有力な手法であり、近年
高付加価値樹脂の重合工程に盛んに利用されている。例
えば本発明で使用する単量体成分としてブタジェノ。ス
チレン及びアクリロニトリルの合計量が9ON*%以上
から構成される熱可塑性樹脂は一般にABS樹脂と呼ば
れ乳化重合法によって製造される典型的な高機能樹脂で
あり耐衝撃性、成形性1表面外観等に優れる樹脂である
From an operational standpoint, the emulsion polymerization method is burdened by the use of emulsifiers, such as countermeasures against foaming and wastewater treatment.Also, from a quality standpoint, there are undesirable problems such as the emulsifier being mixed into the polymer. As mentioned above, this method is a powerful method for producing resins with excellent functions, and has been widely used in the polymerization process of high value-added resins in recent years. For example, Butageno as a monomer component used in the present invention. Thermoplastic resins consisting of 9ON*% or more of styrene and acrylonitrile in total are generally called ABS resins, and are typical high-performance resins manufactured by emulsion polymerization, with good impact resistance, moldability, surface appearance, etc. It is a resin with excellent properties.

このようにきわめて重要な重合手法である乳化重合法に
おける熱可塑性樹脂の製造工程は通常乳化重合工程、凝
固工程、洗浄脱水工程、乾燥工程及びペレット化工程で
構成され製品はペレット状あるいは粉末状で出荷される
。これらの各工程のうち乳化重合工程は製造される重合
体の物性を決定する重要な工程であるが、この工程が以
降の工程に多大な影響を及ぼすことは殆どない。それは
重合処方の如何に拘らず重合体が乳化液中の微粒子とし
て得られ、且つ該乳化液の物性が重合処方に殆ど関係し
なC・ためである。ところが乳化重合工程に続く凝固工
程は乳化液中の微粒状重合体を合一せしめて肥大化し、
粉体としてこれを取り出す工程であって。
The manufacturing process of thermoplastic resin using emulsion polymerization, which is an extremely important polymerization method, usually consists of an emulsion polymerization process, a coagulation process, a washing and dehydration process, a drying process, and a pelletizing process, and the product is in the form of pellets or powder. Will be shipped. Among these steps, the emulsion polymerization step is an important step that determines the physical properties of the produced polymer, but this step hardly affects the subsequent steps. This is because the polymer is obtained as fine particles in an emulsion regardless of the polymerization recipe, and the physical properties of the emulsion have little to do with the polymerization recipe. However, the coagulation process that follows the emulsion polymerization process causes the fine particulate polymers in the emulsion to coalesce and become bulky.
This is the process of extracting it as a powder.

その手法により得られる粉体の性状が左右されるため脱
水機、乾燥器、集塵器あるいは貯槽をはじめとする多(
の機器のデザイ/が影響を受ける。つまり乳化重合によ
る重合体の製造工場のデザインを決めるのは凝固工程で
あると言っても過言ではない。仮りに凝固工程で粒径が
均一で球形に近(、微粉や粗大粒子がな(、嵩比重や脱
水性に優れる粉体を製造できるとしたら製造工程全体の
操作性2作業性、工程安定性。
Because the properties of the powder obtained depend on the method, it is necessary to use multiple devices such as dehydrators, dryers, dust collectors, and storage tanks.
The design of equipment will be affected. In other words, it is no exaggeration to say that the coagulation process determines the design of a plant for manufacturing polymers using emulsion polymerization. If it were possible to produce a powder with uniform particle size, close to spherical shape (without fine powder or coarse particles), and excellent bulk specific gravity and dehydration properties during the coagulation process, the operability of the entire manufacturing process 2 Workability and process stability .

エネルギーコスト、環境対策、省力化等に太き(貢献す
ることは明白である。以上のように凝固工程は粉体の性
状に拘るために熱可塑性樹脂の製造面で重要な工程とし
て位置付けられる。
It is clear that it contributes greatly to energy costs, environmental measures, labor savings, etc.As mentioned above, the coagulation process is positioned as an important process in the production of thermoplastic resins because it affects the properties of the powder.

一方、後続の洗浄脱水工程、乾燥工程及びペレット化工
程は大々ユニットプロセスとしてのN要性はあるが、こ
れらの工程の良否が他の工程へ多大な影響を及ぼすこと
は稀である。
On the other hand, although the subsequent washing and dehydration process, drying process, and pelletizing process are largely required as unit processes, the quality of these processes rarely has a great influence on other processes.

従って乳化重合法の適用にあたっては重合手法の確立は
言うに及ばず、凝固手法の確立あるいは開発は極めて重
要なテーマである。しかしながら凝固手法に関してはど
うにか許容でさる程度の粉体が安易に得られる理由から
か、凝固機構が難解である理由からか、あるいは別の理
由からか釈然としないが、従来より研究開発の努力があ
まりなされなかったようである。そのために現状の凝固
技術あるいは凝固装置は旧態依然としたものであり、製
造される重合体の粉末は不定形で粒径分布が広(粗大粒
子が含1れる一方、多量の微粉末が含まれるのが常であ
る。
Therefore, in applying the emulsion polymerization method, not only the establishment of a polymerization method but also the establishment or development of a coagulation method is an extremely important theme. However, regarding the coagulation method, it is not clear whether it is because powder of an acceptable level can be easily obtained, the coagulation mechanism is difficult to understand, or for some other reason, but research and development efforts have not been made in the past. It seems that not much was done. For this reason, the current coagulation technology and coagulation equipment are outdated, and the polymer powder produced is amorphous and has a wide particle size distribution (some coarse particles are included, but a large amount of fine powder is also included). It is usual.

その結果重合体粉末の飛散に基(歩留りの低下あるいは
環境問題、粉末の低流動性に基く配管内あるいは貯槽出
口等での詰り、粉塵発生による作業環境の悪化、あるい
は粉塵爆発の危険性増大等好ましからざる問題をかかえ
て(・る。さらに粉末の嵩比重が小さく、シかも脱水時
の脱水性が悪いため輸送あるいは貯蔵のコストか高(、
且つ乾燥器で多大のエネルギーを消費している。
As a result, the polymer powder may scatter (decreased yield or environmental problems, clog in pipes or at the outlet of the storage tank due to the low fluidity of the powder, deteriorate the working environment due to dust generation, or increase the risk of dust explosions, etc.) In addition, the bulk specific gravity of the powder is small, and the dehydration properties during dehydration are poor, resulting in high transportation and storage costs.
Moreover, the dryer consumes a large amount of energy.

近年エネルギー価格が高騰するに及び製造コストの低減
が問われる中で、該コストに最も影響力の大きい凝固工
程の重要性が認識され、該工程で得られる樹脂粉末の粉
体物性を同上せしめるための手法が多く提案されるに至
った。ところで優れた粉体物性とは流動性が良(・こと
In recent years, with the rise in energy prices and the need to reduce manufacturing costs, the importance of the coagulation process, which has the greatest impact on costs, has been recognized, and in order to improve the physical properties of the resin powder obtained in this process. Many methods have been proposed. By the way, excellent powder physical properties mean good fluidity.

噴流性が少いこと、脱水性が良いこと、嵩比重が高いこ
と、微粉が無いこと及び粗大粒子が無いこと等が掲けら
れ、懸濁重合法で得られるノく一ル状の粒子やガラスピ
ーズ等が噴流性以外の点でこれらの条件をよく満たして
いると言える。
It is characterized by its low jetting properties, good dehydration properties, high bulk specific gravity, absence of fine powder, and absence of coarse particles. It can be said that glass beads etc. satisfies these conditions well in terms other than jet property.

つまり外見的には粒度のよ(揃った球状に近(為粒子か
らなる粉体が理想的である。
In other words, a powder consisting of particles with a uniform particle size (approximately spherical) is ideal.

かかる粉末を得るための手法としてこれまで提唱されて
いるものはpl霧乾燥法または噴霧凝固法と呼ぶべき手
法に属するものであり、前者は重合体ラテックスを霧状
になして直接乾固し細い球状の粉末を製造する手法、後
者は重合体ラテックスを凝固雰囲気中に噴霧し同様の凝
固体を製造する手法である。提案の中にはこれらの手法
をさらに発展、改良させたものも当然ながら含まれてい
るが、いずれに−せよこれらの手法の共通点は気相を利
用し霧滴の形状を固定化する手法であると言える。従っ
て得られる粉体粒子は霧滴の形状を反映し球形に近(粉
体物性も従来型の凝固粉に比較し、それなりに改善され
ている。しかしながら平均粒径は非常に小さく、従来言
われている微粉の範鴫に入るため微粉に起因する諸問題
からは逃がれ得ない。これは空間における大粒径液滴の
形状の保持1粒度分布の制御、滞空時間の制御等技術的
に未解決の問題をかかえているためである。また、これ
らの手法は空間を利用することから外形の大さい装置を
必要とするため多大な建設コストが必要であり、ざらに
噴霧乾燥法については重合体の1〜3倍量の水を蒸発せ
しめる必要から運転コストも厖大なものとなる。以上の
ような理由から重合体ラテックスより粉体物性に優れた
粉粒体を製造する手法として噴霧乾燥法や噴霧凝固法と
呼ぶべき手法は必ずしも凝固工程の優良な改善策とはな
り得ていない。
The methods that have been proposed so far for obtaining such powders belong to a method called the PL mist drying method or the spray coagulation method. The latter is a method of producing spherical powder, and the latter is a method of spraying polymer latex into a coagulation atmosphere to produce a similar coagulated body. Naturally, some proposals include further developments and improvements to these methods, but in any case, the common feature of these methods is that they use a gas phase to fix the shape of the mist droplets. It can be said that Therefore, the powder particles obtained are close to spherical, reflecting the shape of the mist droplets (powder physical properties are also improved to some extent compared to conventional coagulated powders. However, the average particle size is very small, As it falls into the category of fine powder, it is impossible to escape from various problems caused by fine powder.This is due to technological issues such as maintaining the shape of large droplets in space, controlling particle size distribution, and controlling airborne time. This is because there are unresolved problems.In addition, these methods require large equipment due to the use of space, which requires a large amount of construction cost. The operating cost is also enormous because it is necessary to evaporate 1 to 3 times the amount of water than the polymer.For the reasons mentioned above, spray drying is a method for producing powder with better physical properties than polymer latex. Methods that should be referred to as spray coagulation methods or spray coagulation methods are not necessarily excellent measures for improving the coagulation process.

しかるに最も殴れた凝固工程ひいては最も優れた乳化重
合による熱可塑性樹脂の製造工程とは前述の如ざ優れた
粉体物性を有する粉粒体を製造でさることに加えて運転
コスト及び建設コストが安いことの3条件を満す必要が
ある。
However, the most effective coagulation process and the most excellent emulsion polymerization manufacturing process for thermoplastic resins not only produce powder with excellent powder physical properties as mentioned above, but also have low operating costs and construction costs. Three conditions must be met.

本発明省らはかかる観点に豆ち、先に特願昭56−73
115号をはじめとする幾つかの提案を行ったところで
あるが、さらに鋭意研究を続けた結果本発明に至った。
The Ministry of the Invention and others took advantage of this point of view and previously filed a patent application in 1982-73.
We have made several proposals including No. 115, and as a result of further intensive research, we have arrived at the present invention.

本発明は気相を利用することな(液中で粒径が任意な粉
体を製造する方法に関するものであり、若干の設備投資
で犬ざな運転コストメリットをもたらすものである。
The present invention relates to a method for producing powder of arbitrary particle size in a liquid without using a gas phase, and provides significant operating cost benefits with a small investment in equipment.

本発明は多数の細管を有する凝固ノズルを凝固液に浸漬
して単量体成分としてブタジエ/。
In the present invention, a coagulation nozzle having a large number of thin tubes is immersed in a coagulation liquid to obtain butadiene as a monomer component.

スチレン及びアクリロニトリルの合計量が90重量%以
上から構成される熱可塑性樹脂粉末を製造する際に凝固
液の温度を40℃〜88℃の範囲に調節することを特徴
とする熱可塑性樹脂粉末の製造方法を提供するものであ
る。
Production of thermoplastic resin powder characterized in that the temperature of the coagulation liquid is adjusted within the range of 40°C to 88°C when producing thermoplastic resin powder containing 90% by weight or more of styrene and acrylonitrile in total. The present invention provides a method.

一般に重合体ラテックスに凝固剤を作用せしめて得られ
る凝固粒子は高温になる程堅固になり重合体のガラス転
移温度近くで完全に固化し。
Generally, coagulated particles obtained by applying a coagulant to a polymer latex become more solid as the temperature increases, and are completely solidified near the glass transition temperature of the polymer.

さらに温度を高くすれば重合体はゴム状態へ移行する。If the temperature is further increased, the polymer transitions to a rubber state.

従って遠心力あるいは真空吸引力等の強い外力を重合体
湿粉に作用せしめて固液を分離する脱水操作を行う場合
は、該操作に耐え得る程度の強度を重合体湿粉が有する
必要から予め該湿粉を一定の温度に加熱してこれを固化
しなければならない。しかるに従来より行なわれている
凝固法においては粉体の性状を制御する必要から固化温
度より数10℃低(1一定の温度で凝固操作を行った後
に得られたスラリーを固化温度以上に昇温する操作を行
うのが常である。
Therefore, when performing a dehydration operation in which a strong external force such as centrifugal force or vacuum suction force is applied to a wet polymer powder to separate solid and liquid, the wet polymer powder must be strong enough to withstand the operation. The wet powder must be heated to a certain temperature to solidify it. However, in the conventional coagulation method, the temperature of the slurry obtained after coagulation is performed at a constant temperature is raised to a temperature several tens of degrees below the solidification temperature (1) due to the need to control the properties of the powder. Usually, the user performs the following operations.

ところが本発明で言うように凝固ノズルより重合体を凝
固液中に吐出せしめ粉体物性に優れる熱可塑性#B脂粉
末を製造する方法においては。
However, in the method of producing thermoplastic #B fat powder which has excellent powder physical properties by discharging a polymer into a coagulation liquid from a coagulation nozzle as described in the present invention.

該粉末の性状を決定する第1の要因は細管の内径であり
、第2の要因は細管先端におけるラテックス流速と凝固
液流速の相対速度であって凝固液温度は殆どこれに関与
しない。故に凝固液温度は任意に選定でさるわけである
が、前述の通り凝固スラリー中の凝固粒子の強度は凝固
液温度と関連して変化するため低温度で、しかも通常の
取扱手法で本発明の操作を行えば凝固操作に続(加熱固
化操作等の操作中あるいはこれらの装置を連結する配管
中において粒子が機械的強度不足の理由から破砕され、
その結果多量の微粉を発生する。従って微粉の発生を避
番す凝固ノズルより吐出されて数珠状に形成された熱可
塑性樹脂ラテックスの凝固粒子を破砕せずに良好な形状
のまま固化するためには細心の注意を払ってスラリーを
取扱うか、若しくは以下の条件の下に通常の取扱いをす
るか2つの方法があるが工業的見地から後者が甚だ有利
であることは説明に及ばない。つfりこの条件とは本発
明でいう1凝固液温度40℃以上“ということであって
40℃未満の低温度の凝固液中で得られた凝固粒子は非
常に軟弱であり1通常の工業的取扱いに耐えきれず固化
する以前に破砕される結果得られた熱可塑性樹脂粉末中
には多量の微粉が含有される。
The first factor that determines the properties of the powder is the inner diameter of the capillary, and the second factor is the relative velocity between the latex flow rate and the coagulation fluid flow rate at the tip of the capillary, and the coagulation fluid temperature has almost no effect on this. Therefore, the temperature of the coagulating liquid can be selected arbitrarily, but as mentioned above, the strength of the coagulated particles in the coagulating slurry changes in relation to the temperature of the coagulating liquid. If this operation is performed, particles may be crushed due to lack of mechanical strength following the solidification operation (during operations such as heating and solidification operations or in the piping connecting these devices).
As a result, a large amount of fine powder is generated. Therefore, in order to avoid crushing the coagulated particles of thermoplastic resin latex that are discharged from the coagulation nozzle and are formed into beads to avoid the generation of fine powder, and to solidify them in a good shape, the slurry must be prepared with extreme caution. There are two methods: handling or normal handling under the following conditions, but it goes beyond explanation that the latter is extremely advantageous from an industrial standpoint. This condition means, in the present invention, that the coagulation liquid temperature is 40°C or higher, and the coagulated particles obtained in the coagulation liquid at a low temperature of less than 40°C are very soft and are common in ordinary industry. The resulting thermoplastic resin powder, which cannot withstand physical handling and is crushed before it solidifies, contains a large amount of fine powder.

また逆に凝固液温度を高めると凝固粒子はしだいに堅固
になり、ついには完全に固化してしまうことになるが1
本研究者らが先に提案した特願昭57−134116号
の如<ABS樹脂粒子が完全に固化する以前、つまり8
8℃以下の温度において樹脂自身の物性を改善する目的
で凝固スラリーのpH調整等の処理を行う必要がある場
合には凝固液温度は当然88℃以下でなげればならない
。さらに凝固液温度を88℃以上に調節すれば凝固ノズ
ルより吐出したABS樹脂のラテックスは数珠状に凝固
したママ形状が固定され通常の攪拌あるいは輸送条件で
は単一粒子が連結した数珠状のABS樹脂が単一粒子に
分割されないため攪拌等の破砕力を強化するか新たに破
砕機を設置する必要が生じる。
On the other hand, if the temperature of the coagulating liquid is increased, the coagulated particles will gradually become more solid and will eventually become completely solidified.
As previously proposed by the present researchers in Japanese Patent Application No. 134116/1982,
If it is necessary to perform a treatment such as adjusting the pH of the coagulated slurry for the purpose of improving the physical properties of the resin itself at a temperature of 8°C or lower, the temperature of the coagulating liquid must naturally be kept at 88°C or lower. Furthermore, if the temperature of the coagulation liquid is adjusted to 88℃ or higher, the ABS resin latex discharged from the coagulation nozzle will have a bead-shaped coagulated mother shape, and under normal stirring or transportation conditions, the ABS resin latex will have a bead-like shape in which single particles are connected. Since the particles are not divided into single particles, it is necessary to strengthen the crushing force such as stirring or install a new crusher.

従って凝固液温度はABS樹脂の固化温度である88℃
以下であるのが好ましい。
Therefore, the coagulation liquid temperature is 88℃, which is the solidification temperature of ABS resin.
It is preferable that it is below.

さらに詳細に本発明を説明する。The present invention will be explained in more detail.

本発明で言う細管とはL/D≧0.065Re(Lは管
長、Dは管内径、 Reは管内ラテックス流に関するレ
イノルズ数)を満足するものであって重合体ラテックス
及び凝固液に対して化学的に安定なものであれば全て使
用でざる。そのような材質としてはステンレススチール
、チタン。
The thin tube referred to in the present invention is one that satisfies L/D≧0.065Re (L is the tube length, D is the tube inner diameter, and Re is the Reynolds number regarding the latex flow in the tube), and is chemically resistant to polymer latex and coagulation liquid. Anything that is physically stable should not be used. Such materials include stainless steel and titanium.

ハステロイ、貴金属等の金属類、ポリメタクリル酸メチ
ル、ポリ塩化ビニル、ナイロン、ポリエステル、ポリカ
ーボネート、ポリプロピレン。
Hastelloy, metals such as precious metals, polymethyl methacrylate, polyvinyl chloride, nylon, polyester, polycarbonate, polypropylene.

ポリエチレン、ABS樹脂、ポリアセタール。Polyethylene, ABS resin, polyacetal.

AS樹脂、フッ素樹脂等の樹脂類、セラミックス類及び
ガラス類が適している。またこのような細管を有する凝
固ノズルとは任意の形状をした基板に前述の細管を組付
けたものであって。
Resins such as AS resin and fluororesin, ceramics, and glass are suitable. Further, the coagulation nozzle having such a thin tube is one in which the above-mentioned thin tube is assembled to a substrate having an arbitrary shape.

基板その他の部材は細管同様の材質のものを使用できる
The substrate and other members can be made of the same material as the capillary.

凝固液としては硫酸、塩酸、硝酸、リン酸。Coagulating liquids include sulfuric acid, hydrochloric acid, nitric acid, and phosphoric acid.

亜硫酸等の酸類の水溶液;硫酸マグネシウム。Aqueous solution of acids such as sulfite; magnesium sulfate.

塩化マグネシウム、塩化カルシウム、硫酸アルミニウム
、塩化アルミニウム、硫酸アルミニウムカリウム等の多
価金属塩類の水溶液を単独もしくは混合して用いること
ができる。さらに重合体ラテックスを凝固せしめる能力
を有する薬品1例えばアルコール類等も上記の凝固液と
同様に使用可能であることは言うまでもない。
Aqueous solutions of polyvalent metal salts such as magnesium chloride, calcium chloride, aluminum sulfate, aluminum chloride, and potassium aluminum sulfate can be used alone or in combination. Furthermore, it goes without saying that chemicals having the ability to coagulate the polymer latex, such as alcohols, can also be used in the same manner as the above-mentioned coagulating liquid.

また本発明で使用し得る熱可塑性樹脂ラテックスは乳化
重合法により製造された一般にABS樹脂と呼ばれる重
合体のラテックスであり。
Further, the thermoplastic resin latex that can be used in the present invention is a polymer latex generally called ABS resin produced by an emulsion polymerization method.

単量体成分としてブタジェン、スチレン及ヒアクリロニ
トリルの合計量が90重量係以上から構成される重合体
のラテックスである。このようなABS樹脂ラテックス
を凝固する場合、凝固液と該ラテックスを接触せしめて
得られるスラリー中の凝固粒子は88℃を境にして、こ
れより高温側で固化してしまうので1本発明にgいては
凝固液温度は88℃以下に調節しなければならない。
It is a polymer latex composed of a total amount of butadiene, styrene and hyacrylonitrile as monomer components of 90 or more by weight. When coagulating such ABS resin latex, the coagulated particles in the slurry obtained by contacting the coagulating liquid with the latex solidify at a temperature higher than 88°C. If so, the temperature of the coagulating liquid must be adjusted to 88°C or less.

以下に実施例を掲げて本発明を具体的に説明する。The present invention will be specifically described below with reference to Examples.

実施例中のチは全て重量基準である。All numbers in the examples are based on weight.

実施例1 幅30cm、深さ30cm、長さ2mのステンレススチ
ール製凝固槽に1%の硫酸を含む凝固液を毎分801の
割合で核種の後端より流し、先端よりオーバーフローし
た凝固液を100メツシユの金網でP別しだ後501の
凝固液受器に受ける。凝固液受器中の凝固液はボ/プを
介して凝固槽に循環せしめ、運転中凝固反応によって消
費される硫酸及び凝固粒子に含まれて持ち出される水は
補給して常に凝固液量及び硫酸濃度が変動しないように
制御した。さらに凝固液受器に水蒸気を供給して凝固液
を加熱しこれを60℃に制御した。次いで凝固槽に外径
211L+内径1闘、長さ50鰭のガラス製細管20本
を有する凝固ノズルを設置し、単量成分としてブタジェ
ン40%、スチレン40%及びアクリロニトリル20%
から構成されたABS樹脂ラテックスを毎分250−の
割合で該ノズルに供給した。その結果ABS樹脂ラテッ
クスは細管の先端より勢いよく凝固液中に吐出し、数珠
状に凝固しながら凝固液の流れに乗って凝固槽より排出
したので流路に設置した金網でこれを捕集した。次いで
得られたABS樹脂湿粉を別の攪拌槽に移し、水を加え
てリスラリ−した後、特願昭57−134116号記載
の方法でpH詞整を行い、さらにスラリーの温度を92
℃に昇温せしめてABS樹脂粉末を固化し、さら顛遠心
脱水して水分18.5%(ドライベース)を含む湿粉を
得た。これを乾燥して得たABS乾粉の粉体物性を測定
したところ平均粒径は0.91間、嵩比重は0.45.
流動性指数は88.200メツシュ標準篩通過量は全体
の0.30%であつた。尚本凝固操作を連続して12時
間続けたがその間運転状態は非常に安定しており1重合
体微粉による凝固液の白濁も認められなかった。
Example 1 A coagulation solution containing 1% sulfuric acid was poured from the rear end of the nuclide at a rate of 801 per minute into a stainless steel coagulation tank with a width of 30 cm, a depth of 30 cm, and a length of 2 m. After separating the P using mesh wire mesh, it is received in the coagulation liquid receiver 501. The coagulating liquid in the coagulating liquid receiver is circulated to the coagulating tank via a pipe, and the sulfuric acid consumed by the coagulating reaction during operation and the water carried out in the coagulating particles are replenished to keep the coagulating liquid volume and sulfuric acid constant. The concentration was controlled so that it did not fluctuate. Further, water vapor was supplied to the coagulation liquid receiver to heat the coagulation liquid, and the temperature was controlled at 60°C. Next, a coagulation nozzle having 20 glass tubes with an outer diameter of 211 L + an inner diameter of 1 mm and a length of 50 fins was installed in the coagulation tank, and the monomer components were 40% butadiene, 40% styrene, and 20% acrylonitrile.
An ABS resin latex composed of was fed to the nozzle at a rate of 250-min. As a result, the ABS resin latex was vigorously discharged into the coagulation liquid from the tip of the thin tube, coagulated into beads, and was discharged from the coagulation tank along with the flow of the coagulation liquid, which was then collected by a wire mesh installed in the channel. . Next, the obtained ABS resin wet powder was transferred to another stirring tank, water was added to reslurry it, the pH was adjusted by the method described in Japanese Patent Application No. 57-134116, and the temperature of the slurry was lowered to 92°C.
The ABS resin powder was solidified by raising the temperature to .degree. C., and further centrifugally dehydrated to obtain a wet powder containing 18.5% water (dry base). When the physical properties of the ABS dry powder obtained by drying this powder were measured, the average particle size was 0.91, and the bulk specific gravity was 0.45.
The fluidity index was 88.200, and the amount passing through a standard mesh sieve was 0.30% of the total. The coagulation operation was continued for 12 hours, during which time the operating conditions were very stable and no clouding of the coagulation liquid due to the single polymer fine powder was observed.

実施例2 実施例1と同一の凝固槽を用い0.8チの硫酸水浴液を
含む凝固液を実施例1と同一゛の方法及び流量で凝固槽
を循環させる。さらに実施例1と同様の方法で凝固液温
度を70℃に調節するとともに運転に伴って持出される
水及び硫酸を補給する。以上のように調節された凝固槽
に外径2.5 mm+ 内径0.8mm+長さ40mm
のポリカーボネート製細管50本を有する凝固ノンルを
設置し、モノマー成分としてブタジェン50%。
Example 2 Using the same coagulation tank as in Example 1, a coagulation solution containing 0.8 g of sulfuric acid water bath was circulated through the coagulation tank in the same manner and at the same flow rate as in Example 1. Further, in the same manner as in Example 1, the temperature of the coagulating liquid was adjusted to 70° C., and water and sulfuric acid taken out during operation were replenished. The coagulation tank adjusted as above has an outer diameter of 2.5 mm + an inner diameter of 0.8 mm + a length of 40 mm.
A coagulation nozzle with 50 thin polycarbonate tubes was installed, and the monomer component was 50% butadiene.

ステ2フ30%、アクリロニトリル17%及びメタクロ
レイン3%かり構成されるABS樹脂のラテックスを毎
分300dの割合で該ノズルに供給した。その結果重合
体ラテックスは実施例1と同様に細管の先端より凝固液
中に勢いよ(吐出し、数珠状に凝固しながら凝固液の流
れに乗って凝固槽より排出したので、これを流路に設け
た金網で捕集した。得られたABS樹脂湿粉を実施例1
と同様の方法でpH調整後90℃において固化し、さら
に遠心脱水して水分16.4%(ドライベース)を含む
樹脂湿粉な得た。さらに実施例1と同様に該湿粉を乾燥
後。
A latex of ABS resin consisting of 30% Step 2, 17% acrylonitrile and 3% methacrolein was fed to the nozzle at a rate of 300 d/min. As a result, as in Example 1, the polymer latex was forcefully discharged from the tip of the thin tube into the coagulating liquid, and was coagulated in a beaded shape as it was discharged from the coagulating tank along with the flow of the coagulating liquid. The ABS resin wet powder obtained in Example 1
After adjusting the pH in the same manner as above, the mixture was solidified at 90°C, and further centrifugally dehydrated to obtain a wet resin powder containing 16.4% moisture (dry base). Further, the wet powder was dried in the same manner as in Example 1.

粉体物性を測定したところ平均粒径はQ、 77 ma
te嵩比重は0.48.流動性指数は86.ZOOメツ
シュ標準篩通過量は全体の0.10%であった。
When the powder physical properties were measured, the average particle size was Q, 77 ma.
te bulk specific gravity is 0.48. The liquidity index is 86. The amount passing through the ZOO mesh standard sieve was 0.10% of the total.

尚本凝固操作を連続して20時間続けたが、その間運転
状態は非常に安定して′j69. ノズルの閉塞及び樹
脂微粉による凝固液の白濁はいずれも認められなかった
This coagulation operation was continued for 20 hours, during which time the operating condition was very stable and reached 69. No clogging of the nozzle or clouding of the coagulated liquid due to fine resin powder was observed.

実施例3 外径100朋、高さ1mのガラス製凝固槽の底部に外径
0,81朋、内径0.51朋、長さ100間のステンレ
ススチール製細管300本を有スる凝固ノズルを設置し
、各細管の間隙より毎分40A’の割合で0.5%の硫
酸アルミニウムを含む温度40℃の凝固液を流した。該
凝固槽の塔頂よりオーバーフローする凝固液は全量を固
化槽へ導き、該同化槽の温度を水蒸気を吹込む方法によ
り90℃に調節した。さて本凝固装置に設置した凝固ノ
ズルに単量体成分としてブタジェン30%、ステレフ4
5%及ヒアクすロニトリル25%より構成されるABS
樹脂のラテックスを毎分liの割合で供給し凝固操作を
行った。その結果ABS樹脂ラテックスは細管の先端よ
り勢いよ(凝固液中に吐出し数珠状に凝固しながら凝固
液とともに凝固塔内を上昇し、塔頂より排出された。そ
の後ABS樹脂粒子はスラリー状で凝固液と一緒に流下
し同化槽へ入り加熱固化されて、該固化槽をオーバーフ
ローしたのでこれを遠心脱水し、水分21.1%(ドラ
イベース)を含む樹脂湿粉を得た。得られた湿粉を乾燥
後ABS樹脂粉末の粉体物性を測定したところ平均粒径
は0.47+++m、嵩比重は0.43゜流動性指数は
82,200メツシュ標準篩通過量は全体の0.33%
であった。
Example 3 A coagulation nozzle having 300 stainless steel thin tubes with an outer diameter of 0.81 mm, an inner diameter of 0.51 mm, and a length of 100 mm was installed at the bottom of a glass coagulation tank with an outer diameter of 100 mm and a height of 1 m. A coagulating liquid containing 0.5% aluminum sulfate and having a temperature of 40° C. was flowed through the gap between each capillary tube at a rate of 40 A' per minute. The entire amount of the coagulation liquid overflowing from the top of the coagulation tank was led to the solidification tank, and the temperature of the assimilation tank was adjusted to 90° C. by blowing steam into the tank. Now, in the coagulation nozzle installed in this coagulation device, 30% butadiene and Stereph 4 were added as monomer components.
ABS composed of 5% and 25% Hyacronitrile
A coagulation operation was performed by supplying resin latex at a rate of li/min. As a result, the ABS resin latex was discharged into the coagulation liquid with force from the tip of the tube, coagulated into beads, rose inside the coagulation tower together with the coagulation liquid, and was discharged from the top of the column.Then, the ABS resin particles were in the form of a slurry. It flowed down together with the coagulation liquid and entered an assimilation tank where it was heated and solidified. Since it overflowed the solidification tank, it was centrifugally dehydrated to obtain a wet resin powder containing 21.1% moisture (dry base). After drying the wet powder, we measured the powder properties of the ABS resin powder, and found that the average particle diameter was 0.47+++m, the bulk specific gravity was 0.43°, the fluidity index was 82,200, and the amount that passed through a standard mesh sieve was 0.33% of the total.
Met.

比較例1 凝固液の温度を20℃に調節した以外は実施例1と同一
の実験を行った。その結果スラリー〇流路に設けた金網
で凝固粒子の捕集は可能であり、8時間の連続運転中運
転状態は良好でノズルの閉塞は認められなかったものの
凝固粒子はかなりの破砕を受け凝固液が重合体の微粉で
白濁するとともicl固槽そ、の他のデッドスペース部
において該微粉が浮上し蓄積した。また金網で捕集した
凝固粉を実施例1と同一の方法で固化した後、これを遠
心脱水したところ水分25.1%(ドライベース)を含
む湿粉な得た。
Comparative Example 1 The same experiment as in Example 1 was conducted except that the temperature of the coagulation liquid was adjusted to 20°C. As a result, it was possible to collect the coagulated particles with the wire mesh installed in the slurry flow path, and although the operating conditions were good during 8 hours of continuous operation and no nozzle clogging was observed, the coagulated particles were considerably crushed and solidified. When the liquid became cloudy with fine polymer powder, the fine powder floated to the surface and accumulated in other dead spaces of the ICL solidification tank. Further, the coagulated powder collected with a wire mesh was solidified in the same manner as in Example 1, and then centrifugally dehydrated to obtain a wet powder containing 25.1% moisture (dry base).

さらIc該湿粉を乾燥後粉体物性を測定したところ平均
粒径は0.75 II l嵩比重は0.36.流動性指
数は80,200メツシュ標準篩通過量は全体の1.6
%であった。そして流れのゆるやかないわゆるデッドス
ペース部に蓄積した重合体の微粉を何らかの方法で除去
しなければさらに長時間の安定運転は不可能のよりに思
われた。
Furthermore, after drying the wet powder, the physical properties of the powder were measured and found that the average particle diameter was 0.75, and the bulk specific gravity was 0.36. The fluidity index is 80,200 mesh standard sieve passing amount is 1.6 overall.
%Met. It seemed that stable operation for a longer period of time would be impossible unless the fine polymer powder accumulated in the so-called dead space where the flow was slow was removed by some method.

比較例2 攪拌機及び加熱器付容器に重合体ラテックスを滴下する
従来よりの方法で凝固操作を行った。
Comparative Example 2 A coagulation operation was performed using a conventional method of dropping polymer latex into a container equipped with a stirrer and a heater.

まず実施例1と同一の凝固液51を前記容器に入れ65
℃に加熱昇温した後、実施例1で使用したものと同一の
ラテックス51を強攪拌下にスラリー温度の低下がない
よりゆつ(り注ぎ入れた。全てのラテックスを攪拌槽に
投入した後槽内で形成されたスラリーを加熱し92℃に
昇温して得たスラリー中の粒子は完全に固化しており、
これを遠心脱水して水分32.4%(ドライベース)を
含む重合体湿粉な得た。これを乾燥して粉体物性を測定
したところ平均粒径は0.15鴎、嵩比重は0.27.
流動性指数は73゜200メツシュ標準篩通過量は全体
の8.2%であ?た。尚本比較例の方法は従来より行な
われてきた方法である。
First, put the same coagulating liquid 51 as in Example 1 into the container 65
After the temperature was raised to ℃, the same latex 51 used in Example 1 was slowly poured into the slurry while stirring vigorously so that the slurry temperature did not drop. After all the latex was poured into the stirring tank. The particles in the slurry obtained by heating the slurry formed in the tank and raising the temperature to 92°C are completely solidified.
This was centrifugally dehydrated to obtain a wet polymer powder containing 32.4% moisture (dry base). When this was dried and the physical properties of the powder were measured, the average particle size was 0.15, and the bulk specific gravity was 0.27.
The fluidity index is 73° and the amount passing through the 200 mesh standard sieve is 8.2% of the total. Ta. The method of this comparative example is a conventional method.

Claims (1)

【特許請求の範囲】[Claims] 単量体成分としてブタジェン、スチレン及びアクリロニ
トリルの合計°量が90重量%以上から構成される熱可
塑性樹脂のラテックスを多数の細管を有する凝固ノズル
より凝固液中に吐出せしめて粉体物性に優れる粉末を製
造する際に凝固液の温度が40℃〜88℃の範囲である
ことを特徴とする熱可塑性樹脂粉末の製造方法。
Powder with excellent powder physical properties produced by discharging thermoplastic resin latex consisting of 90% by weight or more of butadiene, styrene, and acrylonitrile as monomer components into a coagulation liquid from a coagulation nozzle having a large number of thin tubes. A method for producing thermoplastic resin powder, characterized in that the temperature of the coagulating liquid is in the range of 40°C to 88°C.
JP23467783A 1983-12-13 1983-12-13 Manufacture of thermoplastic resin powder Pending JPS60127311A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23467783A JPS60127311A (en) 1983-12-13 1983-12-13 Manufacture of thermoplastic resin powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23467783A JPS60127311A (en) 1983-12-13 1983-12-13 Manufacture of thermoplastic resin powder

Publications (1)

Publication Number Publication Date
JPS60127311A true JPS60127311A (en) 1985-07-08

Family

ID=16974729

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23467783A Pending JPS60127311A (en) 1983-12-13 1983-12-13 Manufacture of thermoplastic resin powder

Country Status (1)

Country Link
JP (1) JPS60127311A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5427623A (en) * 1990-04-21 1995-06-27 Bayer Ag Cleaning of machines for the production and processing of plastics

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57187322A (en) * 1981-05-15 1982-11-18 Mitsubishi Rayon Co Ltd Production of particulate product

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57187322A (en) * 1981-05-15 1982-11-18 Mitsubishi Rayon Co Ltd Production of particulate product

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5427623A (en) * 1990-04-21 1995-06-27 Bayer Ag Cleaning of machines for the production and processing of plastics

Similar Documents

Publication Publication Date Title
EP0051210B2 (en) Process for preparing uniform size spheroidal polymer beads
US4429114A (en) Method for treating emulsified latex
JPS5887102A (en) Process and apparatus for producing coagulated latex
US4081500A (en) Sulphur pelletization process
JPWO2007114468A1 (en) Spray dryer, spray drying method and polymer powder
WO2007013305A1 (en) Process for production of coagulated latex particles
JPS6037129B2 (en) Method for removing and recovering unreacted monomers from resinous polymers
JPS6038405B2 (en) Production method of catalyst for olefin polymerization
US3925336A (en) Process for preparing granular ethylene-vinyl alcohol copolymer
JPS60127311A (en) Manufacture of thermoplastic resin powder
JPS60127312A (en) Manufature of thermoplastic resin powder
JPS60124626A (en) Production of polymer powder
JPH0580937B2 (en)
JPS60127329A (en) Manufacture of thermoplastic resin powder
JPS60124627A (en) Production of thermoplastic resin powder
JPS60127328A (en) Manufacture of thermoplastic resin powder
JPS60127330A (en) Manufacture of polymer powder
US4920083A (en) Novel process for the production of ceramic flakes
KR100381929B1 (en) Process and apparatus for continuously producing polymer latex into granules
CN214973818U (en) Paraffin granulation device
JPH0460125B2 (en)
JPH043414B2 (en)
JPS6042428A (en) Production unit for thermoplastic resin
JPH032362B2 (en)
JPS59172523A (en) Coagulation of polymer latex