JPS5991103A - Recovery of thermoplastic resin - Google Patents

Recovery of thermoplastic resin

Info

Publication number
JPS5991103A
JPS5991103A JP20035982A JP20035982A JPS5991103A JP S5991103 A JPS5991103 A JP S5991103A JP 20035982 A JP20035982 A JP 20035982A JP 20035982 A JP20035982 A JP 20035982A JP S5991103 A JPS5991103 A JP S5991103A
Authority
JP
Japan
Prior art keywords
coagulation
thermoplastic resin
powder
coagulant
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP20035982A
Other languages
Japanese (ja)
Other versions
JPH0151483B2 (en
Inventor
Kozo Kawashima
川島 幸蔵
Teizo Fukuda
貞三 福田
Junya Ito
純也 伊藤
Mitsuo Abe
阿部 充雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JSR Corp
Nippon Synthetic Chemical Industry Co Ltd
Original Assignee
Nippon Synthetic Chemical Industry Co Ltd
Japan Synthetic Rubber Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Synthetic Chemical Industry Co Ltd, Japan Synthetic Rubber Co Ltd filed Critical Nippon Synthetic Chemical Industry Co Ltd
Priority to JP20035982A priority Critical patent/JPS5991103A/en
Publication of JPS5991103A publication Critical patent/JPS5991103A/en
Publication of JPH0151483B2 publication Critical patent/JPH0151483B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To recover efficiently a thermoplastic resin having a sharp particle size distribution and a practically spherical particle form from a thermoplastic resin emulsion by adding a coagulant, etc., in a specified two-step process. CONSTITUTION:In step 1, a coagulant (e.g., sulfuric acid) and/or a coagulation aid (e.g., polyethylene oxide) are added to a thermoplastic resin emulsion to bring the emulsion into the state of an incomplete coagulation (the pH of the slurry being preferably about 3-7). In step 2, a coagulant (optionally, together with a coagulation aid) is added and the mixture is treated at a temperature which is about 10 deg.C above that 1 in step (preferably, at a pH of about 2-7) to recover the thermoplastic resin.

Description

【発明の詳細な説明】 本発明は、熱可塑性樹脂の回収方法に関し、さらに詳し
くは、熱可塑性樹脂エマルジョンに凝固剤を添加して熱
可塑性樹脂を回収する方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for recovering a thermoplastic resin, and more particularly to a method for recovering a thermoplastic resin by adding a coagulant to a thermoplastic resin emulsion.

従来、乳化重合法により製造された熱可塑性樹脂エマル
ジョンから樹脂を回収する場合、一般的には塩酸等の凝
固剤を用いて凝固が行われている。
Conventionally, when recovering resin from a thermoplastic resin emulsion produced by an emulsion polymerization method, coagulation is generally performed using a coagulant such as hydrochloric acid.

その方法としては、例えば、凝固剤を溶かした水溶液に
熱可塑性樹脂エマルジョンを投入し、樹脂分を凝固・回
収したり、または熱可塑性樹脂エマルジョンに凝固剤を
溶解した溶液を投入して樹脂を凝固・回収する方法が行
われている。
Examples of this method include adding a thermoplastic resin emulsion to an aqueous solution containing a coagulant and coagulating and recovering the resin, or adding a solution containing a coagulant to a thermoplastic resin emulsion to coagulate the resin.・Methods of collection are in place.

しかしながら、従来の凝固方法によって回収された樹脂
粉体は、粒子径のそろったものが得られに〈<、微粒子
および粗粒子が相当置台まれ、また粒子の形状が不安定
であるだめ、下記のような種々の問題を生じる。
However, resin powder recovered by conventional coagulation methods cannot be obtained with uniform particle diameters, has a considerable amount of fine particles and coarse particles, and has unstable particle shapes. This causes various problems such as:

(1)粉体中に微粒子が多いと、熱可塑性樹脂ラテック
スからの樹脂の分離回収、および乾燥時に微粒子粉体の
流出または飛散を生じ、そのため樹脂の損失、粉塵発生
による作業環境の悪化、粉塵が発の危険性を与える原因
となる。
(1) If there are many fine particles in the powder, the fine particle powder will flow out or scatter during separation and recovery of the resin from the thermoplastic resin latex and during drying, resulting in loss of resin, deterioration of the working environment due to dust generation, and dust. may pose a risk of injury.

(2)粉体中の微粒子と粗粒子は、分離および乾燥工程
で各装置内で目詰りの原因となり、そのため生産性の低
下およびエネルギー消費の原因となる。
(2) Fine particles and coarse particles in the powder cause clogging in each device during the separation and drying process, resulting in decreased productivity and energy consumption.

(3)粒子の軽状が不定形であると、粉体をホッパー、
袋等に収納したとき、粉体同志がブロッキングを起こし
、ホッパー等から粉体を容易に取り出す仁とができず、
粉体取扱い上、大きな支障となる。
(3) If the light particles are amorphous, the powder is transferred to a hopper,
When stored in a bag, etc., the powder may block together, making it impossible to easily remove the powder from the hopper, etc.
This poses a major problem when handling powder.

上記(1) 、(2) 、(3)の問題解決方法として
は、設備上の改善が考えられるが、その改善には限度が
あり、寸だ多額の費用がかかる。
A possible solution to the problems in (1), (2), and (3) above is to improve equipment, but such improvements have limits and require a considerable amount of cost.

本発明の目的は、従来技術の欠点を除き、粒径分布が可
及的に狭く、かつ粒子形状が円形に近い粉体を得ること
ができる熱可塑性樹脂の回収方法を提供することにある
An object of the present invention is to provide a method for recovering a thermoplastic resin that eliminates the drawbacks of the prior art and can obtain powder having a particle size distribution as narrow as possible and a particle shape close to circular.

上記目的を達成するため、本発明者らは鋭意研究を重ね
た結果、熱可塑性樹脂ラテックスを2段階以上の工程で
特定条件で凝固させることにより、粒子形状が球状に近
く、かつ粗大粒子および微粒子の極めて少ない樹脂粉体
が得られることを見出し、本発明に到達したものである
In order to achieve the above object, the present inventors have conducted intensive research and found that by coagulating thermoplastic resin latex under specific conditions in two or more steps, the particle shape is close to spherical, and coarse particles and fine particles can be obtained. The present invention was achieved by discovering that a resin powder with an extremely small amount can be obtained.

すなわち、本発明は、熱可塑性樹脂エマルジョンから熱
可塑性樹脂を回収する方法において、凝固剤類の添加を
2段階以上の工程で行い、第1段工程では凝固剤および
/まだは凝固助剤を添加し。
That is, the present invention provides a method for recovering a thermoplastic resin from a thermoplastic resin emulsion, in which the coagulant is added in two or more steps, and the coagulant and/or coagulation aid are added in the first step. death.

第2段以降の工程では凝固剤、または凝固剤と凝固助剤
を添加し、かつ第1段工程よりも液の温度を高くするこ
とを特徴とする。
The second and subsequent steps are characterized by adding a coagulant, or a coagulant and a coagulation aid, and raising the temperature of the liquid higher than in the first step.

本発明において、上記2段階以上の工程は、通常は2回
以上の凝固槽を用いて行われるが、これらに限定される
ものではなく、例えば2室以上に区画され、各室に攪拌
手段を備えた筒状容器などでもよい。また1つの凝固槽
を用い、第1段の工程が終了後第2段以降の工程を行な
う、いわゆるバッチ方式を用いることもできる。
In the present invention, the above two or more steps are usually carried out using a coagulation tank twice or more, but are not limited to this. For example, the process is divided into two or more chambers, and each chamber is provided with stirring means. It may also be a cylindrical container with a It is also possible to use a so-called batch method in which one coagulation tank is used and the second and subsequent steps are performed after the first step is completed.

本発明における熱可塑性樹脂エマルジョンとしては、公
知のものを使用することができる。熱可塑性樹脂として
は、共役ジエン系ゴム、共役ジエン系共重合体(例えば
ポリブタジェン、ブタジェン−スチレン共重合体、ブタ
ジェン−アクリロニトリル共重合体)またはエチレン−
プロピレン系共重合体の存在下に、不飽和ニトリル単量
体、芳香族ビニル単量体、(メタ)アクリル酸エステル
単量体またはこれらと共重合可能な単量体等の1種また
は2種以上を重合して得られるグラフト共重合体、例え
ばABS樹脂、エチレン−プロピレン系ゴム変性スチレ
ン−アクリロニトリル樹脂、メチルメタクリレート・ブ
タジェン−スチレン系樹脂(MBS樹脂)、ハイインパ
クトポリスチレン樹脂(HIPS樹脂)等が好適に用い
られる。
As the thermoplastic resin emulsion in the present invention, known ones can be used. As the thermoplastic resin, conjugated diene rubber, conjugated diene copolymer (for example, polybutadiene, butadiene-styrene copolymer, butadiene-acrylonitrile copolymer), or ethylene-
In the presence of a propylene copolymer, one or two of unsaturated nitrile monomers, aromatic vinyl monomers, (meth)acrylic acid ester monomers, or monomers copolymerizable with these monomers, etc. Graft copolymers obtained by polymerizing the above, such as ABS resin, ethylene-propylene rubber-modified styrene-acrylonitrile resin, methyl methacrylate-butadiene-styrene resin (MBS resin), high impact polystyrene resin (HIPS resin), etc. Suitably used.

特にゴム含量が45重量−以上の樹脂は、ブロッキング
性を改良することができるので有効である。
In particular, a resin having a rubber content of 45% by weight or more is effective because it can improve blocking properties.

本発明方法は、これらゴム変性熱可塑性樹脂の粉体特性
の改良KjFPK有効であるが、これらの重合体以外に
、エチレン酢酸ビニル共重合体(EVA)、塩化ビニル
共重合体、スチレン−アクリロニトリル共重合体、スチ
レン重合体、高スチレン−ブタジェン共重合体などの熱
可塑性樹脂のエマルジョンへの適用も可能である。
The method of the present invention is effective for improving the powder properties of these rubber-modified thermoplastic resins, but in addition to these polymers, it can also be used for ethylene vinyl acetate copolymer (EVA), vinyl chloride copolymer, and styrene-acrylonitrile copolymer. Application to emulsions of thermoplastic resins such as polymers, styrene polymers, high styrene-butadiene copolymers is also possible.

本発明においては、典型的には2基以上の凝固槽を使用
し、第1凝固槽へ凝固剤および凝固助剤から選ばれる1
種又は2種以上、第2以降の凝固槽では凝固剤単独また
は凝固剤と凝固助剤を添加することKよシ本発明の目的
とする樹脂粉体が見られる。
In the present invention, typically two or more coagulation tanks are used, and one selected from a coagulant and a coagulation aid is added to the first coagulation tank.
The resin powder which is the object of the present invention can be obtained by adding a coagulant alone or a coagulant and a coagulation aid in the second or subsequent coagulation baths.

本発明で使用する凝固剤としては、例えば塩酸、硫酸等
の無機酸、塩化カルシウム、硫酸マグネシウム等の無機
塩、ギ酸、酢酸等の有機酸、酢酸アルミニウム等の有機
酸塩があげられる。これらのうち無機酸はより好ましい
ものである。また凝固助剤としては、ポリエチレンオキ
サイド、ポリビニルアルコール、アミン類、イミド類、
アミド類等の水溶性高分子化合物があげられる。とれら
凝固剤、凝固助剤は第1凝固槽および第2凝固槽以降の
凝固槽で使用するときは、1種または2種以上使用する
ことができる。凝固剤および凝固助剤の使用量は、熱可
塑性樹脂ラテックスの種類により一部に定めるととはで
きないが、凝固槽内のスラリーのpH値、凝固状態およ
び粉体の粒子状態をみて適宜法められる。凝固剤および
凝固助剤の使用量が多すぎると、水洗性が悪化して、洗
浄時間が長くなったり、水洗水を多量に必要とし、経済
的ではない、一方、少なすぎると、熱可塑性樹脂エマル
ジョンが完全に凝固せず、未凝縮部分がスラリー中に存
在することになり、そのため樹脂回収率の低下および分
離・乾燥工程での運転中のトラブルの原因となる。
Examples of the coagulant used in the present invention include inorganic acids such as hydrochloric acid and sulfuric acid, inorganic salts such as calcium chloride and magnesium sulfate, organic acids such as formic acid and acetic acid, and organic acid salts such as aluminum acetate. Among these, inorganic acids are more preferred. Coagulation aids include polyethylene oxide, polyvinyl alcohol, amines, imides,
Examples include water-soluble polymer compounds such as amides. When these coagulants and coagulation aids are used in the first coagulation tank and the second coagulation tank and subsequent coagulation tanks, one type or two or more types can be used. The amount of coagulant and coagulation aid to be used cannot be determined in part depending on the type of thermoplastic resin latex, but it can be determined as appropriate based on the pH value of the slurry in the coagulation tank, the coagulation state, and the particle state of the powder. It will be done. If the amount of coagulant and coagulation aid used is too large, the water washability will deteriorate, resulting in a longer washing time and the need for a large amount of washing water, which is not economical.On the other hand, if the amount is too small, the thermoplastic resin The emulsion is not completely solidified, and an uncondensed portion is present in the slurry, which causes a decrease in resin recovery rate and troubles during operation in the separation and drying steps.

本発明で使用される凝固剤および凝固助剤の種類の選択
については、一般には熱可塑性樹脂エマルジョン中に含
まれる石けんの種類により適宜決定される。一般に、ロ
ジン酸石けん、脂肪酸石けん等は、通常の凝固剤および
凝固助剤で十分凝固できるが、リン酸エステル石けん、
硫酸エステル石けん、スルホン酸石けんおよびカチオン
石けん等では、有機酸塩、無機酸塩および水溶性高分子
化合物等を主体とした凝固剤および凝固助剤の使用が適
している。
The type of coagulant and coagulation aid used in the present invention is generally appropriately determined depending on the type of soap contained in the thermoplastic resin emulsion. In general, rosin acid soaps, fatty acid soaps, etc. can be sufficiently coagulated with ordinary coagulants and coagulation aids, but phosphate ester soaps,
For sulfate ester soaps, sulfonate soaps, cationic soaps, etc., it is suitable to use coagulants and coagulation aids mainly composed of organic acid salts, inorganic acid salts, water-soluble polymer compounds, and the like.

本発明の各工程で用いる凝固槽は適当な攪拌機を備えた
ものであればよく、攪拌機としては通常用いられるプロ
ペラ羽根、平板羽根等の攪拌機、らせん帯攪拌機、およ
び高速せん断力をもつホモジナイザ等の攪拌機があげら
れる。がお、熱可塑性樹脂エマルシコンと凝固剤および
凝固助剤は別々に加えることもできるし、または予備混
合槽、ラインミキサー等でこれらをあらかじめ混合し、
しかる後第1凝固sVC導入することも可能である。
The coagulation tank used in each step of the present invention may be one equipped with a suitable stirrer, and examples of the stirrer include propeller blades, flat plate blades, spiral band stirrers, and homogenizers with high-speed shearing force. An example is a stirrer. However, the thermoplastic resin emulsion, coagulant, and coagulation aid can be added separately, or they can be mixed in advance in a premix tank, line mixer, etc.
It is also possible to introduce the first solidified sVC thereafter.

第1凝固槽のスラリーは、エマルジョンの安定性が一部
破壊され、凝固が完結されていない不完全凝固状態が好
ましく、そのためにはスラリーのpHは3〜7の範囲が
適当であり、更に好ましくは3〜6である。上記不完全
凝固状態としてはエマルジョンの50−以上が凝固し、
かつ凝固が完結してない状態が好ましく、スラリーを東
洋濾紙%131(JIS  P3801の第3種)でろ
過した場合、ろ紙上に50チ以上のポリマーが残υ、か
つろ液が白濁している状態が適当である。一方、スラリ
ーの温度は、第2以降の凝固槽のスラリ一温度より低い
温度であり、好ましくは該スラリ一温度よシ10℃低い
温度以下が適当である。上記第1凝固槽のスラリーのp
Hが3未満であると、得られる樹脂粉体の粒子形状が不
定形となりやすく、一方、pHが7を越えると微粒子を
生じ易く力る。また第1凝固槽のスラリ一温度が第2以
降の凝固槽のスラリ温度を越えると、粒径分布の広い粉
体を生じ易くなる。
The slurry in the first coagulation tank is preferably in an incomplete coagulation state where the stability of the emulsion is partially destroyed and coagulation is not completed.For this purpose, the pH of the slurry is suitably in the range of 3 to 7, and more preferably. is 3-6. The above-mentioned incompletely solidified state is when more than 50% of the emulsion is solidified,
It is also preferable that the coagulation is not completed, and when the slurry is filtered through Toyo Roshi %131 (JIS P3801 Type 3), 50 or more polymers remain on the filter paper, and the filtrate is cloudy. Condition is appropriate. On the other hand, the temperature of the slurry is lower than the temperature of the slurry in the second and subsequent coagulation tanks, preferably a temperature lower than the temperature of the slurry by 10° C. or less. p of the slurry in the first coagulation tank
When H is less than 3, the particle shape of the resulting resin powder tends to be amorphous, while when pH exceeds 7, fine particles tend to be formed. Furthermore, when the temperature of the slurry in the first coagulation tank exceeds the temperature of the slurry in the second and subsequent coagulation tanks, powder with a wide particle size distribution is likely to be produced.

第2以降の凝固槽では、スラリーの凝固を完結させる必
要があり、そのためには使用する凝固剤が有機酸、無機
酸等の酸性凝固剤を主体とするときは、第2以降の凝固
槽のスラリーのPHが1〜3の範囲であることが好まし
く、一方、無機酸塩、有機酸塩を主体にするとき、また
は凝固助剤を併用する時は、スラリーのpHが2〜7の
範囲Kfiるように、凝固の完結状態を観察し力から、
適宜、該凝固剤および凝固助剤の使用量を決めることが
望ましい。
In the second and subsequent coagulation tanks, it is necessary to complete the coagulation of the slurry, and for this purpose, when the coagulant used is mainly an acidic coagulant such as an organic acid or an inorganic acid, the second and subsequent coagulation tanks must be It is preferable that the pH of the slurry is in the range of 1 to 3. On the other hand, when the slurry is mainly composed of an inorganic acid salt or an organic acid salt, or when a coagulation aid is used, the pH of the slurry is preferably in the range of 2 to 7. Observe the complete state of coagulation and check the force
It is desirable to determine the amounts of the coagulant and coagulation aid as appropriate.

凝固槽のスラリ一温度は通常、0〜100℃、(9) 好ましくは室温〜100℃である。第2以降の凝固槽の
スラリ一温度は、熱可塑性樹脂エマルジョンの種類によ
りその適温が変わるので、粉体の特性および凝固状態を
観察し力からその温度を決めることができる。温度が高
すぎると、粉体粒子が凝集しすぎ粗大粒子が生成し、ま
た低すぎると粉体粒子が微粒子となり、また凝固が完結
しないので好壕しくない。
The temperature of the slurry in the coagulation tank is usually 0 to 100°C, (9) preferably room temperature to 100°C. The appropriate temperature of the slurry in the second and subsequent coagulation tanks changes depending on the type of thermoplastic resin emulsion, so the temperature can be determined from the force by observing the characteristics and coagulation state of the powder. If the temperature is too high, the powder particles will aggregate too much and coarse particles will be produced, and if the temperature is too low, the powder particles will become fine particles and coagulation will not be completed, which is not desirable.

以上、本発明方法によれば、粒径のそろった熱可塑性樹
脂粉体な高効率で連続的に回収すること空でき、得られ
た樹脂粉体は、粒子の形状がほぼ球形であり、粒径分布
が狭く、かつ安息角が小さいのでブロッキングがおこり
に<<、工業生産において非常に扱い安い粉体となる。
As described above, according to the method of the present invention, it is possible to continuously collect thermoplastic resin powder with uniform particle size with high efficiency, and the obtained resin powder has almost spherical particle shape. Since the diameter distribution is narrow and the angle of repose is small, blocking occurs<<, resulting in a powder that is very easy to handle in industrial production.

次に本発明の実施例を示すが、実施例中の部およびチけ
それぞれ重量部および重量%である。また実施例中のブ
ロッキング性、粒径分布安息角および粒子形状の測定は
下記の方法によった。
Next, examples of the present invention will be shown, and parts and percentages in the examples are parts by weight and weight %, respectively. In addition, the blocking properties, particle size distribution angle of repose, and particle shape in the Examples were measured by the following methods.

(1)ブロッキング性評価 樹脂粉体3m9を直径4C1llの円筒型金型に入れ、
(10) 次いで室温で15秒荷重をかけ、樹脂成型品が得られる
最小の荷重G(kg)を求める。
(1) Blocking property evaluation Put 3m9 of resin powder into a cylindrical mold with a diameter of 4C1ll,
(10) Next, a load is applied for 15 seconds at room temperature, and the minimum load G (kg) that allows a resin molded product to be obtained is determined.

この値が大きいとブロッキングがおこシにくい。If this value is large, blocking is less likely to occur.

(2)粒径分布測定方法 条件 振とう機 :ロータツブ式篩振とう機 振とう時間220分 篩    :標準篩(JIS−28801)試料   
:50q 各篩上の残存flA(lを求める。
(2) Particle size distribution measurement method Conditions Shaker: Rotortub type sieve shaker Shaking time: 220 minutes Sieve: Standard sieve (JIS-28801) Sample
:50q Find the remaining flA(l) on each sieve.

A:振とう終了後の各篩上の残存量 この試験により粉体を構成している粒子の大きさの分布
状態を知ることができる。
A: Remaining amount on each sieve after shaking This test allows you to know the size distribution of the particles that make up the powder.

(3)安息角測定法 昭和エンジニャリング株式会社製の安息角測定器AN−
1型を使用し、測定法は該AN−1型の(11) 測定方法に従って行った。安息角が小さいと、粉体が崩
れやすく、ポツパー袋に収納された粉体を取り出す時、
パウダーブリッジをおこしにくい性質となり、粉体の取
り出しが容品でブロッキングも起こりにくくなる。
(3) Angle of repose measurement method Angle of repose measuring device AN- manufactured by Showa Engineering Co., Ltd.
Type 1 was used, and the measurement method was carried out in accordance with the measurement method (11) for the AN-1 type. If the angle of repose is small, the powder will easily crumble, and when taking out the powder stored in the popper bag,
It has a property that makes it difficult to cause powder bridges, making it easier to remove powder and preventing blocking.

(4)顕微鏡観察 光学顕微鏡を用いて、凝固後のスラリー中の樹脂分の粒
子および粉体中の粒子の形状をしらべた。
(4) Microscope Observation Using an optical microscope, the shapes of the resin particles in the solidified slurry and the particles in the powder were examined.

倍率は200倍である。The magnification is 200x.

実施例1 熱可塑性樹脂エマルジョンとして、スチレン−ブタジェ
ンゴム状共重合体45部にスチレン35部およびメチル
メタクリレート20部をグラフト共重合させた、固形分
濃度30チのMBS樹脂のエマルジョンを用いた。攪拌
機を装備した第1凝固槽に、MBS樹脂エマルジョンお
よび硫酸を別々のポンプを用いて連続的に供給してp 
H4,0のスラリーを生成させた。なお、硫酸の供給量
はスラリーの7)Hが4.OKなるよう[IA整した。
Example 1 As a thermoplastic resin emulsion, an emulsion of MBS resin having a solid content concentration of 30 cm was used, which was obtained by graft copolymerizing 45 parts of a styrene-butadiene rubber-like copolymer with 35 parts of styrene and 20 parts of methyl methacrylate. The MBS resin emulsion and sulfuric acid were continuously fed into the first coagulation tank equipped with a stirrer using separate pumps.
A slurry of H4,0 was produced. Note that the amount of sulfuric acid supplied is such that 7)H of the slurry is 4. I adjusted the IA so that it was OK.

次いで、このスラリーを第2凝固槽に導き、さらに第(
12) 2凝固槽へ硫酸を連続的に供給し、スラリーのPHを2
.5に一制御した。各凝固槽の温度は、第1凝固槽は外
気温度、第2凝固槽は85℃に保持した。
Next, this slurry is introduced into the second coagulation tank and further into the second coagulation tank (
12) Continuously supply sulfuric acid to the 2 coagulation tank, and adjust the pH of the slurry to 2.
.. It was controlled once in 5. The temperature of each coagulation tank was maintained at outside air temperature in the first coagulation tank and at 85°C in the second coagulation tank.

次に、第2凝固槽のスラリーから樹脂分を遠心分離機を
用いて分離し、さらに水洗、脱水、乾燥して、樹脂粉体
を得た。
Next, the resin component was separated from the slurry in the second coagulation tank using a centrifuge, and further washed with water, dehydrated, and dried to obtain resin powder.

比較例1 実施例1の全硫酸量を、第1凝固槽で連続的に供給して
7)Hな2.5に調整し、第2凝固槽へ硫酸を供給しな
い以外は、実施例1と同様の方法で樹脂粉体を得た(従
来方法)。
Comparative Example 1 Example 1 except that the total amount of sulfuric acid in Example 1 was adjusted to 7) H2.5 by continuously supplying it in the first coagulation tank, and sulfuric acid was not supplied to the second coagulation tank. Resin powder was obtained in a similar manner (conventional method).

上記実施例1および比較例1で得られた樹脂粉体の粒子
径分布、安息角、ブロッキング性等の特定結果を第1表
に示す、また樹脂乾燥粉体の粒子形状の顕微鏡写真(X
200)を第1図および第2図に示す、第1図は実施例
1、第2図は比較例1の場合である。
The specific results of the particle size distribution, angle of repose, blocking property, etc. of the resin powders obtained in Example 1 and Comparative Example 1 are shown in Table 1, and micrographs (X
200) are shown in FIGS. 1 and 2, FIG. 1 is for Example 1, and FIG. 2 is for Comparative Example 1.

以下余白 (13) (14) (15) 第1表の結果から、粒径分布については、実施例1の粉
体は、比較例1の従来の凝固方法によって回収去れた粉
体に比べ、粗粒子および微粒子が極めて少なく、粒子が
そろっていることが分る。
The following margins (13) (14) (15) From the results in Table 1, regarding the particle size distribution, the powder of Example 1 is coarser than the powder recovered by the conventional coagulation method of Comparative Example 1. It can be seen that there are very few particles and fine particles, and that the particles are uniform.

また実施例1の粉体は、比較例IK比べて安息角が小さ
く流動し易いことを示しており、また耐ブロツキング性
値も大きく、ブロッキングが起こシにくいことが分かる
。さらに顕微鏡写真からは、実施例1の粉体(第1図)
は球状を示しているのに対し、比較例1の粉体(第2図
)は不規則な粒子形状を示していることが分かる。
Furthermore, the powder of Example 1 has a smaller angle of repose than Comparative Example IK, indicating that it is easier to flow, and also has a larger blocking resistance value, indicating that blocking is less likely to occur. Furthermore, from the micrograph, the powder of Example 1 (Fig. 1)
It can be seen that the powder of Comparative Example 1 (FIG. 2) has an irregular particle shape, whereas the powder of Comparative Example 1 has a spherical shape.

実施例2 実施例1の方法において第1凝固槽のスラリーのpHを
3.OKなるように、硫酸の供給量を制御した以外は実
施例1と同様圧して樹脂粉体を得た。
Example 2 In the method of Example 1, the pH of the slurry in the first coagulation tank was set to 3. A resin powder was obtained by pressing in the same manner as in Example 1, except that the amount of sulfuric acid supplied was controlled so that the result was OK.

該樹脂粉体の粒径分布、安息角ブロッキング性を第1表
に示す。
Table 1 shows the particle size distribution and angle of repose blocking property of the resin powder.

実施例3 実施例1の方法において、第1凝固槽スラリーのpHが
7.0になるように硫酸の供給量を制御しく16) た以外は実施例1と同様の方法で樹脂粉体を得た。
Example 3 Resin powder was obtained in the same manner as in Example 1 except that the amount of sulfuric acid supplied was controlled so that the pH of the slurry in the first coagulation tank was 7.016). Ta.

該樹脂粉体の粒径分布、安息角、ブロッキング性の測定
結果を第1表に示す。
Table 1 shows the measurement results of the particle size distribution, angle of repose, and blocking property of the resin powder.

実施例4 ここでは凝固助剤の組合せの実験例を示す、実施例1の
方法において、第1凝固槽の凝固剤として硫酸および該
硫酸の7.5%重量のポリエチレンオキサイド(分子量
430 x 480 x 10’  )を供給し、第1
凝固槽のスラリーのpHを6.0になるようにした以外
は実施例1と同様の方法で樹脂粉体を得た。該樹脂粉体
の粒径分布、安息角、ブロッキング性の測定結果を第1
表にしめす。
Example 4 Here, an experimental example of the combination of coagulation aids is shown. In the method of Example 1, sulfuric acid and 7.5% by weight of polyethylene oxide (molecular weight 430 x 480 x 10') and the first
A resin powder was obtained in the same manner as in Example 1 except that the pH of the slurry in the coagulation tank was adjusted to 6.0. The measurement results of the particle size distribution, angle of repose, and blocking property of the resin powder were
Show it on the table.

実施例5 実施例1の方法において、第1凝固槽へ供給する凝固助
剤として実施例4のポリエチレンオキサイドのみをスラ
リー中の樹脂分100重量部に対して0.09重量部の
割合で連続的に該1凝固槽へ投入し、第1凝固槽のスラ
リーのpHを7.0とした以外は実施例1と同様の方法
で樹脂粉体な得た。
Example 5 In the method of Example 1, only the polyethylene oxide of Example 4 was continuously added as a coagulation aid to the first coagulation tank at a ratio of 0.09 parts by weight per 100 parts by weight of the resin in the slurry. A resin powder was obtained in the same manner as in Example 1, except that the slurry was charged into the first coagulation tank and the pH of the slurry in the first coagulation tank was set to 7.0.

該樹脂粉体の粒径分布、安息角、耐ブロッキング(17
) 性の測定結果を第1表に示す。
Particle size distribution, angle of repose, and blocking resistance of the resin powder (17
) The results of the sex measurements are shown in Table 1.

実施例6 熱可塑性樹脂としてポリブタジェンにスチレンとアクリ
ロニトリルの混合物をグラフト重合させた、スチレン4
5チ、アクリロニトリル17チ、ブタジェン38チから
なる、固形分濃度30%の熱可塑性樹脂エマルジョンを
用いた以外は実施例1と同様の方法で樹脂粉体を得た。
Example 6 Styrene 4 was obtained by graft polymerizing a mixture of styrene and acrylonitrile to polybutadiene as a thermoplastic resin.
A resin powder was obtained in the same manner as in Example 1, except that a thermoplastic resin emulsion containing 5% acrylonitrile, 17% acrylonitrile, and 38% butadiene and having a solid content concentration of 30% was used.

該樹脂粉体の粒径分布、安息角、耐ブロッキング性を第
1表に示す。
Table 1 shows the particle size distribution, angle of repose, and blocking resistance of the resin powder.

比較例2 実施例6で用いたと同じ熱可塑性樹脂エマルジョンをポ
ンプにより連続的に第1凝固槽へ供給し、実施例6の第
1凝固槽および第2凝固槽で用いた硫酸の加算された全
量を第1凝固槽へポンプにより連続的に供給し、第2凝
固槽に硫酸を投入しない以外は実施例1と同様の方法で
樹脂粉体を得た。
Comparative Example 2 The same thermoplastic resin emulsion used in Example 6 was continuously supplied to the first coagulation tank by a pump, and the total amount of sulfuric acid used in the first coagulation tank and the second coagulation tank of Example 6 was A resin powder was obtained in the same manner as in Example 1, except that sulfuric acid was continuously supplied to the first coagulation tank by a pump and sulfuric acid was not introduced into the second coagulation tank.

なお、第1凝固槽のpHは2.5に調節した。第2凝固
槽で得た樹脂粉体の粒径分布、安息角、耐ブロッキング
性を第1表に示す。
Note that the pH of the first coagulation tank was adjusted to 2.5. Table 1 shows the particle size distribution, angle of repose, and blocking resistance of the resin powder obtained in the second coagulation tank.

(1B)(1B)

【図面の簡単な説明】[Brief explanation of drawings]

第1図および第2図は、それぞれ実施例1および2の第
2a!固槽で得られた粉体断面の顕微鏡写真(200倍
)である。 代理人 弁理士  川 北 武 長 (19) 第1図 第2図 手続補正書(方式) %式% 1、事件の表示 昭和57年 特 許 願第200359号2、発明の名
称 熱可塑性樹脂の回収方法3、補正をする者 事件との関係 特許出願人 4、代理人〒103 住 所 東京都中央区日本橋茅場町−丁目11番8号(
発送日 昭和58年2月22日) 6、補正の対象 願書および明細書全文。 7、補正の内容 別紙のとおり。(願書および明細書の
浄書、内容に変更なし)。
FIG. 1 and FIG. 2 are 2a! of Examples 1 and 2, respectively. This is a micrograph (200x magnification) of a cross section of powder obtained in a solid bath. Agent Patent Attorney Takenaga Kawakita (19) Figure 1 Figure 2 Procedural amendment (method) % formula % 1. Indication of the case 1982 Patent Application No. 200359 2. Title of the invention Recovery of thermoplastic resin Method 3, Relationship with the case of the person making the amendment Patent applicant 4, agent Address: 11-8 Nihonbashi Kayabacho-Chome, Chuo-ku, Tokyo 103
(Shipping date: February 22, 1982) 6. Subject of amendment: Full text of application and specification. 7. Details of the amendments are as shown in the attached sheet. (No changes to the engravings and contents of the application and specification).

Claims (3)

【特許請求の範囲】[Claims] (1)熱可塑性樹脂エマルジョンから熱可塑性樹脂を回
収する方法において、凝固剤類の添加を2段階以上の工
程で行い、第1段工程では凝固剤および/または凝固助
剤を添加し、□第2段以降の工程では凝固剤、または凝
固剤と凝固助剤を添加し、かつ第1段工程よシも液の温
度を高くすることを特徴とする熱可塑性樹脂の回収方法
(1) In a method for recovering a thermoplastic resin from a thermoplastic resin emulsion, coagulants are added in two or more steps, the coagulant and/or coagulation aid is added in the first step, and the A method for recovering a thermoplastic resin, which comprises adding a coagulant or a coagulant and a coagulation aid in the second and subsequent steps, and increasing the temperature of the liquid even in the first step.
(2)第1段工程において、凝固剤および/または凝固
助剤を添加した後の液のPHが3〜7である特許請求の
範囲第1項記載の熱可塑性樹脂の回収方法。
(2) The method for recovering a thermoplastic resin according to claim 1, wherein in the first stage step, the pH of the liquid after adding the coagulant and/or coagulation aid is 3 to 7.
(3)第1段工程において、凝固剤および/または凝固
助剤を添加した後の液が、樹脂エマルジョンの50−以
上が凝固し1.かつ凝固が完結してない不完全凝固状態
である特許請求の範囲第1項記載の熱可塑性樹脂の回収
方法。
(3) In the first stage step, after adding the coagulant and/or coagulation aid, the liquid becomes more than 50% of the resin emulsion and 1. The method for recovering thermoplastic resin according to claim 1, wherein the thermoplastic resin is in an incompletely solidified state in which solidification has not been completed.
JP20035982A 1982-11-17 1982-11-17 Recovery of thermoplastic resin Granted JPS5991103A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20035982A JPS5991103A (en) 1982-11-17 1982-11-17 Recovery of thermoplastic resin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20035982A JPS5991103A (en) 1982-11-17 1982-11-17 Recovery of thermoplastic resin

Publications (2)

Publication Number Publication Date
JPS5991103A true JPS5991103A (en) 1984-05-25
JPH0151483B2 JPH0151483B2 (en) 1989-11-02

Family

ID=16422981

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20035982A Granted JPS5991103A (en) 1982-11-17 1982-11-17 Recovery of thermoplastic resin

Country Status (1)

Country Link
JP (1) JPS5991103A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6274908A (en) * 1985-09-28 1987-04-06 Japan Synthetic Rubber Co Ltd Production of rubber-like polymer
EP0611788A1 (en) * 1993-02-16 1994-08-24 Mitsubishi Rayon Co., Ltd Method for producing powdery and granular polymers
EP1436333A4 (en) * 2001-09-28 2006-03-22 Rohm & Haas Process for producing powdery linear polymer having improved powder properties
JP2009173776A (en) * 2008-01-24 2009-08-06 Daikin Ind Ltd Continuous coagulation method of resin dispersion

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6274908A (en) * 1985-09-28 1987-04-06 Japan Synthetic Rubber Co Ltd Production of rubber-like polymer
EP0611788A1 (en) * 1993-02-16 1994-08-24 Mitsubishi Rayon Co., Ltd Method for producing powdery and granular polymers
EP1436333A4 (en) * 2001-09-28 2006-03-22 Rohm & Haas Process for producing powdery linear polymer having improved powder properties
US7157520B2 (en) 2001-09-28 2007-01-02 Rohm And Haas Company Process for producing powdery linear polymer having improved powder properties
JP2009173776A (en) * 2008-01-24 2009-08-06 Daikin Ind Ltd Continuous coagulation method of resin dispersion

Also Published As

Publication number Publication date
JPH0151483B2 (en) 1989-11-02

Similar Documents

Publication Publication Date Title
EP0084837B1 (en) Flocculation of latex particles and production of thermoplastic resin
JPH0616863A (en) Method for recovering polymer dissolved in alkaline or acidic aqueous medium
US4429114A (en) Method for treating emulsified latex
JPS6364452B2 (en)
US2485287A (en) Method of associating plastic materials and compounding ingredients
JPS5827709A (en) Manufacture of powdery emulsion polymerization butadiene rubber
JPS6261055B2 (en)
JPS5991103A (en) Recovery of thermoplastic resin
US20060122327A1 (en) Process for preparing enlarged latex particles
US5349049A (en) Method of production of polyvinyl chloride resin for paste processing
US4113796A (en) Process for working up dispersions of elastic-thermoplastic or thermoplastic plastics
JP2003527473A (en) Method for agglomerating particulate polybutadiene latex
US4119601A (en) Pulverulent compositions based on vinyl chloride
EP0333879B1 (en) Process for continuously producing granular polymer and process for controlling particle size of said polymer
EP0009250B1 (en) Free-flowing composite particles and method for preparing them
DE2744872A1 (en) PROCESS FOR THE MANUFACTURING OF FREE FLOWING RUBBER PARTICLES AND THE PRODUCTS CONTAINED THEREOF
EP1229056B1 (en) Process for producing polymer particles
JP3505870B2 (en) Spherical polymer particles
JP2888937B2 (en) Method for producing a powdery mixture of thermoplastic polymers
JPH09286815A (en) Method for recovering polymer from latex
JPH01311129A (en) Thermoplastic polymer powder mixture
US3092603A (en) Method of continuously coagulating rubber latices with fresh coagulant and the resultant product
JP4676216B2 (en) Polymer recovery method from polymer latex
JPH07233214A (en) Recovery of polymer
JP3457044B2 (en) Method for producing thermoplastic resin