JPH07233214A - Recovery of polymer - Google Patents

Recovery of polymer

Info

Publication number
JPH07233214A
JPH07233214A JP5131694A JP5131694A JPH07233214A JP H07233214 A JPH07233214 A JP H07233214A JP 5131694 A JP5131694 A JP 5131694A JP 5131694 A JP5131694 A JP 5131694A JP H07233214 A JPH07233214 A JP H07233214A
Authority
JP
Japan
Prior art keywords
polymer
latex
coagulation
polymer latex
peripheral speed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5131694A
Other languages
Japanese (ja)
Inventor
Tsutomu Kitayama
勉 北山
Mikio Yokoyama
幹男 横山
Kazumi Nakazawa
和美 中沢
Teizo Fukuda
貞三 福田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JSR Corp
Original Assignee
Japan Synthetic Rubber Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Synthetic Rubber Co Ltd filed Critical Japan Synthetic Rubber Co Ltd
Priority to JP5131694A priority Critical patent/JPH07233214A/en
Publication of JPH07233214A publication Critical patent/JPH07233214A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain polymer particles excellent in powder properties by adding a spray of a polymer latex into a coagulation tank within a specific range of coagulation temp. and within a specific range of peripheral speed of agitating blades to coagulate the polymer latex. CONSTITUTION:A vinyl copolymer latex such as a styrene-acrylonitrile copolymer latex and/or a rubber-modified vinyl polymer latex such as an ABS latex is sprayed in the form of droplets of 75mum to 2mm in size through a spray nozzle into a coagulation tank with an agitator wherein agitation is effected under conditions: (Tv-40) <= coagulation temp. ( deg.C) <= (Tv+20) [wherein Tv is a Vicat softening point ( deg.C) of the polymer] and 100 <= peripheral speed (cm/s) of agitating blades <=800, and into which a coagulant such as an aqueous soln. of sulfuric acid having a concn. of about 1% is dropwise added, whereby a coagulated slurry is prepd. The coagulated slurry is heat-treated under conditions: Tv <= treatment temp. ( deg.C) <=(Tv+80) and 5min <= treatment time <=180min, then dehydrated with a centrifugal dehydrator or the like, and washed, followed by separation of coagulated polymer particles, which are then dried with a flash dryer or the like to obtain polymer particles excellent in powder properties.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、乳化重合などで得られ
る重合体ラテックスから重合体を回収する重合体の回収
方法に関し、さらに詳しくは粉体特性に優れた重合体粒
子を得る重合体の回収方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for recovering a polymer from a polymer latex obtained by emulsion polymerization or the like, and more specifically to a polymer for obtaining polymer particles having excellent powder characteristics. Regarding collection method.

【従来の技術】一般に乳化重合法で製造された重合体ラ
テックスから粉末状重合体を回収するには、該重合体ラ
テックスに凝固液を添加し、重合体ラテックスを凝固さ
せることが必要である。かかる重合体ラテックスを凝固
させる最も一般的な方法として、該重合体ラテックスと
凝固液とを連続的に凝固槽に供給して、凝析、凝集を行
なう方法が知られている。しかし、この方法では粒度分
布が広く、かさ密度、流動性も低いものしか得られな
い。第2の方法として、凝固剤を凝固室内にガス状また
はミスト状に噴霧させて、重合体ラテックスの液滴と空
間で接触させ、凝固する方法がある(特開昭58−87
102号公報)。しかし、この方法では、気相中をラテ
ックス液滴が落下する短時間内に十分な硬さになるまで
ラテックスを凝固させる必要があるので、比較的大きな
粒径を得るためには塔高の高い凝固塔が必要とされ、設
備費が大となり、経済的でない。
2. Description of the Related Art Generally, in order to recover a powdery polymer from a polymer latex produced by an emulsion polymerization method, it is necessary to add a coagulating liquid to the polymer latex to coagulate the polymer latex. As the most general method for coagulating such a polymer latex, there is known a method in which the polymer latex and a coagulation liquid are continuously supplied to a coagulation tank for coagulation and aggregation. However, this method can obtain only those having a wide particle size distribution, low bulk density, and low fluidity. As a second method, there is a method in which a coagulant is sprayed into a coagulation chamber in the form of gas or mist, and then brought into contact with droplets of the polymer latex in space to coagulate (JP-A-58-87).
No. 102). However, in this method, it is necessary to coagulate the latex in the gas phase until the hardness becomes sufficient within a short time when the latex droplets drop, so that the tower height is high in order to obtain a relatively large particle size. Coagulation tower is required, equipment cost is high, and it is not economical.

【発明が解決しようとする課題】本発明は前記従来技術
の背景になされたもので、粉体特性に優れた重合体粒子
を回収できる重合体の回収方法を提供することを目的と
する。
The present invention has been made in the background of the above-mentioned prior art, and an object thereof is to provide a method for recovering a polymer capable of recovering polymer particles having excellent powder characteristics.

【0002】[0002]

【課題を解決するための手段】本発明者らは、上記した
課題を解決するため鋭意検討した結果、凝固工程におけ
る凝固温度、撹拌条件およびラテックスの添加方法を特
定範囲に限定することで、その課題の解決を達成し得る
ことを見い出し、本発明に到達したのである。本発明は
重合体ラテックスを下記の(イ)(ロ)(ハ)の条件下
により凝固することを特徴とする重合体の回収方法。 (イ)凝固温度(℃) (Tv−40)≦凝固温度≦(Tv+20) ただし、Tv;回収される重合体のビカット軟化点
(℃) (ロ)凝固槽は混合撹拌が行なわれ、その撹拌翼の先端
の周速が 100≦周速≦800(cm/s) (ハ)混合撹拌されている凝固槽へ重合体ラテックスの
噴霧添加を提供するものである。
Means for Solving the Problems As a result of intensive studies for solving the above-mentioned problems, the present inventors have found that the coagulation temperature, stirring conditions and latex addition method in the coagulation step are limited to a specific range. The inventors have found that the solution to the problem can be achieved and arrived at the present invention. The present invention is a method for recovering a polymer, which comprises coagulating a polymer latex under the following conditions (a), (b) and (c). (A) Solidification temperature (° C) (Tv-40) ≤ solidification temperature ≤ (Tv + 20) However, Tv; Vicat softening point (° C) of the recovered polymer (b) Mixing and stirring are performed in the solidification tank The peripheral speed of the tip of the blade is 100 ≦ peripheral speed ≦ 800 (cm / s) (c) The spray addition of the polymer latex is provided to the coagulation tank which is mixed and stirred.

【0003】以下、本発明について詳細に説明する。本
発明の(イ)で示されている軟化点(Tv)の求め方に
ついて、まず説明する。軟化点(Tv)は、凝固に供さ
れる重合体ラテックスから重合体をあらかじめ回収し、
乾燥後の重合体を用いて、JIS K7206の方法に
従って、ビカット軟化点を測定し、この値を本発明の軟
化点(Tv)とする。本発明の重合体ラテックスは、ビ
ニル系重合体ラテックスおよび/またはゴム変性ビニル
系重合体ラテックスからなる、通常、乳化重合によって
得られるこれらのビニル系重合体ラテックスは、下記に
示すビニル系単量体またはそれと共重合可能な単量体と
を重合することで得られる。ゴム変性ビニル系重合体ラ
テックスは、下記に示すゴム状重合体の下に、下記に示
すビニル系単量体またはそれと共重合可能な単量体とを
重合して得られる。
The present invention will be described in detail below. A method of obtaining the softening point (Tv) shown in (A) of the present invention will be described first. The softening point (Tv) is obtained by previously collecting the polymer from the polymer latex used for coagulation,
Using the dried polymer, the Vicat softening point is measured according to the method of JIS K7206, and this value is taken as the softening point (Tv) of the present invention. The polymer latex of the present invention comprises a vinyl-based polymer latex and / or a rubber-modified vinyl-based polymer latex, and these vinyl-based polymer latexes usually obtained by emulsion polymerization are vinyl-based monomers shown below. Alternatively, it can be obtained by polymerizing a monomer copolymerizable therewith. The rubber-modified vinyl polymer latex is obtained by polymerizing a vinyl monomer shown below or a monomer copolymerizable therewith under the rubber polymer shown below.

【0004】ビニル系単量体としては特に限定するもの
でないが、例えばアクリル酸、メタクリル酸などの(メ
タ)アクリル酸;メチルアクリレート、エチルアクリレ
ート、ブチルアクリレートなどのアクリル酸アルキルエ
ステル系単量体;メチルメタクリレート、エチルメタク
リレートなどのメタクリル酸アルキルエステル系単量
体;アクリロニトリル、メタクリロニトリルなどのビニ
ルシアン系単量体;スチレン、α−メチルスチレンなど
の芳香族ビニル系単量体;塩化ビニル、臭化ビニルなど
のハロゲン化ビニル系単量体など種々の単量体が挙げら
れ、これらは2種以上を併用することもできる。好まし
いビニル系単量体としては、(メタ)アクリル酸アルキ
ルエステル、ビニルシアン系単量体、芳香族ビニル系単
量体が挙げられる。
The vinyl-based monomer is not particularly limited, but examples thereof include (meth) acrylic acid such as acrylic acid and methacrylic acid; alkyl acrylate-based monomers such as methyl acrylate, ethyl acrylate and butyl acrylate; Methacrylic acid alkyl ester type monomers such as methyl methacrylate and ethyl methacrylate; vinyl cyan type monomers such as acrylonitrile and methacrylonitrile; aromatic vinyl type monomers such as styrene and α-methylstyrene; vinyl chloride, odor Various monomers such as vinyl halide-based monomers such as vinyl chloride may be mentioned, and these may be used in combination of two or more kinds. Examples of preferable vinyl monomers include (meth) acrylic acid alkyl esters, vinyl cyan monomers, and aromatic vinyl monomers.

【0005】共重合可能な他の単量体としては、例えば
マレイミド、N−メチルマレイミド、N−フェニルマレ
イミド、N−シクロヘキシルマレイミドなどのマレイミ
ド系単量体が挙げられる。マレイミド系単量体を用いる
と耐熱性が向上し、耐熱性の優れた重合体が得られる。
Examples of other copolymerizable monomers include maleimide monomers such as maleimide, N-methylmaleimide, N-phenylmaleimide and N-cyclohexylmaleimide. When a maleimide-based monomer is used, heat resistance is improved and a polymer having excellent heat resistance can be obtained.

【0006】ゴム状重合体としては、ポリブタジエン、
スチレン−ブタジエン系共重合体(スチレン含量5〜6
0重量%が好ましい。)、スチレン−イソプレン系共重
合体、アクリロニトリル−ブタジエン系共重合体、エチ
レン−α−オレフィン系共重合体、アクリル系ゴム、ブ
タジエン−アクリル系共重合体、ポリイソプレン、スチ
レン−ブタジエンブロック共重合体、水素化ブタジエン
系重合体、エチレン系アイオノマー、シリコン系ゴムな
どが挙げられる。これらのゴム状重合体は1種または2
種以上で用いられる。好ましいゴム状重合体としては、
ポリブタジエン、スチレン−ブタジエン系共重合体、ア
クリル系ゴム、シリコン系ゴム(特に不飽和基含有シリ
コン系ゴムが好ましい。)が挙げられる。
As the rubber-like polymer, polybutadiene,
Styrene-butadiene copolymer (styrene content 5-6
0% by weight is preferred. ), Styrene-isoprene-based copolymer, acrylonitrile-butadiene-based copolymer, ethylene-α-olefin-based copolymer, acrylic rubber, butadiene-acrylic-based copolymer, polyisoprene, styrene-butadiene block copolymer , Hydrogenated butadiene-based polymers, ethylene-based ionomers, and silicone-based rubbers. These rubber-like polymers may be one or two.
Used in seeds and above. As a preferable rubber-like polymer,
Examples thereof include polybutadiene, styrene-butadiene copolymer, acrylic rubber, and silicon rubber (particularly preferably unsaturated group-containing silicon rubber).

【0007】ゴム変性ビニル系重合体の製造に用いられ
る上記のゴム状重合体は、ラテックス状のものが用いら
れる。重合体ラテックス(A)の重合体としては、例え
ばアクリル樹脂、ポリスチレン、スチレン−アクリロニ
トリル共重合体、(α−メチル)スチレン−(アクリロ
ニトリル)−マレイミド系単量体系共重合体など、およ
びABS樹脂、MBS樹脂、AES樹脂、AAS樹脂な
どのゴム変性ビニル系重合体などの樹脂状重合体が挙げ
られる。重合体ラテックスの中のゴム状重合体含量は、
好ましくは重量50%以上、さらに好ましくは60重量
%以上であり、この範囲のものを用いると本発明の目
的、効果が一段と発揮される。
The rubber-like polymer used in the production of the rubber-modified vinyl polymer is in the form of latex. Examples of the polymer of the polymer latex (A) include acrylic resins, polystyrene, styrene-acrylonitrile copolymers, (α-methyl) styrene- (acrylonitrile) -maleimide monomer-based copolymers, and ABS resins, Examples thereof include resinous polymers such as rubber-modified vinyl polymers such as MBS resin, AES resin, and AAS resin. The rubber-like polymer content in the polymer latex is
It is preferably 50% by weight or more, more preferably 60% by weight or more, and the use of those within this range will further exert the objects and effects of the present invention.

【0008】本発明の凝固剤としては、通常、ラテック
スの凝固に用いられているものが使用でき、例えば塩酸
および硫酸などの無機酸、酢酸および蟻酸などの有機酸
またはこれらの酸の金属塩であり、そのほかに高分子凝
集剤などを併用することもできる。上記の金属塩として
は、例えば塩化カルシウム、硝酸カルシウム、塩化アル
ミニウム、硫酸アルミニウム、硫酸マグネシウムなどが
挙げられる。本発明においては、多価金属塩および無機
酸が好ましい。さらに好ましくは、塩化カルシウム、硫
酸マグネシウム、硫酸が挙げられる。上記の高分子凝集
剤としては、例えばポリアクリルアミドが挙げられる。
また、塩および酸は併用して用いることもできる。凝固
剤は凝固槽に配管にて添加してもよいし、スプレーノズ
ルにて噴霧してラテックスと接触させてもよい。本発明
で用いられる重合体ラテックスは、噴霧して液滴の状態
で凝固槽に噴霧添加するが、その液滴径の好ましい範囲
は75μm〜2mm、さらに好ましくは100〜100
0μmであり、特に好ましくは該液滴が全液滴の70重
量%以上である。75μm未満の微細液滴が30重量%
を超える粒度分布になると、かさ密度の低下、流動特性
の低下の原因となる。一方、2mmを超えると凝固槽に
噴霧添加した際に球形粒子が変形破壊してしまい、粉体
特性の優れたものが回収できないので好ましくない。分
散されたラテックス液滴は凝固槽にはいると液滴表面か
ら凝固していく。内部まで完全に凝固する前に重合体に
熱処理がかかってしまうと粒子内部がポーラスとなり、
得られる製品のかさ密度が低下する。このため、スプレ
ーノズルから噴霧するラテックス中に凝析値の1/4以
上から凝析値未満の凝固剤をあらかじめ入れておくこと
が好ましい。凝析値の1/4未満ではかさ密度アップの
効果が不十分であり、凝析値を超えると凝固が起きてし
まい、噴霧化が困難となる。凝析値は、凝固に供される
重合体ラテックスと凝固に使用される凝固剤を用いて、
下記の示す方法で求めた。重合体ラテックスを濃度が
0.20%となるように水で希釈する。この重合体ラテ
ックス10ccを試験管にとり、種々の濃度の凝固剤水
溶液10ccを加え、よく混合して30℃の恒温槽中に
静置した。1時間後の沈殿槽生成の有無を調べ、沈殿が
生ずる最低濃度(混合後のmmol/l)を凝析値とし
た。(イ)の凝固温度は、(Tv−40℃)≦凝固温度
≦(Tm+20℃)であり、好ましくは(Tv−35
℃)≦凝固温度≦Tmである。(Tv−40℃)の温度
を超えて低い温度では、粒度分布が広くなり目的の粒子
が得られない。(Tv+20℃)の温度を超えて高い温
度では凝固粒子が融着しやすく、粗粒子が発生したり、
また凝固スラリー濃度を上げられない。また(ロ)の撹
拌条件は、撹拌翼先端の周速が100≦周速≦800
(cm/s)、好ましくは150≦周速≦750(cm
/s)、周速が100cm/s未満では大きなかたまり
が生成してしまう。また周速が800cm/sを超える
と微粉が生成してしまい、粉体特性の優れた粒子が得ら
れない。重合体ラテックスは、噴霧状にして凝固槽に添
加される。重合体ラテックスを噴霧状にするための噴霧
装置としては、2流体ノズル、高圧ノズル、超音波ノズ
ル、高周波ノズル、回転円盤等が挙げられる。噴霧状に
したラテックスは、撹拌混合されている凝固槽の上部に
噴霧添加し、分散されるのが好ましい。また、凝固した
粒子の機械的強度およびかさ密度などの粉体特性を改善
するために、凝固粒子を加熱処理することが好ましい。
この好ましい加熱処理条件は、Tv≦処理温度≦Tv+
80、さらに好ましくはTv+10≦処理温度≦Tv+
70である。Tvより低いと加熱処理の効果が小さくな
り、かさ密度の増加、回収凝固粒子中の含水率の低減の
効果が現われない。Tv+80℃を超えると凝固粒子同
士が融着してかたまりとなり、安定運転ができない。ま
た、スラリー濃度を上げられない。また、この加熱処理
時間は5分≦処理時間≦180分である。5分より短い
と加熱処理の効果が小さく、かさ密度の増加、回収凝固
粒子中の含水率の低減の効果が現われない。180分を
超えると樹脂の色相など物性を損なうし、装置が大きく
なり経済的でない。そして、この撹拌に用いられる撹拌
翼の形状は特に制限されるものではなく、バドル翼、タ
ービン翼、プロペラ翼、ゲートタイプ翼など一般的に用
いられる翼が使用できる。本発明は凝固スラリー中の上
記凝集重合体粒子を分離し、必要に応じて水洗、乾燥
し、乾燥重合体粒子とすることができる。分離の方法と
しては、例えば下記の方法が挙げられる。すなわち、水
平ベルトフィルター、遠心脱水機などにより、脱水、洗
浄および分離することができる。さらに、フラッシュド
ライヤーや流動乾燥機にて乾燥して、乾燥重合体粒子と
して回収することができる。また、凝固スラリーをその
まま、あるいは水平ベルトフィルター、遠心脱水機など
にて脱水した後、脱水スリット付二軸押出機にて乾燥す
ることができる。本発明による凝集重合体粒子は微粉粒
子が少ないので、上記方法において通常発生する問題
点、すなわち、 水平ベルトフィルター、遠心脱水機のろ布の目詰
り、 二軸押出機の入口部での噛み込み不良による低吐出
量、 二軸押出機の脱水スリットからの凝集粒子のもれ を生ずることなく、脱水、乾燥することができる。
As the coagulant of the present invention, those commonly used for coagulating latex can be used. Examples thereof include inorganic acids such as hydrochloric acid and sulfuric acid, organic acids such as acetic acid and formic acid, and metal salts of these acids. In addition, a polymer flocculant and the like can be used in combination. Examples of the above metal salts include calcium chloride, calcium nitrate, aluminum chloride, aluminum sulfate, magnesium sulfate and the like. In the present invention, polyvalent metal salts and inorganic acids are preferred. More preferred are calcium chloride, magnesium sulfate and sulfuric acid. Examples of the polymer flocculant include polyacrylamide.
Further, the salt and the acid can be used in combination. The coagulant may be added to the coagulation tank by piping, or may be sprayed with a spray nozzle and brought into contact with the latex. The polymer latex used in the present invention is sprayed and added to the coagulation tank in the form of droplets, and the droplet diameter is preferably in the range of 75 μm to 2 mm, more preferably 100 to 100.
0 μm, particularly preferably 70% by weight or more of all the liquid droplets. 30% by weight of fine droplets of less than 75 μm
If the particle size distribution exceeds, the bulk density and flow properties are deteriorated. On the other hand, if it exceeds 2 mm, the spherical particles are deformed and destroyed when spray-added to the coagulation tank, and those having excellent powder characteristics cannot be recovered, which is not preferable. When the dispersed latex droplets enter the coagulation tank, they coagulate from the surface of the droplets. If the polymer is heat-treated before it completely solidifies to the inside, the inside of the particles becomes porous,
The bulk density of the resulting product is reduced. For this reason, it is preferable to previously add a coagulant having a coagulation value of 1/4 or more to less than the coagulation value in the latex sprayed from the spray nozzle. If it is less than 1/4 of the coagulation value, the effect of increasing the bulk density is insufficient, and if it exceeds the coagulation value, solidification occurs and atomization becomes difficult. The coagulation value is determined by using the polymer latex used for coagulation and the coagulant used for coagulation,
It was determined by the method shown below. The polymer latex is diluted with water to a concentration of 0.20%. 10 cc of this polymer latex was placed in a test tube, 10 cc of coagulant aqueous solution of various concentrations was added, mixed well, and allowed to stand in a constant temperature bath at 30 ° C. The presence or absence of formation of a precipitation tank after 1 hour was examined, and the lowest concentration at which precipitation occurred (mmol / l after mixing) was taken as the coagulation value. The solidification temperature of (a) is (Tv-40 ° C) ≤ solidification temperature ≤ (Tm + 20 ° C), and preferably (Tv-35).
° C) ≤ solidification temperature ≤ Tm. At a temperature lower than the temperature of (Tv-40 ° C.), the particle size distribution becomes wide and the target particles cannot be obtained. At a temperature higher than (Tv + 20 ° C.), solidified particles are likely to be fused and coarse particles are generated,
Moreover, the solidified slurry concentration cannot be increased. The stirring condition (b) is that the peripheral speed at the tip of the stirring blade is 100 ≦ peripheral speed ≦ 800.
(Cm / s), preferably 150 ≦ peripheral speed ≦ 750 (cm
/ S) and the peripheral speed is less than 100 cm / s, a large lump is generated. Further, when the peripheral speed exceeds 800 cm / s, fine powder is generated and particles having excellent powder characteristics cannot be obtained. The polymer latex is atomized and added to the coagulation tank. A spraying device for spraying the polymer latex includes a two-fluid nozzle, a high-pressure nozzle, an ultrasonic nozzle, a high-frequency nozzle, a rotating disk, and the like. The sprayed latex is preferably added by spraying to the upper part of the coagulation tank, which is being stirred and mixed, and dispersed. Further, in order to improve powder properties such as mechanical strength and bulk density of the solidified particles, it is preferable to heat-treat the solidified particles.
This preferable heat treatment condition is Tv ≦ treatment temperature ≦ Tv +
80, more preferably Tv + 10 ≦ treatment temperature ≦ Tv +
70. If it is lower than Tv, the effect of the heat treatment becomes small, and the effect of increasing the bulk density and reducing the water content in the recovered coagulated particles does not appear. If the temperature exceeds Tv + 80 ° C., the solidified particles are fused with each other to form a mass, which makes stable operation impossible. Also, the slurry concentration cannot be increased. The heat treatment time is 5 minutes ≦ treatment time ≦ 180 minutes. If it is shorter than 5 minutes, the effect of the heat treatment is small, and the effects of increasing the bulk density and reducing the water content in the recovered coagulated particles do not appear. If it exceeds 180 minutes, the physical properties such as the hue of the resin will be impaired, and the equipment will be large, which is not economical. The shape of the stirring blade used for this stirring is not particularly limited, and generally used blades such as a paddle blade, a turbine blade, a propeller blade, and a gate type blade can be used. In the present invention, the above-mentioned aggregated polymer particles in the coagulated slurry can be separated, washed with water and dried if necessary to obtain dried polymer particles. Examples of the separation method include the following methods. That is, it can be dehydrated, washed and separated by a horizontal belt filter, a centrifugal dehydrator and the like. Further, it can be dried by a flash dryer or a fluid dryer and collected as dried polymer particles. Further, the coagulated slurry can be dried as it is or after being dehydrated with a horizontal belt filter, a centrifugal dehydrator or the like, and then dried with a twin-screw extruder with a dehydration slit. Since the agglomerated polymer particles according to the present invention have few fine powder particles, there are problems that usually occur in the above-mentioned method, namely, horizontal belt filter, clogging of filter cloth of centrifugal dehydrator, and biting at the inlet of a twin-screw extruder. It is possible to perform dehydration and drying without causing a low discharge rate due to defects and without causing leakage of agglomerated particles from the dehydration slit of the twin-screw extruder.

【0009】[0009]

【実施例】以下に実施例により本発明の方法を具体的に
説明するが、これらは本発明の範囲を限定するものでは
ない。粉体特性測定法 かさ密度;JIS K6721に基づいて測定する。
(単位 g/ml) 平均粒子径;粒子径が1000μmまでは、レーザー回
折/散乱式粒度分布測定装置(堀場製作所製)により粒
度分布を求める。1000μmを超えるものについて
は、画像解析により求める。平均粒子径d50は、この粒
度分布の累積分布曲線から求めた50%の累積値の粒径
である。流動性は流動性指数として(chemical Enginee
ring. Jan. 18, (1965) )に記載の方法により求めた。
EXAMPLES The method of the present invention will be specifically described below with reference to examples, but these do not limit the scope of the present invention. Powder property measuring method Bulk density: Measured according to JIS K6721.
(Unit: g / ml) Average particle size; Up to a particle size of 1000 μm, the particle size distribution is determined by a laser diffraction / scattering type particle size distribution measuring device (manufactured by Horiba Ltd.) For those exceeding 1000 μm, it is determined by image analysis. The average particle diameter d 50 is the particle diameter of 50% cumulative value obtained from the cumulative distribution curve of this particle size distribution. Liquidity is defined as the liquidity index (chemical Enginee
ring. Jan. 18, (1965)).

【0010】実施例1 スチレン/ブタジエンの重量比が24/76であるスチ
レン/ブタジエン共重合体ラテックス60重量部(固形
分換算)の存在下に、スチレン20重量部、メメチルメ
タクリレート20重量部を水性乳化状態でグラフト重合
し、ゴム変性重合体ラテックスを得た。このゴム変性重
合体ラテックスの固形分濃度は20重量%であり、硫酸
(凝固剤)水溶液を用いて測定された凝析値は2mmo
l/l、ビカット軟化点は72℃であった。内容積2リ
ットルの撹拌機付き凝固槽(2段傾斜パドル翼、翼径
7.5cm、先端周速275cm/sで撹拌混合)に、
上記の重合体ラテックスを2流体ノズル(空気圧0.3
kg/cm2 G)により75ml/分噴霧添加し、一方
1%硫酸水溶液を39.2ml/分の割合で滴下し、ま
たイオン交換水を85.8ml/分の割合で凝固槽に滴
下添加した。なお、重合体ラテックスには、あらかじめ
ラテックス中の硫酸濃度が1.8mmol/lになるよ
うに硫酸水溶液を加えた。凝固槽の温度は、ジャケット
加熱にて45℃にコントロールし、連続的に凝固を40
分間実施して安定したところで、凝固スラリーを採取し
た。このスラリーを110℃にて40分間加熱処理した
後、遠心分離機を用い、重合体成分の分離、水洗、脱水
を行ない、湿粉を得た。この湿粉を乾燥し、重合体乾燥
粒子を得た。結果を表1に示す。
Example 1 20 parts by weight of styrene and 20 parts by weight of methymethacrylate were added in the presence of 60 parts by weight (in terms of solid content) of a styrene / butadiene copolymer latex having a styrene / butadiene weight ratio of 24/76. Graft polymerization was carried out in an aqueous emulsion state to obtain a rubber-modified polymer latex. The solid content concentration of this rubber-modified polymer latex was 20% by weight, and the coagulation value measured using an aqueous solution of sulfuric acid (coagulant) was 2 mmo.
The L / l and Vicat softening point were 72 ° C. In a coagulation tank with an internal volume of 2 liters equipped with a stirrer (two-stage inclined paddle blades, blade diameter 7.5 cm, tip peripheral speed 275 cm / s, stirring and mixing)
A two-fluid nozzle (air pressure 0.3
(75 kg / cm 2 G) by spraying at 75 ml / min, while 1% sulfuric acid aqueous solution was added dropwise at a rate of 39.2 ml / min, and ion-exchanged water was added dropwise at a rate of 85.8 ml / min to the coagulation tank. . An aqueous solution of sulfuric acid was previously added to the polymer latex so that the concentration of sulfuric acid in the latex would be 1.8 mmol / l. The temperature of the coagulation tank is controlled to 45 ° C by heating the jacket, and the coagulation is continuously performed at 40
The solidified slurry was collected when it was stabilized after being carried out for a minute. After heat-treating this slurry at 110 ° C. for 40 minutes, a polymer was separated using a centrifuge, washed with water, and dehydrated to obtain a wet powder. The wet powder was dried to obtain polymer dry particles. The results are shown in Table 1.

【0011】[0011]

【表1】 [Table 1]

【0012】実施例2 ラテックスにあらかじめ硫酸を入れずに実施した以外は
実施例1と同様に実施した。 実施例3 凝固温度を70℃、撹拌翼の先端速度を470cm/s
にて実施した以外は実施例1と同様に実施した。実施例
1〜3は本発明の範囲内で行なわれた例であり、粉体特
性に優れ、本発明の目的が達成されている。
Example 2 Example 1 was repeated except that sulfuric acid was not added to the latex in advance. Example 3 The solidification temperature was 70 ° C., and the tip speed of the stirring blade was 470 cm / s.
The same procedure as in Example 1 was carried out except that Examples 1 to 3 are examples carried out within the scope of the present invention, and have excellent powder characteristics, and the object of the present invention has been achieved.

【0013】比較例1〜5 凝固条件を表1に示すように変えた以外は実施例1と同
様にして重合体を回収した。比較例1は凝固温度が本発
明の範囲未満であり、微粉が多い。比較例2は凝固温度
が本発明の範囲を超えており、重合体粒子の融着がはげ
しく、運転が不能である。比較例3は撹拌翼の周速が本
発明の範囲未満であり、大きなかたまりが生成する。比
較例4は撹拌翼の周速が本発明の範囲を超えており、微
粉が生成してしまう。比較例5は重合体ラテックスを噴
霧せずに添加した例である。
Comparative Examples 1 to 5 Polymers were recovered in the same manner as in Example 1 except that the coagulation conditions were changed as shown in Table 1. Comparative Example 1 has a solidification temperature below the range of the present invention and contains a large amount of fine powder. In Comparative Example 2, the solidification temperature exceeds the range of the present invention, the fusion of the polymer particles is vigorous, and the operation is impossible. In Comparative Example 3, the peripheral speed of the stirring blade is less than the range of the present invention, and a large lump is generated. In Comparative Example 4, the peripheral speed of the stirring blade exceeds the range of the present invention, and fine powder is generated. Comparative Example 5 is an example in which the polymer latex was added without spraying.

【0014】[0014]

【発明の効果】本発明の回収方法は、凝固温度および撹
拌翼先端速度が特定範囲にある凝固槽へ、重合体ラテッ
クスを噴霧状で添加し、凝固することで粉体特性に優れ
た重合体粒子を重合体ラテックスから回収することがで
きる。
Industrial Applicability The recovery method of the present invention comprises adding a polymer latex in a spray form to a coagulation tank having a coagulation temperature and a stirring blade tip speed in a specific range and coagulating the polymer to obtain a polymer having excellent powder characteristics. The particles can be recovered from the polymer latex.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 福田 貞三 東京都中央区築地2丁目11番24号 日本合 成ゴム株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Teizo Fukuda 2-11-24 Tsukiji, Chuo-ku, Tokyo Japan Synthetic Rubber Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 重合体ラテックスを下記の(イ)(ロ)
(ハ)の条件下により凝固することを特徴とする重合体
の回収方法。 (イ)凝固温度(℃) (Tv−40)≦凝固温度≦(Tv+20) ただし、Tv;回収される重合体のビカット軟化点
(℃) (ロ)凝固槽は混合撹拌が行なわれ、その撹拌翼の先端
の周速が 100≦周速≦800(cm/s) (ハ)混合撹拌されている凝固槽へ重合体ラテックスの
噴霧添加。
1. A polymer latex according to the following (a) (b)
A method for recovering a polymer, wherein the polymer is solidified under the condition (c). (A) Solidification temperature (° C) (Tv-40) ≤ solidification temperature ≤ (Tv + 20) However, Tv; Vicat softening point (° C) of the recovered polymer (b) Mixing and stirring are performed in the solidification tank The peripheral speed of the tip of the blade is 100 ≦ peripheral speed ≦ 800 (cm / s) (c) Spray addition of the polymer latex to the coagulation tank with mixing and stirring.
JP5131694A 1994-02-24 1994-02-24 Recovery of polymer Pending JPH07233214A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5131694A JPH07233214A (en) 1994-02-24 1994-02-24 Recovery of polymer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5131694A JPH07233214A (en) 1994-02-24 1994-02-24 Recovery of polymer

Publications (1)

Publication Number Publication Date
JPH07233214A true JPH07233214A (en) 1995-09-05

Family

ID=12883520

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5131694A Pending JPH07233214A (en) 1994-02-24 1994-02-24 Recovery of polymer

Country Status (1)

Country Link
JP (1) JPH07233214A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100559307B1 (en) * 1996-06-13 2006-05-25 더 굿이어 타이어 앤드 러버 캄파니 Process for finishing a resin from an emulsion polymerized latex
JP2010003709A (en) * 2009-10-07 2010-01-07 Olympia:Kk False rotating light
KR20160111993A (en) * 2014-03-20 2016-09-27 미쯔비시 레이온 가부시끼가이샤 Vinyl polymer powder, thermoplastic resin composition, and molded body thereof

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100559307B1 (en) * 1996-06-13 2006-05-25 더 굿이어 타이어 앤드 러버 캄파니 Process for finishing a resin from an emulsion polymerized latex
JP2010003709A (en) * 2009-10-07 2010-01-07 Olympia:Kk False rotating light
JP4576474B2 (en) * 2009-10-07 2010-11-10 株式会社オリンピア Pseudo rotating light
KR20160111993A (en) * 2014-03-20 2016-09-27 미쯔비시 레이온 가부시끼가이샤 Vinyl polymer powder, thermoplastic resin composition, and molded body thereof

Similar Documents

Publication Publication Date Title
JP5185534B2 (en) Method for producing coagulated latex particles
US4429114A (en) Method for treating emulsified latex
JPS6037129B2 (en) Method for removing and recovering unreacted monomers from resinous polymers
JP2890387B2 (en) Method for producing granular polymer
JPH07233214A (en) Recovery of polymer
JP3505870B2 (en) Spherical polymer particles
US5064938A (en) Continuous production process of particulate polymer and control method of the particle size of said polymer
JPH09286815A (en) Method for recovering polymer from latex
JPH07138314A (en) Method for coagulating polymeric latex
JPH07242708A (en) Coagulation of polymer latex
JPS6229443B2 (en)
JP3635261B2 (en) Method for producing polymer particles
JP2000026526A (en) Production of polymer latex
JPH0848717A (en) Method for recovering polymer
JPS63135404A (en) Continuous coagulation of polymer latex
KR100337761B1 (en) Solidification Method of Polymer Latex
JPS5991103A (en) Recovery of thermoplastic resin
JP4676216B2 (en) Polymer recovery method from polymer latex
JP2721717B2 (en) Method for producing powdery granular polymer
JP3023973B2 (en) Method and apparatus for coagulating an aqueous polymer dispersion
JPH0848716A (en) Method for recovering polymer
JP3813011B2 (en) Method and apparatus for collecting polymer solids
JPH09235303A (en) Recovery of polymer latex
JPH07138376A (en) Bead-like particle and its production
JPH0439304A (en) Preparation of powdery particulate polymer