JPH01230605A - Method and apparatus for production of coagulated resin - Google Patents

Method and apparatus for production of coagulated resin

Info

Publication number
JPH01230605A
JPH01230605A JP5911488A JP5911488A JPH01230605A JP H01230605 A JPH01230605 A JP H01230605A JP 5911488 A JP5911488 A JP 5911488A JP 5911488 A JP5911488 A JP 5911488A JP H01230605 A JPH01230605 A JP H01230605A
Authority
JP
Japan
Prior art keywords
coagulated
latex
resin
steam
slurry
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5911488A
Other languages
Japanese (ja)
Inventor
Tetsuo Kaneyasu
金安 哲男
Akira Takeuchi
竹内 白
Yuji Morioka
森岡 勇二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP5911488A priority Critical patent/JPH01230605A/en
Publication of JPH01230605A publication Critical patent/JPH01230605A/en
Pending legal-status Critical Current

Links

Landscapes

  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

PURPOSE:To recover efficiently a coagulated resin from a latex by forming a coagulated mass obtd. from a thermoplastic resin latex and a coagulating liq. into small granules to prepare a slurry of coagulated particles and bringing it into contact with steam in a specified tubular apparatus. CONSTITUTION:A latex of a thermoplastic resin in a heat insulating tank for the latex and a coagulating liq. in a heat insulating tank for the coagulating liq. are respectively fed from feed ports 1 and 2 by means of a metering pump into a coagulating section 3 and brought into contact with each other at a softening temp. or below of the thermoplastic resin to obtain a coagulated mass, which is formed into small granules in a granulator 4 for coagulated particles to form a slurry of coagulated particles. Then, this slurry is fed to a homogenizer 5 for the coagulated particles having a mixing mechanism such as a mixing element 10 to make the particle diameter uniform and then fed to a steam contacting part 6 having a mixing element 10 to bring it into contact with steam introduced from a feed port 7 at a softening temp. or higher of the thermoplastic resin and a slurry of coagulated particles is led flow out from an outlet 8. Furthermore, this slurry is dehydrated and dried and, pelletized as necessary.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、熱可塑性樹脂ラテックスから凝固樹脂を製造
する方法及びその製造装置に関する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a method for producing coagulated resin from thermoplastic resin latex and an apparatus for producing the same.

(従来の技術)     ゛ 乳化重合等で得られた熱可塑性樹脂ラテックス(以下、
ラテックスと略称する)よυ重合物を回収する方法とし
て、安定化状態にあるラテックスに無機塩類や無機酸、
有機酸または親水性極性溶剤の1種以上を加えることに
よってミセルの破壊及び重合物粒子の凝集を起こさせ重
合物を塊状の形で得る凝固操作が一般的に行なわれてい
る。凝固操作で得られた凝固粒子は洗浄・脱水・乾燥を
行なったあと多くの場合安定剤やその他の添加剤を配合
したり、あるいは更に他の重合体と混合したのちベレッ
トにしたりして用いられているが。
(Conventional technology) Thermoplastic resin latex obtained by emulsion polymerization etc. (hereinafter referred to as
As a method of recovering polymerized products (abbreviated as latex), inorganic salts and inorganic acids are added to the stabilized latex.
A coagulation operation is generally carried out in which the micelles are destroyed and the polymer particles are agglomerated by adding one or more organic acids or hydrophilic polar solvents to obtain a polymer in the form of a lump. After washing, dehydrating, and drying the coagulated particles obtained by the coagulation operation, stabilizers and other additives are often added to the particles, or they are mixed with other polymers and then used as pellets. Although it is.

これら一連の凝固後の操作の難易は凝固によって得られ
る凝集粒子の状態(粒径2粒径分布、嵩密度、硬さなど
)に大きく左右される。たとえば。
The difficulty of these series of operations after coagulation largely depends on the state of the aggregated particles obtained by coagulation (two-particle size distribution, bulk density, hardness, etc.). for example.

微粒子の多い凝固粒子では、洗浄・脱水工程を経ても含
水率の高い湿粉しか得られず、凝固剤残存率が高くなる
。また、脱水工程で遠心分離機の戸布の目詰り、脱水不
良現象を引き起こす原因となる。また、乾燥工程では、
微粒子の飛散2回収率の低下、さらには得られた粒子を
ベレット化する際のルーグー内でのくい込み不良等の問
題が発生する。−万、巨大粒子の多い凝固粒子では、そ
の内部に含まれる水分の除去が容易で々く、また配管詰
りなどの輸送上のトラブルを生ぜしめる。したがって、
常に目的とする凝固粒子を効率よく回収する凝固法の確
立が望まれていた。その具体的な方法として大別して、
(1)攪拌槽内でラテックスと凝固液を攪拌混合する攪
拌槽方式(%公昭46−17121号公報、特開昭57
−98503号公報)、(21ラテツクスと凝固液を並
流となし1層流状態で両液を接触させる並流接触方式(
特公昭46−32055号公報)、(31スプレ一方式
(特公昭57−5256号公報、特開昭56−3040
3号公報、特開昭56−95905号公報)、[4)押
出賦形方式(特公昭42−22295号公報2%公昭4
2−22684号公報、特公昭5〇−17227号公報
)などがある。
With coagulated particles containing many fine particles, only a wet powder with a high moisture content can be obtained even after the washing and dehydration steps, resulting in a high coagulant residual rate. In addition, it may cause clogging of the centrifuge cloth during the dehydration process, resulting in poor dehydration. In addition, in the drying process,
Problems such as scattering of fine particles 2 and a decrease in the recovery rate, as well as poor penetration into the rug when the obtained particles are made into pellets, occur. - In the case of coagulated particles with many large particles, it is difficult to remove the water contained therein, and this also causes transportation troubles such as clogging of pipes. therefore,
It has always been desired to establish a coagulation method that efficiently recovers the desired coagulated particles. The specific methods are roughly divided into:
(1) Stirring tank method in which latex and coagulation liquid are stirred and mixed in a stirring tank (% Publication No. 46-17121, JP-A-57
-98503 Publication), (21 Latex and coagulation liquid are brought into parallel flow and the two liquids are brought into contact in a single laminar flow state (co-current contact method)
(Japanese Patent Publication No. 46-32055), (31 spray one type (Japanese Patent Publication No. 57-5256, Japanese Patent Application Laid-Open No. 56-3040)
3, JP-A No. 56-95905), [4) Extrusion shaping method (Japanese Patent Publication No. 42-22295, 2% Publication No. 4)
2-22684, Japanese Patent Publication No. 50-17227), etc.

(発明が解決しようとする課題) 攪拌槽方式では、その構造上凝固粒子の粒径分布の広範
囲化は避けられず、また、高い凝固粒子濃度で操作する
には限界がある。特公昭46−32055号公報に記載
の並流接触式は、具体的には、凝固液流中に配置される
ノズルからラテックスを流出させるものであり、この方
法ではラテックスを流出させるノズル孔径によって凝固
粒子の大きさが決まる。
(Problems to be Solved by the Invention) In the stirred tank system, the particle size distribution of coagulated particles cannot be avoided due to its structure, and there is a limit to operation at a high concentration of coagulated particles. Specifically, the co-current contact method described in Japanese Patent Publication No. 46-32055 is a method in which latex flows out from a nozzle placed in the flow of coagulating liquid. The size of the particles is determined.

この方法は、凝固粒子の粒径分布を狭くする点は改良さ
れているものの、巨大粒子の生成を抑制するためにはノ
ズル孔径を大きくすることができず。
Although this method has been improved in narrowing the particle size distribution of coagulated particles, it is not possible to increase the nozzle hole diameter in order to suppress the generation of giant particles.

ノズル部閉塞のトラブルが生じ易いし、やはり。Problems with nozzle blockage are likely to occur.

高い凝固粒子濃度で操作するKは限界がある。K operating at high coagulated particle concentrations has limitations.

スプレ一方式は適用できるラテックスに制限があるうえ
、装置が大型化するという欠点がある。
The one-spray method has the drawbacks that there are limitations on the latex that can be applied and that the equipment becomes larger.

押出賦形方式では、一般的に、一応一定の形状のベレッ
トとして凝固粒子が得られるが、このベレットは破壊し
易く、場合によっては微粒子化まで進行する難点があり
、そのため硬化工程を必要とし、装置が複雑化・大型化
する。また、特公昭50−17227号公報に記載の方
式は、工程の、簡略化という点は改良されているが、ラ
テックスの軟化温度が100℃〜300°Cという制限
があるうえ、大量処理には適していない。
In the extrusion shaping method, generally, solidified particles are obtained as pellets with a certain shape, but these pellets are easily broken and, in some cases, have the disadvantage of progressing to fine particles, so a curing process is required. Equipment becomes more complex and larger. Furthermore, although the method described in Japanese Patent Publication No. 50-17227 is improved in terms of process simplification, there is a limit to the latex softening temperature of 100°C to 300°C, and it is not suitable for mass processing. Not suitable.

本発明は、これらの課題を解決するものであり。The present invention solves these problems.

ラテックスから凝固樹脂を回収する際に、脱水・乾燥・
ベレット化等の各工程が効率よく行なえるような平均粒
径および粒度分布をもつ凝固粒子を高濃度スラリー状態
で連続的に得る方法及びその製造装置に関する。
When recovering coagulated resin from latex, dehydration, drying,
The present invention relates to a method for continuously obtaining coagulated particles in a highly concentrated slurry state with an average particle size and particle size distribution that allow each process such as pelletization to be carried out efficiently, and an apparatus for producing the same.

(1!f!題を解決するための手段) 本発明は、熱可塑性樹脂ラテックスと凝固液とを、該熱
可塑性樹脂の軟化温度以下の温度で接触させ、凝固塊を
生成させる工程(a)、該凝固塊を小塊にして凝固粒子
スラリーを生成させる工程(b)。
(Means for Solving Problem 1!f!) The present invention provides a step (a) of bringing a thermoplastic resin latex and a coagulating liquid into contact with each other at a temperature below the softening temperature of the thermoplastic resin to produce a coagulated lump. , step (b) of pulverizing the coagulated agglomerates to produce a coagulated particle slurry;

凝固粒子スラリー0粒径を均一化する工程(c1及び粒
径が均一化された凝固粒子スラリーとスチームとを核熱
可塑性樹脂の軟化温度以上の温度で接触せしめる工程(
dlを含むことを特徴とする凝固樹脂の製造方法及び凝
固樹脂の製造装置に関する。
A step of making the coagulated particle slurry 0 particle size uniform (c1 and a step of bringing the coagulated particle slurry with a uniform particle size into contact with steam at a temperature equal to or higher than the softening temperature of the core thermoplastic resin)
The present invention relates to a method for producing a coagulated resin and an apparatus for producing a coagulated resin, characterized by containing dl.

本発明に使用される熱可塑性樹脂ラテックスは通常の乳
化重合等によって得られるものであれば特に制限はない
。具体的にはゴム質重合体に、スチレン、α−メチルス
チレン等のビニル芳香族炭化水素、アクリロニトリル、
メタクリロニトリル等のビニルシアン化合物、アクリル
酸エステル。
The thermoplastic resin latex used in the present invention is not particularly limited as long as it can be obtained by ordinary emulsion polymerization or the like. Specifically, rubbery polymers include vinyl aromatic hydrocarbons such as styrene and α-methylstyrene, acrylonitrile,
Vinyl cyanide compounds such as methacrylonitrile, acrylic acid esters.

メタクリル酸エステルなどのビニル単量体の1種もしく
は2種以上を重合させて得たグラフト重合体ラテックス
、前記ビニル単量体の1種もしくは2種以上から得られ
るビニル系(共)重合体ラテックス、前記グラフト重合
体ラテックス及び前記ビニル系(共)重合体ラテックス
を含有する重合体混合ラテックスなどかあ如、これらの
熱可塑性樹脂ラテックス中に抗酸化剤、熱、光安定剤な
どの添加剤の加えられたものであっても支障はない。
Graft polymer latex obtained by polymerizing one or more vinyl monomers such as methacrylic acid ester, vinyl (co)polymer latex obtained from one or more of the above vinyl monomers. , a polymer mixed latex containing the graft polymer latex and the vinyl (co)polymer latex, etc. Additives such as antioxidants, heat stabilizers, and light stabilizers are added to these thermoplastic resin latexes. There is no problem even if it is added.

本発明に用いられる凝固液には凝固剤が含有されている
。凝固剤とは、熱可塑性樹脂ラテックス(以下、単にラ
テックスという)の樹脂分を凝集分離させる働きをもつ
ものである。凝固剤としては通常のラテックスの凝固に
用いられるもので良く無機塩、無機酸、有機酸等を用い
ることができる。具体的には塩化カルシウム、塩化ナト
リウム。
The coagulating liquid used in the present invention contains a coagulating agent. A coagulant has the function of coagulating and separating the resin components of thermoplastic resin latex (hereinafter simply referred to as latex). As the coagulant, any one commonly used for coagulating latex may be used, and inorganic salts, inorganic acids, organic acids, etc. can be used. Specifically, calcium chloride and sodium chloride.

硫酸マグネシウム、硫酸アルミニウム、カリミョウバン
、硫酸、塩酸、蟻酸などを挙げることができる。これら
凝固剤の使用量はラテックスの樹脂分濃度、凝固性、乳
化剤量等及び使用する凝固剤の凝固能力などによって適
宜定められる。これらの凝固剤は、充分な凝固能力と経
済性の両面から。
Examples include magnesium sulfate, aluminum sulfate, potassium alum, sulfuric acid, hydrochloric acid, and formic acid. The amount of these coagulants to be used is appropriately determined depending on the resin concentration of the latex, coagulability, amount of emulsifier, and coagulation ability of the coagulant used. These coagulants have both sufficient coagulation ability and economic efficiency.

一般には、無機塩の場合はラテックス中の樹脂分100
重量部に対して2〜10重量部使用するのが好ましく、
酸類はラテックス中に含まれる乳化剤の1.0〜1.5
倍重量使用するのが好ましい。該凝固剤は、水などの溶
媒に溶かして凝固液とされ使用される。
Generally, in the case of inorganic salts, the resin content in latex is 100%
It is preferable to use 2 to 10 parts by weight,
Acids account for 1.0 to 1.5 of the emulsifier contained in latex.
It is preferable to use double weight. The coagulant is used by dissolving it in a solvent such as water to form a coagulating liquid.

次に1本発明の各工程について説明する。Next, each step of the present invention will be explained.

先ず工程(a)は、ラテックスと前記凝固液を接触させ
、凝固塊を得る工程であり、工程(blは、これを粗砕
して凝固塊内部に凝固液を分散させ凝固粒子スラリーを
得る工程である。接触させる方法としては、第3図(b
lに示すような装置を用いる並流方式等がある。また、
接触(工程a)と粗砕(工程b)を兼ねたものとして第
3図(3)に示すような装置を用いる攪拌混合式等があ
る。両図において1はラテックス導入口、2は凝固液導
入口である。高濃度で凝固粒子を扱えるという点からは
攪拌混合式が好ましい。工程(alでは凝固部外筒9あ
るいはラテックス導入口1での凝固樹脂の閉塞によるト
ラブル、″または、巨大凝固塊生成によるトラブルを防
止するためラテックスと凝固液をラテックスに含まれる
樹脂の軟化温度以下の温度で接触させることが必要であ
る。過度の細粒化を防止するためには、好ましくは樹脂
の軟化温度未満。
First, step (a) is a step of bringing the latex and the coagulating liquid into contact to obtain a coagulated lump, and step (bl) is a step of coarsely crushing the latex and dispersing the coagulating liquid inside the coagulated lump to obtain a coagulated particle slurry. The contact method is shown in Figure 3 (b).
There is a parallel current method using a device as shown in 1. Also,
There is a stirring and mixing method using a device as shown in FIG. 3 (3), which combines contact (step a) and coarse crushing (step b). In both figures, 1 is a latex inlet, and 2 is a coagulation liquid inlet. The stirring and mixing method is preferable from the point of view that coagulated particles can be handled at a high concentration. In order to prevent troubles due to blockage of the coagulated resin in the coagulation section outer cylinder 9 or latex inlet 1 during the process (al), or troubles caused by the formation of large coagulated lumps, the latex and coagulation liquid are kept at a temperature below the softening temperature of the resin contained in the latex. It is necessary to bring the resin into contact at a temperature of about 100 ml, preferably below the softening temperature of the resin, in order to prevent excessive granulation.

樹脂の軟化温度−30℃以上で接触させることが必要で
ある。
It is necessary to contact the resin at a softening temperature of −30° C. or higher.

なお2本発明における軟化温度は、高化式フローテスタ
による定速昇温試験で、樹脂粒子が変形を開始したと判
断できる温度をいう。
Note that the softening temperature in the present invention refers to the temperature at which it can be determined that the resin particles have started deforming in a constant temperature increase test using a Koka type flow tester.

工程(a)における接触温度は、ラテックス及び凝固剤
を予め所定の温度で保温して供給することにより調整す
ることができる。
The contact temperature in step (a) can be adjusted by keeping the latex and coagulant at a predetermined temperature in advance and supplying them.

次いで、工程(b)では、工程(a)で得られた凝固塊
内部に凝固液を分散させ、未凝固ラテックスの残存によ
る工程(c1でのトラブルを防ぐため、方式に応じた十
分な攪拌力を確保するとともに、滞留時間を2秒以上、
好ましくは5秒以上確保する必要がある。なお滞留時間
を必要以上に大きくすることは、装置の大型化につなが
るため経済的な観点からも加味して決定されるべきであ
る。
Next, in step (b), the coagulating liquid is dispersed inside the coagulated mass obtained in step (a), and sufficient stirring power is applied depending on the method in order to prevent troubles in step (c1) caused by residual uncoagulated latex. In addition to ensuring a residence time of 2 seconds or more,
Preferably, it is necessary to secure 5 seconds or more. Incidentally, increasing the residence time more than necessary leads to an increase in the size of the apparatus, so the decision should be taken also from an economic point of view.

工程(blは、細管を用いて行なうと、装置が簡単でか
つ適度な小塊が得られるので好ましい。細管を用いる場
合、十分な攪拌能力を得るためには。
It is preferable to carry out step (bl) using a capillary because the apparatus is simple and suitable small lumps can be obtained. When using a capillary, sufficient stirring ability is to be obtained.

流速と管径の関係が、流速/管径〉7(単位:1/秒)
であることが好ましく、また、管長と管径の関係が、管
長/管径>(1,12Xスラリ一濃度)とするのが好ま
しい。
The relationship between flow velocity and pipe diameter is flow velocity/pipe diameter>7 (unit: 1/sec)
It is preferable that the relationship between the tube length and the tube diameter is such that tube length/tube diameter>(1,12X slurry-concentration).

次いで工程(c)は、工程(b)で得られた凝固粒子ス
ラリー中に存在する凝固粒子表面に、瞬間的に不均等で
作用点が時間と供に移動し、統計的に一様化した剪断応
力を加えることにより、凝集粒子を構成する微粒子の配
置換えを生じさせ、凝集粒子全圧密化させると同時に凝
集粒子を構成する微粒子間の結合力の弱い接触点では、
この結合を分断して、統計的に均一な粒子径の凝集粒子
スラリーを得る工程である。
Next, in step (c), on the surface of the coagulated particles present in the coagulated particle slurry obtained in step (b), the points of application are momentarily uneven and move over time to become statistically uniform. By applying shear stress, the fine particles constituting the flocculated particles are rearranged, and at the same time, the flocculated particles are completely consolidated, and at the same time, at the contact points where the bonding force between the fine particles constituting the flocculated particles is weak,
This is a step in which this bond is broken to obtain a slurry of aggregated particles having a statistically uniform particle size.

本工程を経ないで工程(b)から工程fd)に移った場
合は、工程(d)で巨大粒子生成によるトラブルが生じ
る。但し、工程(alで攪拌混合式の装置を用いた場合
には省略が可能な場合もある。工程(c)として第4図
(a)及び(b)の攪拌型混合器式、第4図[C)の静
止型混合器式等の方法があり、高濃度で凝固粒子を扱え
るという点からは静止型混合器を用いて行危う方法が好
ましい。さらに、静止型混合器の混合エレメントとして
は「化学工学の進歩」16(槙書店出版)の第129頁
表6.2に記載されるように、各種のものが考えられ実
用化されているが、なかでもスタティックミキサー(K
enics社製、商品名)等のように構造が単純で凝固
粒子スラリーを扱うのに適したものが好ましい。なお。
If the process moves from step (b) to step fd) without going through this step, troubles will occur in step (d) due to the formation of giant particles. However, it may be possible to omit it if a stirring-mixing type device is used in step (al).As step (c), the stirring-type mixer type shown in Fig. 4(a) and (b), Fig. 4 There are methods such as [C) using a static mixer, and the method using a static mixer is preferred from the standpoint of being able to handle coagulated particles at a high concentration. Furthermore, various types of mixing elements for static mixers have been considered and put into practical use, as described in Table 6.2 on page 129 of "Advances in Chemical Engineering" 16 (Maki Shoten Publishing). , especially static mixers (K
It is preferable to use one that has a simple structure and is suitable for handling coagulated particle slurry, such as those manufactured by Enics (trade name). In addition.

混合エレメントは6以上あるものが好ましい。Preferably, there are six or more mixing elements.

本工程は、巨大粒子生成によるトラブルを防止するため
、樹脂の軟化温度未満の温度で行なうことが好ましく、
特に樹脂の軟化温度未満、かつ樹脂の軟化温度−30℃
以上で行なうことが好ましい。また2本工程で粒子径が
均一な凝固粒子を得るための流速・滞留時間等の条件は
選定した使用される各混合器に応じてそれぞれ決められ
る。
This step is preferably carried out at a temperature below the softening temperature of the resin in order to prevent troubles due to the formation of giant particles.
Especially below the softening temperature of the resin, and the softening temperature of the resin -30℃
It is preferable to carry out the above. Further, conditions such as flow rate and residence time for obtaining coagulated particles having a uniform particle size in the two-step process are determined depending on each mixer selected to be used.

工程(d)は工程FC+で粒子径の均一化された凝固粒
子スラリーを、高温スチームと接触させることにより樹
脂の軟化温度以上、好ましくは樹脂の軟化温度以上、樹
脂の軟化温度+30℃以下に加熱させ、均一に粒子を肥
大化させるために必要である。
Step (d) is heating the coagulated particle slurry whose particle size has been made uniform in step FC+ to a temperature above the softening temperature of the resin, preferably above the softening temperature of the resin, but below the softening temperature of the resin +30°C by contacting it with high temperature steam. This is necessary to uniformly enlarge the particles.

本工程での凝固粒子スラリーの温度を調節することによ
り凝固粒子の粒子サイズを調整することが可能となるが
、樹脂の軟化温度未満では粒子の肥大化が生ぜず、樹脂
の軟化温度+30’Cを超えると巨大粒子生成によるト
ラブルが生じる傾向がある。また、加熱方式としては、
$1間的にかつ均一に加熱でき、壁への付着が防止でき
る点からスチーム接触による加熱方式が必要である。工
程(d)における温度は、スチームの温度と流量を調節
することにより決定できる。スチーム接触方式としては
第5図のfalに示すような管式のもの、第5図の[b
)に示すような内部に混合エレメントを有した管式のも
のなどがあり、凝固粒子の粒径分布を均一にし、かつ高
濃度で凝固粒子を扱えるという点からは後者のものが好
ましい。また、スチームとの接触を均一に行なうために
は、凝固粒子スラリーの流速は0.5〜2m/秒、滞留
時間は0.1秒以上であるのが好ましい。本発明の凝固
樹脂の製造方法は9例えば工程(a)、工程(b)、工
程FC)及び工程(d)のだめの装置機構を順次連結し
た一本の管理装置を用いて行なわれる。第1図及び第2
図に示されるような装置を用いて行なうと閉塞等のトラ
ブルが生じにくいので特に好ましい。
It is possible to adjust the particle size of the coagulated particles by adjusting the temperature of the coagulated particle slurry in this step, but if the temperature is below the resin softening temperature, the particles will not enlarge, and the resin softening temperature + 30'C Exceeding this value tends to cause problems due to the generation of giant particles. In addition, as a heating method,
A heating method using steam contact is necessary because it can heat quickly and uniformly and prevents adhesion to walls. The temperature in step (d) can be determined by adjusting the temperature and flow rate of the steam. Steam contact methods include a pipe type as shown in fal in Figure 5, and a steam contact type as shown in Figure 5 [b].
There is a tubular type having a mixing element inside as shown in (), and the latter is preferable from the viewpoint of making the particle size distribution of coagulated particles uniform and being able to handle coagulated particles at a high concentration. Further, in order to achieve uniform contact with steam, the flow rate of the coagulated particle slurry is preferably 0.5 to 2 m/sec, and the residence time is preferably 0.1 second or more. The method for producing a coagulated resin of the present invention is carried out using a single management device in which nine device mechanisms, for example, step (a), step (b), step FC), and step (d), are successively connected. Figures 1 and 2
It is particularly preferable to use a device as shown in the figure, since troubles such as blockage are less likely to occur.

以下に本発明の製造方法の行なわれる管理装置の一例に
関して詳述する。第1図及び第2図は。
An example of a management device for carrying out the manufacturing method of the present invention will be described in detail below. Figures 1 and 2 are.

この装置の一例を示すものであり、第1図は外観図、第
2図は、第1図に示される装置の断面図である。凝固部
3は、ラテックス導入口1と凝固液導入口2を有し、ラ
テックスと凝固液は樹脂の軟化温度未満の温度で接触さ
せる。凝固部3への各部の供給は、ラテックス保温槽及
び凝固液保温槽から、各々、定量ポンプをとおして行な
うことができる。各部を接触せしめて得た凝固塊は、凝
固粒子粗砕部4を通過して凝固粒子スラリーとなる。
An example of this device is shown, and FIG. 1 is an external view, and FIG. 2 is a sectional view of the device shown in FIG. 1. The coagulating section 3 has a latex inlet 1 and a coagulating liquid inlet 2, and the latex and the coagulating liquid are brought into contact at a temperature lower than the softening temperature of the resin. Each part can be supplied to the coagulation section 3 from the latex heat retention tank and the coagulation liquid heat retention tank through metering pumps, respectively. The coagulated mass obtained by bringing the respective parts into contact passes through the coagulated particle coarse crushing section 4 and becomes a coagulated particle slurry.

凝固粒子粗砕部4の好ましい管長、管径及び流速の関係
は、前述のとおりである。凝固粒子粗砕部4に続いて凝
固粒子均一化部5が連結される。凝固粒子均一化部5は
、混合エレメント10のような混合機構を有するもので
ある。続いてスチーム接触部6が連結される。スチーム
接触部6は、スチーム導入ロアを有し、さらにスチーム
を均一に接触させるための混合エレメント10及び凝固
粒子スラリー流出口8を有する。スチーム接触部の温度
は、スチーム流量の調節によって決定できる。
The preferred relationship among the pipe length, pipe diameter, and flow rate of the coagulated particle coarse crushing section 4 is as described above. A coagulated particle homogenizing section 5 is connected to the coagulated particle crushing section 4 . The solidified particle homogenizing section 5 has a mixing mechanism such as a mixing element 10. Subsequently, the steam contact portion 6 is connected. The steam contact section 6 has a steam introduction lower, and further has a mixing element 10 and a coagulated particle slurry outlet 8 for uniformly contacting the steam. The temperature of the steam contact area can be determined by adjusting the steam flow rate.

各部はフランジ接続などにより滑らかな流路、即ち同一
内径の管路で連結されている。
Each part is connected by a smooth flow path, that is, a pipe line with the same inner diameter, by flange connection or the like.

本発明によって得られた均一な凝固樹脂粒子を含む一3
ラリ−は、遠心濾過機等で脱水し、得られた湿粉を気流
乾燥機、パドルドライヤー等で乾燥して、凝固樹脂粒子
を得ることができる。
3 containing uniform coagulated resin particles obtained by the present invention
The rally is dehydrated using a centrifugal filter or the like, and the resulting wet powder is dried using a flash dryer, paddle dryer, or the like to obtain coagulated resin particles.

得られる凝固樹脂粒子は9例えば、二軸又は単軸の押出
機等でペレット化され、成形品用の熱可塑性樹脂とする
ことができる。
The obtained coagulated resin particles can be pelletized using, for example, a twin-screw or single-screw extruder, and can be made into a thermoplastic resin for molded products.

(作用) 工程fa)では、ラテックスと凝固液を単に接触させる
だけで凝集塊が生成する。この際に樹脂の軟化温度以上
にすると凝固粒子径の均一化を保つためにはラテックス
ノズルの細孔化あるいは強力な攪拌を必要とするなど操
作が面倒になるとともに。
(Operation) In step fa), agglomerates are generated simply by bringing the latex into contact with the coagulation liquid. At this time, if the temperature is higher than the softening temperature of the resin, the operation becomes troublesome, such as making the latex nozzle finer or requiring strong stirring in order to maintain a uniform coagulated particle size.

ラテックス状態による付着の蓄積が避けられず閉塞トラ
ブルが発生しやすい。このような問題点を解決するため
、凝固部では樹脂の軟化温度以下で操作しラテックスを
凝固させる機能のみを課し。
Accumulation of adhesion due to the latex condition is unavoidable and clogging problems are likely to occur. In order to solve these problems, the coagulation section only has the function of coagulating the latex by operating below the softening temperature of the resin.

幅広い操作条件に対応できるようにしている。It is designed to accommodate a wide range of operating conditions.

工程(blは、凝固部で得られた凝固塊を粗砕して未凝
固ラテックスを残らないようにし、工程fc)で均一な
粒子径の粒子を得るための準備工程である。
Step (bl is a preparatory step for coarsely crushing the coagulated mass obtained in the coagulation section so that no uncoagulated latex remains, and obtaining particles with a uniform particle size in step fc).

工程(blは、単に円管内を通すことによっても2円管
内を流体が流れる際に、流体粘度に起因する剪断応力が
発生するので、適度な管径、流速によって、適度々小凝
固塊を得ることができる。工程fblで得られる小凝固
塊は、ラテックス粒子がランダム凝集したものである。
Step (bl) is a process in which shear stress due to fluid viscosity is generated when the fluid flows through the two circular tubes, so a moderately small solidified mass can be obtained by using an appropriate tube diameter and flow rate. The small coagulum obtained in step fbl is a random agglomeration of latex particles.

工程(c1は、ランダム凝集した凝固粒子に均一な剪断
応力を加え2粒子を圧密化すると同時に粒子径を均一化
して工程(d)での均一な肥大化をはかるための準備工
程である。工程(c)で、静止型混合機を用いると特に
剪断応力が均一に与えることができ、均一な粒子径を得
ることができる。
Step (c1) is a preparatory step for applying uniform shear stress to the randomly aggregated coagulated particles to consolidate the two particles, and at the same time making the particle diameter uniform to ensure uniform enlargement in step (d). In (c), if a static mixer is used, the shear stress can be applied uniformly, and a uniform particle size can be obtained.

工程(d)は、予め均一化された凝固粒子スラリーに直
接スチームを接触させ均一に短時間のうちに樹脂の軟化
温度以上に加熱させるため凝固粒子同志の融着によりよ
り緻密で均一な肥大化が可能となる。したがって加熱温
度を調整することにより。
In step (d), steam is brought into direct contact with the coagulated particle slurry that has been homogenized in advance, and the slurry is uniformly heated to a temperature higher than the softening temperature of the resin in a short period of time, so that the coagulated particles are fused together to form a denser and more uniform enlargement. becomes possible. Therefore by adjusting the heating temperature.

平均粒径の調整も容易に行なえる。工程(d)において
も、静止型混合機を用いると、均一な剪断応力が得られ
るので好ましい。
The average particle size can also be easily adjusted. Also in step (d), it is preferable to use a static mixer because uniform shear stress can be obtained.

また1本発明の第2の製造装置の発明では、全体が管路
で構成できるため閉塞によるトラブルが生じにくい。
Furthermore, in the second aspect of the manufacturing apparatus of the present invention, troubles due to blockages are less likely to occur because the entire apparatus can be constructed of pipes.

(実施例) 次に本発明を実施例により、さらに詳述する。(Example) Next, the present invention will be explained in more detail with reference to Examples.

実施例1 下記の重合処方によりラテックスを得た。Example 1 A latex was obtained using the following polymerization recipe.

(1)架橋アクリルゴムラテックスの製造イオン交換水
2000部に乳化剤(脂肪酸石ケン、ノンサールTN−
1日本油脂■商品名)12M量部を溶解させた水溶液、
別途調整したイオン交換水200重量部に過硫酸カリウ
ム1.2重量部および亜硫酸ナトリウム0.24重量部
を溶解した水溶液並びにポリブタジェンゴムラテックス
300部(固形分)を反応容器内に仕込み、混合攪拌し
た後、アクリル酸ブチルエステル1t76重AMおよび
トリアリルイソシアヌレート24重重部よりなる単量体
溶液を添加し、窒素置換後昇温し。
(1) Production of cross-linked acrylic rubber latex Add emulsifiers (fatty acid soap, Nonsal TN-
1. Aqueous solution in which 12M parts of Nippon Oil & Fats ■Product name) are dissolved,
An aqueous solution prepared by dissolving 1.2 parts by weight of potassium persulfate and 0.24 parts by weight of sodium sulfite in 200 parts by weight of separately prepared ion-exchanged water and 300 parts of polybutadiene rubber latex (solid content) were charged into a reaction vessel and mixed. After stirring, a monomer solution consisting of 1t76 parts of butyl acrylate AM and 24 parts of triallylisocyanurate was added, and after purging with nitrogen, the temperature was raised.

重合率40%の時点でさらに乳化剤(ノンサールTN−
1)4重量部を溶かしたイオン交換水200重量部を添
加した。
When the polymerization rate reached 40%, an emulsifier (Nonsal TN-
1) 200 parts by weight of ion-exchanged water in which 4 parts by weight was dissolved was added.

重合は60〜65℃で2時間、85〜90℃で3時間行
ない、架橋アクリル系ゴムラテックス(1)を得た。重
量率は99%であった。
Polymerization was carried out at 60 to 65°C for 2 hours and at 85 to 90°C for 3 hours to obtain a crosslinked acrylic rubber latex (1). The weight percentage was 99%.

(2)架橋アクリルゴムラテックス存在下の乳化重合T
Kホモミキサー(特殊機化工業■製)を備えた容器に、
イオン交換水1200重量部にロンガリット28重量部
および乳化剤(ノンサールTN−1)6.4重量部を溶
解したものを入れ、スチレン600重量部、アクリロニ
トリル200i量部。
(2) Emulsion polymerization T in the presence of crosslinked acrylic rubber latex
In a container equipped with a K homo mixer (manufactured by Tokushu Kika Kogyo ■),
A solution of 28 parts by weight of Rongalit and 6.4 parts by weight of an emulsifier (Nonsal TN-1) dissolved in 1200 parts by weight of ion-exchanged water was added, followed by 600 parts by weight of styrene and 200 parts by weight of acrylonitrile.

キュメンハイドロパーオキサイド2.8重量部およびタ
ーシャリドデシルメルカプタン22重量部よりなる単量
体溶液を加えて、窒素置換後、攪拌速K 4 m/ S
ecでホモミキサー処理を5分間行なった後、架橋アク
リルゴムラテックス2001HL部(固形分)を添加し
、攪拌速度4 m/ seeでホモミキサー処理を30
分間行なった。その後窒素置換した反応容器に移し、7
0℃で12時間、さらに90℃で4時間重合を行なった
A monomer solution consisting of 2.8 parts by weight of cumene hydroperoxide and 22 parts by weight of tertiary dodecyl mercaptan was added, and after purging with nitrogen, the stirring speed was set to K 4 m/S.
After homomixer treatment with EC for 5 minutes, 2001 HL parts (solid content) of cross-linked acrylic rubber latex was added, and homomixer treatment was performed for 30 minutes at a stirring speed of 4 m/see.
I did it for a minute. Afterwards, transfer to a reaction vessel purged with nitrogen, and
Polymerization was carried out at 0°C for 12 hours and then at 90°C for 4 hours.

得られた熱可塑性樹脂の軟化温度を測定したところ85
℃であった。
When the softening temperature of the obtained thermoplastic resin was measured, it was 85.
It was ℃.

なお、以下に軟化温度の測定条件を示す。The conditions for measuring the softening temperature are shown below.

測定装置;島津フローテスタCFT−500シリンダー
断面積:1c− 荷重;10kgf 昇温速度;3℃/min 試料重蓋;約1g プシンジャー降下量を縦軸9時間を横軸とし。
Measuring device: Shimadzu flow tester CFT-500 Cylinder cross-sectional area: 1 c Load: 10 kgf Temperature increase rate: 3° C./min Sample lid: Approximately 1 g Pushinger descent amount on the vertical axis and 9 hours on the horizontal axis.

この関係をグラフにして、得られる曲線の最初の立上が
りの続線と変形前の水平線の延長線の交点を変形開始点
、即ち軟化温度とした。
This relationship was graphed, and the intersection of the continuation of the first rise of the obtained curve and the extension of the horizontal line before deformation was defined as the deformation start point, that is, the softening temperature.

得られたラテックスから次の態様によυ凝固樹脂の回収
を試みた。凝固樹脂の製造装置としては第2図に示した
型のものを用い、その仕様は次の通りである。
An attempt was made to recover the υ solidified resin from the obtained latex in the following manner. The solidified resin manufacturing apparatus used was of the type shown in FIG. 2, and its specifications were as follows.

凝固及び粗砕部外筒内径  25anaφ凝固及び粗砕
部長さ  1750mu+ラテックス導入口内径  1
7.5重m+φ凝固粒子均一化部  ■ノリタケgN6
0型スタティックミキサー (内径25anφ、長さ275om+、エレメント数6
)スチーム接触部   ■ノリタケ製クツカーNET−
D25型 (内径25園φ、長さ425aua、エレメント数10
ケ)上記重合によシ得た70℃の熱可塑性樹脂ラテック
ス(11を脂分濃度33重量%)を、流量240kg/
時間で凝固部10のラテックス導入口1より。
Coagulation and coarse crushing section outer cylinder inner diameter 25anaφ Coagulation and coarse crushing section length 1750mu + latex inlet inner diameter 1
7.5 weight m+φ coagulated particle homogenization section ■Noritake gN6
0 type static mixer (inner diameter 25anφ, length 275om+, number of elements 6
) Steam contact part ■Kutsuka NET- made by Noritake
D25 type (inner diameter 25 mm, length 425 aua, number of elements 10
f) The thermoplastic resin latex (11 with a fat concentration of 33% by weight) obtained by the above polymerization at 70°C was heated at a flow rate of 240 kg/
from the latex inlet 1 of the coagulation section 10.

また、70℃の凝固液(カリミョウバン2重量%の水溶
液)を流1−240に9重時間で凝固部10の凝固液導
入口2にそれぞれ供給し接触せしめて凝固粒子スラリー
を得る。この凝固粒子スラリーを凝固粒子粗砕部4を通
過させ、続いて凝固粒子均一化部5に導き、さらに、ス
チーム接触部6でスチームと混合し95℃まで昇温し凝
固粒子スラリー流出口8より凝固粒子濃度が16.5重
量%の凝固スラリーを得た。
Further, a coagulating liquid (an aqueous solution containing 2% by weight of potassium alum) at 70° C. is supplied to the coagulating liquid inlet 2 of the coagulating section 10 for 9 hours in streams 1 to 240 and brought into contact with each other to obtain a coagulated particle slurry. This coagulated particle slurry is passed through a coagulated particle coarse crushing section 4, then guided to a coagulated particle homogenizing section 5, and further mixed with steam in a steam contact section 6, heated to 95°C, and then passed through a coagulated particle slurry outlet 8. A coagulated slurry having a coagulated particle concentration of 16.5% by weight was obtained.

得られた凝固粒子スラリーを水洗した後、脱水・乾燥さ
せたところ硬度が高くかつ均質な顆粒状の凝固粒子が得
られ、これを篩分けしたところ第1表のような粉体特性
の測定結果が得られたが。
After washing the resulting coagulated particle slurry with water, dehydration and drying yielded highly hard and homogeneous granular coagulated particles. When this was sieved, the powder properties were measured as shown in Table 1. was obtained.

粒径Z38重m+以上の巨大粒子が全くなくかつ粒径0
、25 ttm以下の微粒子が少ない良好なものであっ
た。
Particle size: Z: No giant particles larger than 38 weight m+, and particle size: 0
, the number of fine particles of 25 ttm or less was small.

比較例1 内容積100eの攪拌槽内に凝固液(カリミョウバン5
重t%の水溶液)を16に9と、i5,70℃に設定し
た後、実施例1で用いたラテックスと同じ70℃のラテ
ックス80に9を連続的に2時間かけて攪拌槽内に添加
して凝固させた。凝固終了後。
Comparative Example 1 Coagulation liquid (potassium alum 5
After setting 16 to 9 (aqueous solution) at 70 °C, 9 to 80 °C latex at 70 °C, the same as the latex used in Example 1, was continuously added to the stirring tank over 2 hours. and solidified. After coagulation.

さらに、攪拌槽内を95℃に昇温し、1時間保持した後
、実施例1と同様な方法で凝固粒子の粉体特性を測定し
た結果を第1表に示した。実施例1と比較して直径′L
38IIm1以上の巨大粒子および直径0.25−以下
の微粒子が多く、また均等数も低く好ましくないことが
明らかである。
Further, the temperature in the stirring tank was raised to 95° C. and held for 1 hour, and then the powder characteristics of the coagulated particles were measured in the same manner as in Example 1. The results are shown in Table 1. Diameter 'L compared to Example 1
It is clear that there are many giant particles with a diameter of 38 II m or more and fine particles with a diameter of 0.25 mm or less, and the uniform number is also low, which is not preferable.

実施例2 スチーム接触部で凝固粒子スラリーを98℃に昇温した
以外は実施例1と同一のラテックス・凝固液および凝固
装置を用いかつ同一の条件および方法で凝固粒子スラリ
ーを得た。さらに実施例1と同様な方法で凝固粒子の粉
体特性を測定した結果を第1表に示したが、実施例1よ
りさらに粒径0.25no以下の微粒子が少ない良好な
ものであった。
Example 2 A coagulated particle slurry was obtained using the same latex/coagulating liquid and coagulating apparatus as in Example 1, and under the same conditions and method, except that the temperature of the coagulated particle slurry was raised to 98° C. in the steam contacting part. Further, the powder characteristics of the coagulated particles were measured in the same manner as in Example 1, and the results are shown in Table 1. The results were good, with even fewer fine particles with a particle size of 0.25 mm or less than in Example 1.

実施例3 スチーム接触部で凝固粒子スラリーを90℃に昇温した
以外は実施例1と同一のラテックス、凝固液および凝固
装置を用いかつ同一の条件および方法で凝固粒子スラリ
ーを得、た。さらに実施例1と同様な方法で凝固粒子の
粉体特性を測定した結果を第1表に示したが、実施例1
と比較して粒径0、25 am以下の微粒子が増えたが
良好なものが得られた。また実施例1.実施例2および
実施例3の結果をスチーム接触部における凝固粒子スラ
リーの温度と重量平均径および均等数nの関係について
示したのが第6図である。第6図より、スチーム接触部
での温度を調整することにより粒径分布のシャープさを
維持しながら重量平均粒径を調整できることが明らかで
ある。
Example 3 A coagulated particle slurry was obtained using the same latex, coagulating liquid, and coagulating device as in Example 1, and using the same conditions and method, except that the temperature of the coagulated particle slurry was raised to 90° C. in the steam contacting part. Furthermore, the powder characteristics of the coagulated particles were measured in the same manner as in Example 1, and the results are shown in Table 1.
Although the number of fine particles with a particle size of 0.25 am or less increased compared to that of the previous example, good results were obtained. Also, Example 1. FIG. 6 shows the results of Examples 2 and 3 regarding the relationship between the temperature of the coagulated particle slurry in the steam contact area, the weight average diameter, and the uniform number n. It is clear from FIG. 6 that the weight average particle size can be adjusted while maintaining the sharpness of the particle size distribution by adjusting the temperature at the steam contact area.

比較例2 スチーム接触部で凝固粒子スラリーを80℃に昇温した
以外は、実施例1と同一のラテックス。
Comparative Example 2 The same latex as in Example 1, except that the temperature of the coagulated particle slurry was raised to 80° C. in the steam contact area.

凝固液および凝固装置を用いかつ同一の条件および方法
で凝固粒子スラリーを得た。さらに、実施例1と同様な
方法で凝固粒子の粉体特性を測定した結果を第1表に示
した。スチーム混合部の温度が樹脂の軟化温度85℃よ
り低いと2粒径0625闘以下の微粒子が多く、また、
カサ比重が比較的低く、好ましくないことが明らかであ
る。
A coagulated particle slurry was obtained using a coagulating liquid and a coagulating device under the same conditions and method. Furthermore, the powder characteristics of the coagulated particles were measured in the same manner as in Example 1, and the results are shown in Table 1. If the temperature of the steam mixing section is lower than the resin softening temperature of 85°C, there will be many fine particles with a particle size of 0625 mm or less, and
It is clear that the bulk specific gravity is relatively low, which is not desirable.

実施例4 スチーム接触部で凝固粒子スラリーを90℃に昇温し、
かつラテックスの流量を480kg/時間および凝固液
の流量を240kg/時間でそれぞれ凝固部へ供給した
以外は、実施例1と同一のラテックス、凝固液および凝
固装置を用い、かつ同一の条件および方法で凝固粒子ス
ラリーを得た。このときの凝固粒子スラリー流出ロアで
の凝固粒子濃度は22重量%であった。さらに、実施例
1と同様な方法で凝固粒子の粉体特性を測定した結果を
第1表に示したが、実施例1と同様に良好なも(発明の
効果) 本発明の製造方法は上記に示す如く工程(a)では樹脂
の軟化温度以下の温度でラテックスと凝固液を接触させ
、工程[b)で粗砕することによυ凝固粒子スラリーを
得るとともに、工程(c)で均一化された上記凝固粒子
スラリーは工程(dlで樹脂の軟化温度以上の温度に加
熱され、上記加熱温度に志し九粒径の凝固樹脂が製造で
きるよう構成されている。
Example 4 The solidified particle slurry was heated to 90°C in the steam contact area,
The same latex, coagulation liquid, and coagulation device as in Example 1 were used, and the same conditions and method were used, except that the latex flow rate was 480 kg/hour and the coagulation liquid flow rate was 240 kg/hour, respectively, to the coagulation section. A coagulated particle slurry was obtained. At this time, the coagulated particle concentration at the coagulated particle slurry outlet lower was 22% by weight. Furthermore, the powder characteristics of the coagulated particles were measured using the same method as in Example 1, and the results are shown in Table 1. As shown in step (a), the latex and coagulation liquid are brought into contact at a temperature below the softening temperature of the resin, and in step [b) the latex is coarsely crushed to obtain a coagulated particle slurry, and in step (c) it is homogenized. The coagulated particle slurry thus obtained is heated to a temperature higher than the softening temperature of the resin in a step (dl), and the structure is such that a coagulated resin having a diameter of 9 particles can be produced at the heating temperature.

従って以後の後処理工程で効率よく処理できるような平
均径9粒径分布、かさ比重の凝固粒子が連続的に得られ
、かつスチーム混合部の温度を調節することにより容易
に平均粒径を調整できる等の効果を有する。
Therefore, coagulated particles with an average particle size distribution of 9 and a bulk specific gravity that can be efficiently processed in the subsequent post-processing process can be continuously obtained, and the average particle size can be easily adjusted by adjusting the temperature of the steam mixing section. It has the effect of being able to.

また9本発明の製造装置を使用すると、凝固粒子の高密
度化が図れるとともに9粒径の操作範囲を広くとること
ができる。また、滞留時間の短縮が可能であるとともに
、装置の小型化が可能である。
Further, by using the manufacturing apparatus of the present invention, it is possible to increase the density of coagulated particles and to widen the operating range of the particle size. Furthermore, it is possible to shorten the residence time and downsize the device.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は9本発明の方法に使用される本発明の装置の発
明の一例を示す外観図、第2図は、第1図の断面図、第
3図は1本発明の方法において工程(a)及び工程(b
)に用いられる装置例の断面図、第4図は9本発明の方
法において工程(c)に用いられる装置例の断面図、第
5図は1本発明の方法において工程(dlに用いられる
装置例の断面図、第6図は、工程(d)(スチーム接触
部)における凝固スラリーの温度と重量平均粒径及び均
等数の関係を示したグラフである。 符号の説明 1・・・ラテックス導入口  2・・・凝固液導入口3
・・・凝固部      4・・・凝固粒子粗砕部5・
・・凝固粒子均一化部 6・・・スチーム接触部7・・
・スチーム導入口 8・・・凝固粒子スラリー流出口 9・・・外筒       10・・・混合エレメント
11・・・攪拌機 場 l  記 喰)(b) s 3 記 蝙 4 Σ
FIG. 1 is an external view showing an example of the apparatus of the present invention used in the method of the present invention, FIG. 2 is a sectional view of FIG. 1, and FIG. 3 is a step (1) in the method of the present invention. a) and step (b)
), FIG. 4 is a sectional view of an example of the device used in step (c) in the method of the present invention, and FIG. 5 is a cross-sectional view of an example of the device used in step (dl) in the method of the present invention. The cross-sectional view of the example, FIG. 6, is a graph showing the relationship between the temperature of the solidified slurry, the weight average particle diameter, and the uniform number in step (d) (steam contact area). Explanation of symbols 1...Latex introduction Port 2...Coagulation liquid inlet port 3
...Coagulation section 4...Coagulation particle coarse crushing section 5.
...Coagulated particle homogenization section 6...Steam contact section 7...
・Steam inlet 8...Coagulated particle slurry outlet 9...Outer cylinder 10...Mixing element 11...Stirrer field (b) (b) s (3) (4) Σ

Claims (1)

【特許請求の範囲】 1、熱可塑性樹脂ラテックスと凝固液とを、該熱可塑性
樹脂の軟化温度以下の温度で接触させ、凝固塊を生成さ
せる工程(a)、該凝固塊を小塊にして凝固粒子スラリ
ーを生成させる工程(b)、凝固粒子スラリーの粒径を
均一化する工程(c)及び粒径が均一化された凝固粒子
スラリーとスチームとを該熱可塑性樹脂の軟化温度以上
の温度で接触せしめる工程(d)を含むことを特徴とす
る凝固樹脂の製造方法。 2、工程(b)を、細管を用いて行なう請求項第1項記
載の凝固樹脂の製造方法。 3、工程(c)および/または工程(d)を、静止型混
合器を用いて行なう請求項第1項又は第2項記載の凝固
樹脂の製造方法。 4、工程(a)、工程(b)、工程(c)および工程(
d)のための装置機構を順次連結した管型装置内で各工
程を連続的に行なう請求項第1項、第2項又は第3項記
載の凝固樹脂の製造方法。 5、ラテックス導入口と凝固液導入口を有する凝固部、
凝集塊を粗砕して凝固粒子スラリーを得る凝固塊粗砕部
、凝固粒子スラリーを均一化する凝固粒子均一化部並び
にスチーム導入口及び凝固粒子スラリー流出口を有し、
凝固粒子スラリーとスチームとを接触させるスチーム接
触部を順次連結してなる凝固樹脂の製造装置。 6、凝固塊粗砕部が細管である請求項第5項記載の凝固
樹脂の製造装置。 7、凝固粒子均一化部及び/又はスチーム接触部が静止
型混合器である請求項第5項又は第6項記載の凝固樹脂
の製造装置。 8、一本の管型装置である請求項第5項、第6項又は第
7項記載の凝固樹脂の製造装置。
[Claims] 1. Step (a) of bringing a thermoplastic resin latex and a coagulating liquid into contact with each other at a temperature below the softening temperature of the thermoplastic resin to form a coagulated lump, and forming the coagulated lump into small lumps. Step (b) of generating a coagulated particle slurry, step (c) of making the particle size of the coagulated particle slurry uniform, and heating the coagulated particle slurry with a uniform particle size and steam at a temperature higher than the softening temperature of the thermoplastic resin. A method for producing a coagulated resin, comprising a step (d) of contacting with the coagulated resin. 2. The method for producing a solidified resin according to claim 1, wherein step (b) is carried out using a thin tube. 3. The method for producing a coagulated resin according to claim 1 or 2, wherein step (c) and/or step (d) are carried out using a static mixer. 4. Step (a), step (b), step (c) and step (
4. The method for producing solidified resin according to claim 1, 2 or 3, wherein each step is carried out continuously in a tubular device in which device mechanisms for step d) are successively connected. 5. A coagulation section having a latex inlet and a coagulation liquid inlet;
It has a coagulated agglomerate crushing section for coarsely crushing the agglomerates to obtain a coagulated particle slurry, a coagulated particle homogenizing section for homogenizing the coagulated particle slurry, a steam inlet and a coagulated particle slurry outlet,
A coagulated resin manufacturing device that sequentially connects steam contact parts that bring coagulated particle slurry into contact with steam. 6. The apparatus for producing coagulated resin according to claim 5, wherein the coagulated lump crushing section is a thin tube. 7. The coagulated resin manufacturing apparatus according to claim 5 or 6, wherein the coagulated particle homogenizing section and/or the steam contacting section are static mixers. 8. The solidified resin manufacturing apparatus according to claim 5, 6 or 7, which is a single tube type apparatus.
JP5911488A 1988-03-11 1988-03-11 Method and apparatus for production of coagulated resin Pending JPH01230605A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5911488A JPH01230605A (en) 1988-03-11 1988-03-11 Method and apparatus for production of coagulated resin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5911488A JPH01230605A (en) 1988-03-11 1988-03-11 Method and apparatus for production of coagulated resin

Publications (1)

Publication Number Publication Date
JPH01230605A true JPH01230605A (en) 1989-09-14

Family

ID=13103962

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5911488A Pending JPH01230605A (en) 1988-03-11 1988-03-11 Method and apparatus for production of coagulated resin

Country Status (1)

Country Link
JP (1) JPH01230605A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001016196A1 (en) * 1999-08-31 2001-03-08 Mitsubishi Rayon Co., Ltd. Process for producing polymer particles
WO2002018453A1 (en) * 2000-08-28 2002-03-07 Röhm GmbH & Co. KG Method for reducing the polymer content of effluent during the drainage of polymer/water mixtures
JP2006328239A (en) * 2005-05-26 2006-12-07 Nippon Zeon Co Ltd Manufacturing method of rubbery polymer
JP2009173775A (en) * 2008-01-24 2009-08-06 Daikin Ind Ltd Process for continuous coagulation of resin dispersion
JP2013501821A (en) * 2009-08-07 2013-01-17 エルジー ケム. エルティーディ. Polymer latex resin powder production apparatus and polymer latex resin powder production method using the same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5880303A (en) * 1981-11-10 1983-05-14 ザ・ダウ・ケミカル・カンパニ− Recovery of synthetic resinous latex solid
JPS5930208A (en) * 1982-08-12 1984-02-17 Matsushita Electric Ind Co Ltd Magnetic recording and reproducing device
JPS61241106A (en) * 1985-04-19 1986-10-27 Mitsubishi Rayon Co Ltd Manufacture of thermoplastic resin powder

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5880303A (en) * 1981-11-10 1983-05-14 ザ・ダウ・ケミカル・カンパニ− Recovery of synthetic resinous latex solid
JPS5930208A (en) * 1982-08-12 1984-02-17 Matsushita Electric Ind Co Ltd Magnetic recording and reproducing device
JPS61241106A (en) * 1985-04-19 1986-10-27 Mitsubishi Rayon Co Ltd Manufacture of thermoplastic resin powder

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001016196A1 (en) * 1999-08-31 2001-03-08 Mitsubishi Rayon Co., Ltd. Process for producing polymer particles
US6699964B1 (en) 1999-08-31 2004-03-02 Mitsubishi Rayon Co., Ltd. Process for producing polymer particle
WO2002018453A1 (en) * 2000-08-28 2002-03-07 Röhm GmbH & Co. KG Method for reducing the polymer content of effluent during the drainage of polymer/water mixtures
US6613871B2 (en) 2000-08-28 2003-09-02 Roehm Gmbh & Co. Kg Method for reducing the polymer content of effluent during the drainage of polymer/water mixtures
JP2004507393A (en) * 2000-08-28 2004-03-11 レーム ゲゼルシヤフト ミツト ベシユレンクテル ハフツング ウント コンパニー コマンディートゲゼルシャフト Method for reducing polymer content in wastewater by dewatering a plastic / water mixture
JP4653380B2 (en) * 2000-08-28 2011-03-16 エボニック レーム ゲゼルシャフト ミット ベシュレンクテル ハフツング Method for reducing polymer content in waste water by dewatering a plastic / water mixture
JP2006328239A (en) * 2005-05-26 2006-12-07 Nippon Zeon Co Ltd Manufacturing method of rubbery polymer
JP2009173775A (en) * 2008-01-24 2009-08-06 Daikin Ind Ltd Process for continuous coagulation of resin dispersion
JP2013501821A (en) * 2009-08-07 2013-01-17 エルジー ケム. エルティーディ. Polymer latex resin powder production apparatus and polymer latex resin powder production method using the same

Similar Documents

Publication Publication Date Title
JP2004507393A (en) Method for reducing polymer content in wastewater by dewatering a plastic / water mixture
TWI403542B (en) Method for preparing high molecule latex resin powder
EP1857491A1 (en) Process for producing coagulated latex particle
JPS5821644B2 (en) ABS type resin manufacturing method
JPS62149726A (en) Powdery polymer and its production
EP1857490A1 (en) Process for producing aggregated latex particle
JPH01230605A (en) Method and apparatus for production of coagulated resin
DE2744872C2 (en) Process for the production of free flowing rubber particles
US5064938A (en) Continuous production process of particulate polymer and control method of the particle size of said polymer
EP0203511B1 (en) Method for producing rubber modified thermoplastic resins
EP0423759A2 (en) Production process of particulate polymer
JP2977589B2 (en) Method for producing powdery granular polymer
KR910009109B1 (en) Process for agglomeration polymer latex
JPS621703A (en) Method of recovering polymer
JPH0457374B2 (en)
KR101711243B1 (en) Method and apparatus for preparing resin powders
JPS60163933A (en) Recovery of polymer
CA1107883A (en) Process for recovering graft copolymer latex solids wherin a fines fraction is recycled and incorporated in said solids
JP2559833B2 (en) Continuous production method of powdery and granular polymer and method of controlling particle size of the polymer
JP4673085B2 (en) Polymer recovery method and polymer recovery apparatus from polymer latex
JPH0212496B2 (en)
JPS58176219A (en) Coagulation of fluoro elastomer emulsion
JPS62151466A (en) Production of thermoplastic resin
JPH0139444B2 (en)
JPH0423646B2 (en)