JP2559833B2 - Continuous production method of powdery and granular polymer and method of controlling particle size of the polymer - Google Patents

Continuous production method of powdery and granular polymer and method of controlling particle size of the polymer

Info

Publication number
JP2559833B2
JP2559833B2 JP63507652A JP50765288A JP2559833B2 JP 2559833 B2 JP2559833 B2 JP 2559833B2 JP 63507652 A JP63507652 A JP 63507652A JP 50765288 A JP50765288 A JP 50765288A JP 2559833 B2 JP2559833 B2 JP 2559833B2
Authority
JP
Japan
Prior art keywords
polymer
weight
particles
organic liquid
particle size
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63507652A
Other languages
Japanese (ja)
Inventor
文男 鈴木
英明 羽原
祐太郎 福田
晴基 佐藤
浩成 稲田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Rayon Co Ltd
Priority to JP63507652A priority Critical patent/JP2559833B2/en
Application granted granted Critical
Publication of JP2559833B2 publication Critical patent/JP2559833B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 技術分野 本発明は、粉粒状重合体の連続的製造方法に関し、よ
り詳しくは微粉が少なくかつ粒度分布がシャープで嵩比
重の制御可能な粉粒状重合体の連続的な製造方法、なら
びに粉粒状重合体の粒子径制御方法に関し、より詳しく
は粒度分布のシャープさを保ったまま平均粒子径を制御
する方法に関する。
TECHNICAL FIELD The present invention relates to a continuous method for producing a powdery or granular polymer, and more particularly to a continuous production of a powdery or granular polymer having a small amount of fine powder, a sharp particle size distribution and a controllable bulk specific gravity. The present invention relates to a production method and a method for controlling the particle diameter of a powdery polymer, and more particularly to a method for controlling the average particle diameter while maintaining the sharpness of the particle size distribution.

背景技術 乳化重合法などによって得られる重合体ラテックス
は、一般に粒子径が1μm以下の重合体粒子が乳化剤に
覆われて水に分散浮遊した状態として存在し、粒子径が
小さすぎるのでそのまま固液分離し、重合体を回収する
ことは難しい。このような重合体ラテックスから重合体
を回収する従来方法としては、噴霧乾燥機を使用して
粉粒体として直接分離する方法、重合体ラテックスに
塩または酸を混合して凝析させ、昇温加熱して固化させ
た後、脱水乾燥して粉粒体として回収する方法が多用さ
れてきた。
BACKGROUND ART A polymer latex obtained by an emulsion polymerization method or the like generally exists in a state in which polymer particles having a particle diameter of 1 μm or less are covered with an emulsifier and dispersed and suspended in water. Since the particle diameter is too small, solid-liquid separation is performed as it is. However, it is difficult to recover the polymer. As a conventional method for recovering a polymer from such a polymer latex, a method of directly separating it into powder or granules by using a spray dryer, a salt or an acid is mixed with the polymer latex to coagulate, and the temperature is raised. A method of heating and solidifying and then dehydrating and drying and collecting as a powder or granule has been widely used.

さらに得られる重合体粒子の粒子径を調整するため
に、重合体ラテックスを特定の溶剤中に分散球状化し
た後で凝固させる方法(特開昭52-68285号公報)、重
合体ラテックスを凝析して得られたスラリーに水に難溶
でかつ重合体を溶解しないが濡らし得る有機液体を混合
して造粒する方法(特公昭59-5610号公報)、水に難
溶でかつ重合体を溶解しないが濡らし得る有機液体と重
合体ラテックスとを凝固剤の存在下に混合する方法(特
公昭59-5611号公報)、噴霧乾燥機構を利用し、凝固
性雰囲気中に重合体ラテックスの液滴を分散させて半凝
固させ、さらに凝固液中で固化させその後脱水乾燥させ
る方法(特開昭56-95905号公報)などが提案させてい
る。
Further, in order to adjust the particle size of the obtained polymer particles, a method in which the polymer latex is dispersed and spheroidized in a specific solvent and then solidified (JP-A-52-68285), the polymer latex is coagulated A method in which the obtained slurry is mixed with an organic liquid which is hardly soluble in water and does not dissolve the polymer but which can be wetted (Japanese Patent Publication No. 59-5610), A method of mixing an insoluble but wettable organic liquid and a polymer latex in the presence of a coagulant (Japanese Patent Publication No. 59-5611), a droplet of the polymer latex in a coagulating atmosphere using a spray drying mechanism. Is proposed to disperse and semi-solidify, further solidify in a coagulating liquid, and then dehydrate and dry (JP-A-56-95905).

しかしながら、の噴霧乾燥機を使用する方法は多量
の水を伴なった重合体ラテックスをそのまま乾燥させる
ために蒸発させるべき水の量が多く乾燥エネルギーを多
量に必要とする、噴霧する液滴の大きさにむらが生じや
すく粒度分布が広くなる、粒子の大きさや嵩比重を制御
することが難しい、装置コストが高い等の問題点があっ
た。
However, the method using the spray dryer of (1) requires a large amount of water to evaporate in order to dry the polymer latex accompanied by a large amount of water and requires a large amount of drying energy. There are problems that unevenness is likely to occur, the particle size distribution is wide, it is difficult to control the size and bulk specific gravity of the particles, and the apparatus cost is high.

の凝析し固化させる方法は、通常の槽型または塔型
の凝析固化装置を使用した場合には、得られる重合体粉
粒体の粒径分布が広くなり、そのため粒径の細かい微粉
が多量に混入して粉粒体の取扱い性が悪く、特に約40μ
m以下の微粉は総粒子重量中に対して数重量%混入して
粉立ちの原因となるなどの問題点があった。そして平均
粒径を150μm以下にすることはなかった。
The method of coagulating and solidifying is that when a conventional tank-type or tower-type coagulating and solidifying apparatus is used, the particle size distribution of the obtained polymer powder is wide, and therefore fine powder having a small particle size is used. It is mixed in a large amount and the handling of powder and granules is poor, especially about 40μ
There is a problem that fine powder of m or less is mixed with several weight% of the total weight of the particles and causes powdering. The average particle size was never set to 150 μm or less.

の方法は、球状化によって粒径が100μm以上の領
域では粒度分布や平均粒径を制御することができるが10
0μm以下の小粒径側では困難であり、さらに球状化処
理後に使用した大量の溶剤を処理する必要があり、かつ
球状ラテックス粒子が外部から凝固されるため、凝固が
不均一となり、該重合体の加工時にフィッシュアイなど
の問題を生じるおそれがある。の方法は粒度分布のシ
ャープな粉粒状重合体の製造方法であるが、粒度分布の
シャープさを保ったまま平均粒径を任意に制御すること
ができない。またの方法はの方法に比較すれば少な
いが、重合体100重量部に対し60〜500重量部の有機液体
を添加するために、やはり大量の有機液体を処理する必
要がある欠点を有していた。の方法も粒度分布のシャ
ープな粉粒状重合体の製造方法ではあるが、粒度分布の
シャープさを保ったまま平均粒径を任意に制御すること
はできない。またの方法においても、重合体容積1に
対して1〜5(容積比)の有機液体を添加するために、
大量の有機液体を処理しなければならない欠点を有して
いる。
The method of (1) can control the particle size distribution and average particle size in the region where the particle size is 100 μm or more by spheroidizing.
It is difficult on the small particle size side of 0 μm or less, and it is necessary to treat a large amount of the solvent used after the spheroidizing treatment, and since the spherical latex particles are coagulated from the outside, the coagulation becomes non-uniform and the polymer There is a risk that problems such as fish eyes may occur during processing. This method is a method for producing a powdery granular polymer having a sharp particle size distribution, but the average particle size cannot be arbitrarily controlled while maintaining the sharpness of the particle size distribution. Although the other method is less than the method, it has a drawback that it is necessary to treat a large amount of the organic liquid in order to add 60 to 500 parts by weight of the organic liquid to 100 parts by weight of the polymer. It was This method is also a method for producing a powdery granular polymer having a sharp particle size distribution, but the average particle size cannot be arbitrarily controlled while maintaining the sharpness of the particle size distribution. Also in this method, in order to add 1 to 5 (volume ratio) of the organic liquid to the polymer volume 1,
It has the drawback of having to process large quantities of organic liquids.

さらにおよびの方法は、有機液体の添加が回分式
であるために、懸濁保護剤および界面活性剤を添加して
いるにもかかわらず有機液体の添加後一時的に粘度が急
激に上昇するという不安定な造粒工程を有している。こ
のために製造される粒子の粒度分布は攪拌機の回転数、
攪拌機の形状、さらに有機液体の使用量等により大きな
影響を受け、粒度分布及び嵩比重の制御された粒子を多
量にかつ低コストで製造することは困難である。また有
機液体等を連続的に供給し連続造粒する場合とは造粒挙
動が異なり、バッチ式の造粒は連続式の造粒と異なる技
術といっても過言ではない。
Further, in the methods of and, since the addition of the organic liquid is a batch method, the viscosity increases sharply temporarily after the addition of the organic liquid even though the suspension protective agent and the surfactant are added. It has an unstable granulation process. The particle size distribution of the particles produced for this is the number of rotations of the stirrer,
The shape of the stirrer and the amount of the organic liquid used are greatly affected, and it is difficult to produce a large amount of particles having a controlled particle size distribution and bulk specific gravity at low cost. Further, the granulation behavior is different from the case of continuously supplying an organic liquid or the like, and it is no exaggeration to say that batch-type granulation is a technique different from continuous granulation.

の方法は噴霧乾燥の機構と同じなので球形粉粒体を
得やすいが、粒子の大きさに限度があり、気相を利用す
る凝固であるために装置が大きくなるなどの欠点を有し
ている。
Since the method is the same as the mechanism of spray drying, it is easy to obtain spherical powdery particles, but there is a drawback that the size of the particles is limited and the equipment becomes large due to coagulation using the gas phase. .

一方粉体計量の自動化および貯蔵輸送設備の大型化が
進められている今日、貯蔵中に粉末粒子同志が固まると
いうブロッキング現象や、粉体の流動性不足に起因する
輸送ラインの詰りなどの観点から、取扱い易い顆粒状重
合体の開発が強く望まれている。また最近は樹脂に要求
される機能が高まり、単一の重合体だけでは高機能化の
要求に対応できず、他の重合体および改質剤と混合して
使用されることが多いが、このような場合には貯蔵、輸
送中に粉体の偏析による成分変動が生じないよう粒径を
適切に制御する必要がある。
On the other hand, with the automation of powder metering and the increasing size of storage and transportation equipment, from the viewpoint of blocking phenomenon that powder particles solidify during storage and clogging of the transportation line due to insufficient fluidity of powder. However, the development of a granular polymer that is easy to handle is strongly desired. Recently, the functions required of resins have increased, and a single polymer alone cannot meet the demand for higher functionality, and it is often used as a mixture with other polymers and modifiers. In such a case, it is necessary to appropriately control the particle size so that the component fluctuation due to the segregation of the powder does not occur during storage and transportation.

さらにまた、他の粉粒状体と混合して使用する場合に
は貯蔵、輸送中に粉体の偏析による成分変動が生じない
よう適度な粒子径を有する必要があり嵩比重の制御でき
る粉粒状重合体の連続的製造方法開発が強く望まれてい
る。
Furthermore, when it is used as a mixture with other powdery or granular material, it must have an appropriate particle size so that the composition does not change due to segregation of the powder during storage and transportation. There is a strong demand for the development of a continuous manufacturing method for coalescing.

一方、重合体を他の材料と混合して使用する場合に
は、さらに押出機等で溶融混練して混合物の均一度を上
げる。このような用途では粉粒状重合体の取扱い性に悪
影響を与える粒径が40μm以下の粉粒をなるべく少なく
し、かつ混合時の分散を良くするために粉粒状重合体を
なるべく細かくする必要がある。このように粒度分布を
シャープに保ったまま平均粒径を制御可能な粉粒状重合
体粒子径の制御方法が強く望まれていた。
On the other hand, when the polymer is used as a mixture with other materials, the homogeneity of the mixture is further increased by melt-kneading with an extruder or the like. In such applications, it is necessary to minimize the number of powder particles having a particle size of 40 μm or less, which adversely affects the handling property of the powdery polymer, and to make the polymer powder as fine as possible in order to improve the dispersion during mixing. . As described above, there has been a strong demand for a method for controlling the particle size of powdery polymer particles which can control the average particle size while maintaining a sharp particle size distribution.

発明の開示 本発明は、前記従来技術における問題点を解決する目
的でなされたものである。本発明の粉粒状重合体の連続
的製造方法は、乳化重合法で得られた重合体ラテックス
を下記の工程(I)および工程(II)で順次処理するこ
とを特徴とする。
DISCLOSURE OF THE INVENTION The present invention has been made for the purpose of solving the problems in the conventional art. The continuous production method of the powdery granular polymer of the present invention is characterized in that the polymer latex obtained by the emulsion polymerization method is sequentially treated in the following step (I) and step (II).

工程(I):重合体ラテックスを凝析し、凝析した粒子
が水に分散したスラリーとする工程。
Step (I): A step of coagulating the polymer latex to form a slurry in which coagulated particles are dispersed in water.

工程(II):工程(I)で得られたスラリーと、水に難
溶でかつ前記重合体を溶解しない有機液体および所望に
応じて必要量の水を下記の(a)〜(c)の条件下で連
続的に混合し造粒する工程。
Step (II): The slurry obtained in Step (I), an organic liquid that is sparingly soluble in water and does not dissolve the polymer, and, if desired, a necessary amount of water in the following (a) to (c) are added. A step of continuously mixing and granulating under conditions.

(a);全混合物中の水の割合が50〜85重量%である。(A); The proportion of water in the total mixture is 50 to 85% by weight.

(b);前記有機液体が前記重合体ラテックス中の重合
体100重量部に対して20〜60重量部未満である。
(B); The amount of the organic liquid is 20 to less than 60 parts by weight based on 100 parts by weight of the polymer in the polymer latex.

(c);全混合物の温度(℃)Tを下記式 A-26≦T≦A (式中、Aは混合物液の共沸温度(℃)を表わす。) の範囲において平均的に0.5分〜1時間保持する。(C); the temperature (° C) T of the entire mixture is averaged from 0.5 minutes to 0.5 ° C in the range of the following formula A-26 ≤ T ≤ A (A represents the azeotropic temperature (° C) of the mixture liquid). Hold for 1 hour.

また、工程(I)を下記の(d)および(e)の条件
下で実施し、 (d);凝析する温度が重合体ラテックス中の重合体の
ガラス転移温度より10℃以上低い温度。
Further, step (I) is carried out under the following conditions (d) and (e), and (d) the temperature at which the coagulation is lower than the glass transition temperature of the polymer in the polymer latex by 10 ° C. or more.

(e);凝析した粒子の内、粒子直径が100μm以上の
粒子の割合が1重量%以下である。
(E): The proportion of particles having a particle diameter of 100 μm or more in the coagulated particles is 1% by weight or less.

かつ工程(II)で全混合物中の重合体の割合を10〜30重
量%とすることが好ましい。
In addition, the proportion of the polymer in the total mixture in step (II) is preferably 10 to 30% by weight.

図面の簡単な説明 第1図は、本発明の実施に使用される代表的な装置の
フローチャートである。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a flow chart of an exemplary apparatus used to practice the present invention.

発明を実施するための最良の形態 本発明において使用されるラテックスは、通常行われ
ている方法によって製造されるものであり、乳化剤、重
合開始剤および他の重合助剤等を含むものである。本発
明の方法は、凝析しうるホモ重合体、共重合体およびグ
ラフト共重合体の高分子ラテックスに適用できる。
BEST MODE FOR CARRYING OUT THE INVENTION The latex used in the present invention is produced by a generally-used method, and contains an emulsifier, a polymerization initiator and other polymerization aids. The method of the invention is applicable to polymer latexes of coagulable homopolymers, copolymers and graft copolymers.

ホモ重合体および共重合体のラテックスとしては、ス
チレン、ジクロロスチレン、α−メチルスチレン等のビ
ニル芳香族、アクリロニトリル、メタクリロニトリル等
のビニルシアン化合物、メチルアクリレート、エチルア
クリレート、ブチルアクリレート等のアルキルアクリレ
ート、アルキルメタクリレートさらにはアクリル酸、塩
化ビニル、塩化ビニリデン、酢酸ビニル等のビニル化合
物、ブタジエン、クロロプレン、イソプレン等の共役ジ
オレフィンとその置換生成物、エチレングリコール等の
単量体からなるホモ重合体、共重合体またはそれら重合
体のラテックス混合物があげられる。
Examples of the homopolymer and copolymer latex include vinyl aromatic compounds such as styrene, dichlorostyrene and α-methylstyrene, vinyl cyan compounds such as acrylonitrile and methacrylonitrile, and alkyl acrylates such as methyl acrylate, ethyl acrylate and butyl acrylate. , Alkyl methacrylate, further acrylic acid, vinyl chloride, vinylidene chloride, vinyl compounds such as vinyl acetate, butadiene, chloroprene, conjugated diolefins such as isoprene and its substitution products, homopolymers consisting of monomers such as ethylene glycol, Examples thereof include copolymers and latex mixtures of these polymers.

また、グラフト共重合体ラテックスとしては、弾性幹
重合体に硬質重合体を形成しうる単量体または単量体混
合物をグラフトしたものがあげられる。
Examples of the graft copolymer latex include those obtained by grafting an elastic trunk polymer with a monomer or a monomer mixture capable of forming a hard polymer.

グラフト共重合体ラテックスを構成する弾性幹重合体
としてはブタジエン、イソプレン、クロロプレン等のジ
エン系重合体、ブチルアクリレート、オクチルアクリレ
ート等のアルキル基の炭素数が4〜10のアクリル酸エス
テル系重合体、およびそれらと共重合可能な単量体との
共重合体が挙げられる。共重合可能な単量体としてはス
チレン、α−メチルスチレン等の芳香族ビニル、メチル
メタクリレート、エチルメタクリレート等のメタクリル
酸アルキルエステル、メチルアクリレート、エチルアク
リレート等のアルキルの炭素数が1〜3のアクリル酸ア
ルキルエステル、アクリロニトリル、メタクリロニトリ
ル等のビニルシアン化合物等があげられる。
As the elastic trunk polymer constituting the graft copolymer latex, a diene-based polymer such as butadiene, isoprene, and chloroprene, an acrylate-based polymer having an alkyl group having 4 to 10 carbon atoms such as butyl acrylate and octyl acrylate, And copolymers with monomers copolymerizable therewith. Examples of the copolymerizable monomer include aromatic vinyl such as styrene and α-methylstyrene, methacrylic acid alkyl ester such as methyl methacrylate and ethyl methacrylate, and alkyl acryl having 1 to 3 carbon atoms such as methyl acrylate and ethyl acrylate. Examples thereof include vinyl cyanide compounds such as acid alkyl esters, acrylonitrile and methacrylonitrile.

硬質重合体を形成する単量体としては、スチレン、α
−メチルスチレン等の芳香族ビニル、メチルメタクリレ
ート、エチルメタクリレートおよびブチルメタクリレー
ト等のメタクリル酸アルキルエステル、アクリロニトリ
ル、メタクリロニトリル等のビニルシアン化合物、塩化
ビニル、臭化ビニル等のハロゲン化ビニル等があげられ
る。これらの単量体は単独あるいは2種以上を用いて使
用される。
As the monomer forming the hard polymer, styrene, α
-Aromatic vinyl such as methyl styrene, alkyl methacrylate such as methyl methacrylate, ethyl methacrylate and butyl methacrylate, vinyl cyanide compound such as acrylonitrile and methacrylonitrile, and vinyl halide such as vinyl chloride and vinyl bromide. . These monomers are used alone or in combination of two or more.

本発明において重合体ラテックスを凝析するために使
用する凝析剤に関しては何ら制約条件はなく、通常使用
する凝析剤を使用することができる。例えば塩化ナトリ
ウム、塩化カルシウム、塩化マグネシウム、硫酸ナトリ
ウム、硫酸アルミニウム、硫酸亜鉛、硫酸マグネシウ
ム、炭酸ナトリウム、炭酸水素ナトリウム、塩化アンモ
ニウム、カリミョウバン等の金属塩類、硫酸、塩酸、リ
ン酸、硝酸、炭酸、酢酸等の酸類、メタノール、エタノ
ール等のアルコール類があげられ、それらを単独または
混合して用いることができる。添加量は特に限定され
ず、通常は重合体ラテックスの固形分に対して約0.05〜
50重量%となる量である。好ましくは約0.1〜20重量%
である。凝析に必要な時間は非常に短く、通常平均滞在
時間として0.1分〜1時間、好ましくは0.5分〜10分であ
る。
There are no restrictions on the coagulant used for coagulating the polymer latex in the present invention, and a commonly used coagulant can be used. For example, sodium chloride, calcium chloride, magnesium chloride, sodium sulfate, aluminum sulfate, zinc sulfate, magnesium sulfate, sodium carbonate, sodium hydrogen carbonate, ammonium chloride, metal salts such as potassium alum, sulfuric acid, hydrochloric acid, phosphoric acid, nitric acid, carbonic acid, Examples thereof include acids such as acetic acid and alcohols such as methanol and ethanol, and these can be used alone or in combination. The addition amount is not particularly limited, and is usually about 0.05 to the solid content of the polymer latex.
The amount is 50% by weight. Preferably about 0.1 to 20% by weight
Is. The time required for coagulation is very short, usually 0.1 minutes to 1 hour, preferably 0.5 minutes to 10 minutes as an average residence time.

重合体ラテックスに凝析剤を添加すると、重合体ラテ
ックスの乳化状態が破壊され重合体ラテックスに乳化分
散していた重合体粒子が凝集して凝集体粒子(以下、こ
れを「凝析粒子」と略記する。)を形成し、この凝析粒
子が重合体ラテックスの分散媒であった水に分散してス
ラリー状となる。
When a coagulant is added to the polymer latex, the emulsified state of the polymer latex is destroyed and the polymer particles that have been emulsified and dispersed in the polymer latex aggregate to form aggregate particles (hereinafter referred to as “coagulated particles”). Abbreviated), and the coagulated particles are dispersed in water, which is the dispersion medium of the polymer latex, to form a slurry.

本発明を実施するに際して凝析を行う温度は、粉粒状
重合体の嵩比重を制御する上で重要であり、凝析する重
合体ラテックスに含まれる重合体のガラス転移温度より
10℃低い温度(以下、これを「最最高凝析温度」と略記
する。)以下とする必要がある。凝析温度が最高凝析温
度を超える温度であると工程(II)で多量の有機液体を
使用しないと粉粒状重合体の嵩比重が大きくならなくな
る、という問題が発生する。この原因は明確ではない
が、次のように推定される。即ち、凝析温度が最高凝析
温度を超えるると、凝析粒子を構成する粒子(これを
「基本粒子」と略期する。基本粒子は重合体ラテックス
に乳化分散していた重合体粒子または該重合体粒子が幾
つか融着したものと考えられる)の表面は粘着性を帯
び、他の基本粒子との接点で強固に融着しやすくなる。
その結果、最高凝析温度以下で凝析した場合より、基本
粒子間の結合力の強い凝析粒子が生成される。一方、凝
析粒子は基本粒子が疎に凝集した、いわゆる疎な粒子と
なっている。この疎な構造を持つ凝析粒子は、工程(I
I)で添加する有機液体により発生する「液体架橋力」
に起因する強い凝集力および攪拌または振盪によって生
じる基本粒子の位置の再配列によって、圧密化で緻密化
する。凝析粒子の圧密化が進むに従い凝析粒子内部に吸
蔵された有機液体が圧密化した凝析粒子の表面に出てく
る。この表面の有機液体により、凝析粒子間に「液体架
橋力」が形成され凝析粒子がさらに凝集・圧密化し、所
望の大きさと、見掛密度を持つ粒子となる。ところが、
前述のように最高凝析温度を超えた温度下で凝析した凝
析粒子は、基本粒子間の結合力が強いため、工程(II)
で基本粒子の位置の再配列が生じにくく、得られる粉粒
状重合体の嵩比重が小さくなる。逆に大きな嵩比重の粉
粒状重合体を得るためには、 i)融着による結合が発生していない基本粒子間にも大
きな凝集力を生じさせて、融着による結合を切り離し基
本粒子の再配列を生じやすくし、さらに ii)凝析粒子が圧密化されず、内部に吸蔵された有機液
体が凝析粒子表面に出て来なくとも、凝析粒子表面に有
機液体を存在させて「凝析粒子」間の凝集・圧密化を促
進させる。
The temperature at which coagulation is carried out in carrying out the present invention is important for controlling the bulk specific gravity of the powdery granular polymer, and is more important than the glass transition temperature of the polymer contained in the polymer latex to be coagulated.
The temperature must be 10 ° C lower (hereinafter, abbreviated as "maximum coagulation temperature"). If the coagulation temperature is higher than the maximum coagulation temperature, the bulk specific gravity of the polymer powder will not increase unless a large amount of organic liquid is used in step (II). The cause of this is not clear, but it is presumed as follows. That is, when the coagulation temperature exceeds the maximum coagulation temperature, the particles constituting the coagulated particles (these are referred to as "basic particles" are generally referred to as "basic particles". It is considered that some of the polymer particles are fused to each other), and the surface of the polymer particles becomes tacky, and the polymer particles are easily fused firmly at the contact points with other basic particles.
As a result, coagulated particles having a stronger bonding force between the basic particles are generated than when coagulated at the maximum coagulation temperature or lower. On the other hand, coagulated particles are so-called sparse particles in which basic particles are sparsely aggregated. The coagulated particles with this sparse structure are
"Liquid cross-linking force" generated by the organic liquid added in I)
Due to the strong cohesive force due to and the rearrangement of the positions of the elementary particles caused by stirring or shaking, compaction is performed. As the solidification of the coagulated particles progresses, the organic liquid stored inside the coagulated particles appears on the surface of the consolidated coagulated particles. By the organic liquid on the surface, a "liquid cross-linking force" is formed between the coagulated particles, and the coagulated particles are further aggregated / consolidated to be particles having a desired size and apparent density. However,
As described above, the coagulated particles coagulated at a temperature higher than the maximum coagulation temperature have a strong bonding force between the basic particles, so that the process (II)
Therefore, the rearrangement of the positions of the basic particles is unlikely to occur, and the bulk specific gravity of the obtained powdery granular polymer becomes small. On the contrary, in order to obtain a powdery granular polymer having a large bulk specific gravity, i) a large cohesive force is generated between the basic particles in which the bond due to the fusion is not generated, and the bond due to the fusion is cut off to re-produce the basic particles. Alignment is likely to occur, and ii) even if the coagulated particles are not consolidated and the organic liquid occluded inside does not appear on the surface of the coagulated particles, the organic liquid is allowed to exist on the surface of the coagulated particles and It promotes the aggregation and consolidation between the "deposited particles".

ことの二点が必要であり、工程(II)で多くの有機液体
が必要となる、と考えられる。
It is considered that two points are necessary, and a large amount of organic liquid is required in the step (II).

さらに、最高凝析温度を超えた温度下で凝析すると、
凝析粒子が大きくなりやすく、100μm以上の粗大な粒
子が生じやすくなる点からも、凝析温度は最高凝析温度
以下が望ましい。
Furthermore, when coagulating at a temperature exceeding the maximum coagulation temperature,
The coagulation temperature is preferably not higher than the maximum coagulation temperature from the viewpoint that the coagulated particles are likely to be large and coarse particles of 100 μm or more are easily generated.

最高凝析温度を決定するのに必要な重合体のガラス転
移温度は、重合体を加圧形成して作った厚さ2〜5mm、
巾5mm程度の板を用いて、動的粘弾性を測定することに
より求められる。
The glass transition temperature of the polymer needed to determine the maximum coagulation temperature is 2-5 mm thick made by pressure forming the polymer,
It is obtained by measuring the dynamic viscoelasticity using a plate with a width of about 5 mm.

工程(I)の凝析温度の下限値は、工程(I)で得ら
れるスラリーの分散媒(水)が凍結する温度以上であれ
ば特に制約されない。しかし実用的な乳化重合法で得ら
れる重合体ラテックスの温度は20℃以上なので、重合体
ラテックスを冷却する必要の無い20℃以上で凝析するの
が望ましい。
The lower limit of the coagulation temperature in step (I) is not particularly limited as long as it is at least the temperature at which the dispersion medium (water) of the slurry obtained in step (I) freezes. However, since the temperature of the polymer latex obtained by a practical emulsion polymerization method is 20 ° C. or higher, it is desirable to coagulate the polymer latex at 20 ° C. or higher which does not require cooling.

さらに工程(I)では、凝析粒子中に含まれる粒子直
径(以下、粒径と略記する)100μm以上の粒子が1重
量%以下となるように凝析するのが望ましい。特に、製
品である粉粒状重合体を平均粒径150μm以下の細い粉
粒状に造粒する場合には、粒径100μm以上の凝析粒子
は粉粒状重合体中に粗粉を生成し、粒度分布を広くし、
粒径の制御性を損なうので、さらに好ましくは0.5重量
%以下とするのが望ましい。
Further, in the step (I), it is desirable to coagulate particles having a particle diameter (hereinafter abbreviated as particle diameter) of 100 μm or more contained in the coagulated particles to 1% by weight or less. In particular, when granulating a powdery polymer as a product into fine powdery particles with an average particle size of 150 μm or less, coagulated particles with a particle size of 100 μm or more produce coarse powder in the powdery polymer, resulting in a particle size distribution. Widen
Since the controllability of the particle size is impaired, it is more preferably 0.5% by weight or less.

粒径100μm以上の凝析粒子の重量分率は、凝析スラ
リーを目開き100μmの篩い(150メッシュの金網が使用
できる)で濾過し、篩い上に残った凝析粒子に濾過した
凝析スラリーの約10倍量の水道水をゆるやかにかけて洗
浄した後乾燥して測定した重量と、篩いを通過した粒子
をろ紙で捕集し、乾燥して測定した重量から求めること
ができる。
The weight fraction of coagulated particles with a particle size of 100 μm or more is obtained by filtering the coagulated slurry with a sieve having a mesh of 100 μm (a wire mesh of 150 mesh can be used) and filtering the coagulated particles remaining on the sieve. It can be determined from the weight measured by gently washing with 10 times the amount of tap water, followed by drying, and the weight measured by collecting particles that have passed through the sieve with filter paper and drying.

工程(I)の凝析に必要な時間は非常に短く、前述し
たように、通常平均滞在時間として0.1分〜1時間、好
ましくは0.5分〜10分である。0.1分以下では凝析が不完
全になり、未凝析のラテックスが工程(II)に流入して
造粒が不安定になりやすいので、好ましくない。1時間
以上にすると、装置が過大となるので好ましくない。
The time required for the coagulation in step (I) is very short, and as described above, the average residence time is usually 0.1 minutes to 1 hour, preferably 0.5 minutes to 10 minutes. If it is less than 0.1 minutes, coagulation will be incomplete and uncoagulated latex will flow into the step (II) and granulation tends to be unstable, which is not preferable. If it is set to 1 hour or more, the apparatus becomes excessively large, which is not preferable.

工程(II)で使用される有機液体は、水に難溶でかつ
重合体ラテックスに含まれる重合体を溶解しないもので
なければならない。有機液体の水への溶解度は通常0.5
重量%以下、さらに好ましくは0.1重量%以下が望まし
い。なお、ここでいう溶解度は、20℃の下に測定される
値をいう。溶解度が0.5重量%を超える有機液体は、水
との界面張力が小さく、従って界面張力にほぼ比例する
「液体架橋力」に基づく凝集力が小さくなるため、大き
な凝集力を得るためにより多くの有機液体が必要になる
ので好ましくない。また、溶解度が大きい場合には、水
相に溶解する有機液体の量が増加し、凝析粒子に吸着さ
れて「液体架橋力」を生じさせる有機液体量が減少し、
さらに、水に溶解した有機液体を処理するために大きな
設備が必要になるので、有機液体の水への溶解度は、0.
5重量%以下、さらに好ましくは0.1重量%以下が望まし
い。
The organic liquid used in step (II) must be one that is sparingly soluble in water and does not dissolve the polymer contained in the polymer latex. Solubility of organic liquids in water is typically 0.5
It is desirable that the amount is not more than 0.1% by weight, more preferably not more than 0.1% by weight. The solubility here means a value measured at 20 ° C. An organic liquid having a solubility of more than 0.5% by weight has a small interfacial tension with water, and therefore the cohesive force based on the "liquid cross-linking force", which is almost proportional to the interfacial tension, becomes small. A liquid is required, which is not preferable. Further, when the solubility is high, the amount of the organic liquid dissolved in the aqueous phase increases, and the amount of the organic liquid adsorbed by the coagulated particles to generate the “liquid crosslinking force” decreases,
Furthermore, since large equipment is required to process the organic liquid dissolved in water, the solubility of the organic liquid in water is 0.
The amount is preferably 5% by weight or less, more preferably 0.1% by weight or less.

有機液体の重合体溶解能力については、定量的には提
示できないが、便宜的には、次のような方法で、有機液
体を選択することができる。対象とする重合体を直径1m
m程度の粒状または1辺が1mm程度のペレット状にし、こ
れを10倍の重量の有機液体中に投入、約1時間攪拌す
る。この時点で、重合体が有機液体に溶解し均一相にな
る場合および重合体が一部有機液体に溶解し、有機液体
の粘度が、その固有の粘度より10%以上上昇する場合に
は、該重合体に対して該有機液体は本発明を実施するた
めの有機液体として使用することはできない。さらに、
10%以上の粘度上昇がない場合でも、有機液体と固液分
離した粒状またはペレット状の重合体を100Gの遠心力で
1分間遠心脱水した後、粒状またはペレット状の重合体
がおこし状に固着したり、重合体の重量が初期の重量よ
り10%以上増加する場合にも、該重合体に対して該有機
液体は、本発明を実施するための有機液体として使用す
ることはできない。
The ability of the organic liquid to dissolve the polymer cannot be quantitatively presented, but for convenience, the organic liquid can be selected by the following method. Target polymer is 1m in diameter
Granules of about m or pellets of about 1 mm on a side are placed in an organic liquid of 10 times the weight and stirred for about 1 hour. At this point, when the polymer is dissolved in the organic liquid to form a homogeneous phase and when the polymer is partially dissolved in the organic liquid and the viscosity of the organic liquid increases by 10% or more from its inherent viscosity, For polymers, the organic liquids cannot be used as organic liquids for carrying out the invention. further,
Even if the viscosity does not increase by 10% or more, the granular or pelletized polymer that is solid-liquid separated from the organic liquid is centrifugally dehydrated with 100 G of centrifugal force for 1 minute, and then the granular or pelletized polymer is fixed in a swelling state. However, even if the weight of the polymer increases by more than 10% from the initial weight, the organic liquid for the polymer cannot be used as an organic liquid for carrying out the present invention.

以上説明したように、工程(II)で好ましくは使用さ
れる有機液体としては、使用する重合体によっても異な
るが、例えばペンタン、ヘキサン、ヘプタン等のパラフ
ィン系炭化水素、シクロペンタン、シクロヘキサン、メ
チルシクロペンタン、メチルシクロヘキサン等の脂環族
炭化水素およびそのアルキル置換体等があげられる。こ
れらの有機液体は単独でまたは二種以上を混合して使用
できる。
As described above, the organic liquid preferably used in the step (II) varies depending on the polymer to be used, but is, for example, paraffin hydrocarbon such as pentane, hexane, heptane, cyclopentane, cyclohexane, methylcyclo. Examples thereof include alicyclic hydrocarbons such as pentane and methylcyclohexane, and their alkyl-substituted products. These organic liquids can be used alone or in admixture of two or more.

有機液体の好ましい使用量は、重合体のラテックス中
の重合体100重量部に対して20〜60未満重量部の範囲で
ある。20重量部未満では、凝析粒子を造粒する効果が少
なくなり、微粉が発生しやすくなり粒度分布の制御が困
難となる。
The preferable amount of the organic liquid used is in the range of 20 to less than 60 parts by weight based on 100 parts by weight of the polymer in the polymer latex. If it is less than 20 parts by weight, the effect of granulating coagulated particles is reduced, fine powder is easily generated, and it becomes difficult to control the particle size distribution.

また、60重量部以上場合は、有機液体が多量に存在す
るため造粒した粒子の分散が不安定となり、粒子の再合
一が起こり、粗大粒子が生成しやすくなる。さらに多量
の有機液体を処理しなければならないのでエネルギーコ
ストの点で不利である。
On the other hand, when the amount is 60 parts by weight or more, since a large amount of the organic liquid is present, the dispersion of the granulated particles becomes unstable, re-coalescence of the particles occurs, and coarse particles are easily generated. Further, a large amount of organic liquid has to be treated, which is disadvantageous in terms of energy cost.

重合体ラテックス中の重合体量は、重合体ラテックス
を前述の凝析剤で凝析し、さらに温度を上げ固化処理し
て得た重合体を乾燥し、重合体の重量を測定することに
より求めることができる。このような方法で得た重合体
重量には乳化重合時に加えた乳化剤や開始剤等の重合助
剤も含まれる場合がある。本発明ではこれら乳化剤や重
合助剤を含んだ重合体を造粒するので、有機液体量や全
混合物中の重合体の重量割合を算出する場合の重合体重
量として上述の方法で求めた重合体重量を用いる。この
ような重合体重量は、慣用的に重合体中の固形分と呼ば
れる場合がある。
The amount of the polymer in the polymer latex is obtained by coagulating the polymer latex with the above-mentioned coagulant, further raising the temperature and solidifying the resulting polymer, and drying the polymer to measure the weight of the polymer. be able to. The weight of the polymer obtained by such a method may include a polymerization aid such as an emulsifier or an initiator added during emulsion polymerization. In the present invention, since the polymer containing these emulsifiers and polymerization aids is granulated, the polymer obtained by the above-mentioned method as the polymer weight in the case of calculating the amount of the organic liquid or the weight ratio of the polymer in the whole mixture is calculated. Use weight. Such polymer weights are conventionally referred to as solids in the polymer.

工程(II)の全混合物中の水の割合は50〜85重量%、
さらに好ましくは50〜75重量%の範囲が望ましい。さら
に、全混合物中の重合体の割合は10〜25重量%の範囲が
望ましい。
The proportion of water in the total mixture of step (II) is 50-85% by weight,
More preferably, the range of 50 to 75% by weight is desirable. Further, the proportion of polymer in the total mixture is preferably in the range of 10 to 25% by weight.

全混合物の水の割合が50重量%未満では、全混合物の
見掛粘度が上昇し粗大粒子が発生しやすくなる。さらに
造粒した重合体が水に分散したスラリー(以下、造粒ス
ラリーと略記する)をオーバーフロー形式で移送するこ
とが困難となり、装置が複雑化する。一方全混合物中の
水の割合が85重量%を超えると、得られる粉粒状重合体
の嵩比重が低下し、さらに多量の水を処理しなければな
らなくなるために、処理装置が大型化する欠点がある。
If the water content of the entire mixture is less than 50% by weight, the apparent viscosity of the entire mixture will increase and coarse particles will tend to be generated. Furthermore, it becomes difficult to transfer a slurry in which a granulated polymer is dispersed in water (hereinafter, abbreviated as a granulated slurry) in an overflow form, and the apparatus becomes complicated. On the other hand, if the proportion of water in the total mixture exceeds 85% by weight, the bulk specific gravity of the resulting powdery granular polymer will decrease, and a large amount of water will have to be treated. There is.

全混合物中の重合体の割合が10重量%未満では、全混
合物中の水の割合が85重量%を超える場合と同一の欠点
が生じる。また、全混合物中の重合体の割合が25重量%
を超えると、全混合物中の水の割合が50重量%未満の場
合と同様の困難が生じる。
A polymer content of less than 10% by weight in the total mixture has the same disadvantages as a water content of more than 85% by weight in the total mixture. The proportion of polymer in the total mixture is 25% by weight.
Above 10%, the same difficulties occur as when the proportion of water in the total mixture is less than 50% by weight.

工程(II)では有機液体が連続添加された後、混合物
を下記式の温度(℃)Tの範囲において平均的に0.5分
〜1時間保持し造粒する。
In the step (II), after the organic liquid is continuously added, the mixture is held in the temperature (° C.) T range of the following formula for 0.5 minutes to 1 hour on average to granulate.

A-26≦T≦A (式中、Aは混合物液の共沸温度(℃)を表わす。) ここで共沸温度とは混合物が沸騰する最低の温度であ
り、次のように決定される。混合物中の揮発成分は主と
して水および有機液体の2成分であり、この2成分は互
いにほとんど溶け合わないため、それらの呈する全蒸気
圧は各純粋な成分の蒸気圧の和で示される。その全蒸気
圧が液表面上の全圧に等しくなる温度が、混合物の共沸
温度Aである。
A-26 ≤ T ≤ A (In the formula, A represents the azeotropic temperature (° C) of the mixture liquid.) Here, the azeotropic temperature is the lowest temperature at which the mixture boils and is determined as follows. . The volatile constituents in the mixture are mainly two components, water and organic liquid, and these two constituents hardly dissolve each other, so that the total vapor pressures exhibited by them are given by the sum of the vapor pressures of the pure constituents. The temperature at which the total vapor pressure is equal to the total pressure on the liquid surface is the azeotropic temperature A of the mixture.

温度TがA-26(℃)未満では、造粒速度が著しく遅く
なり、未造粒の微粉が発生しやすくなる。一方温度Tが
混合物の共沸点A(℃)を超えると、混合物の沸騰が起
り、安定な攪拌操作が行えなくなるため粗大粒子が生成
し、粒度分布の制御が困難となる。また、平均的な造粒
時間が0.5分未満では、造粒が不十分で微粉が発生しや
すく、1時間を超えると造粒装置が過大となり、生産性
の点で不利である。
If the temperature T is lower than A-26 (° C), the granulation speed is remarkably slowed, and ungranulated fine powder is likely to be generated. On the other hand, when the temperature T exceeds the azeotropic point A (° C.) of the mixture, the mixture is boiled and stable stirring operation cannot be performed, so that coarse particles are generated and it becomes difficult to control the particle size distribution. Further, if the average granulation time is less than 0.5 minutes, granulation is insufficient and fine powder tends to be generated, and if it exceeds 1 hour, the granulator becomes excessively large, which is disadvantageous in terms of productivity.

工程(II)では、造粒した粒子の粗大化を防止し、ま
た造粒した粒子を含むスラリーの流動安定性を増すため
に、界面活性剤を添加することができる。界面活性剤と
してはアルキルスルホン酸ナトリウム、アルキルアリル
スルホン酸ナトリウム、アミドスルホン酸ナトリウム、
ジアルキルスルホコハク酸ナトリウム、アルキルベンゼ
ンスルホン酸ナトリウム、アルキルナフタレンスルホン
酸ナトリウム等のスルホン酸基含有の陰イオン界面活性
剤および部分鹸化ポリビニルアルコール等、工程(I)
で使用する凝析剤で界面活性剤効果が失われないものが
好ましい。
In the step (II), a surfactant can be added to prevent the granulated particles from coarsening and to increase the flow stability of the slurry containing the granulated particles. As the surfactant, sodium alkyl sulfonate, sodium alkyl allyl sulfonate, sodium amide sulfonate,
Step (I): Anionic surfactant containing a sulfonic acid group such as sodium dialkylsulfosuccinate, sodium alkylbenzenesulfonate, sodium alkylnaphthalenesulfonate, and partially saponified polyvinyl alcohol
It is preferable that the coagulant used in 1. does not lose the surfactant effect.

また界面活性剤の使用量は、有機液体に対して0.05〜
2重量%、好ましくは0.05〜1.5重量%の範囲である。
使用量が2重量%を超えると得られる重合体の純度を低
下させると共に、製品のコストアップの原因ともなり、
好ましくない。
In addition, the amount of surfactant used is 0.05-
It is 2% by weight, preferably 0.05 to 1.5% by weight.
When the amount used exceeds 2% by weight, the purity of the obtained polymer is lowered and the cost of the product is increased.
Not preferred.

界面活性剤の添加方法は特に限定されず有機液体また
水に溶解または分散して添加される。このように連続的
に造粒された重合体粒子はより緻密化させるために、通
常、該重合体のガラス転移温度以上の温度に上げ加熱処
理する。このような処理を固化処理と呼ぶ。固化処理の
温度は、重合体のガラス転移温度に依存するが、通常60
〜120℃で行い、処理時間は平均滞在時間として1〜60
分程度である。
The method of adding the surfactant is not particularly limited, and the surfactant is dissolved or dispersed in an organic liquid or water and added. In order to make the polymer particles thus continuously granulated more dense, the polymer particles are usually heated to a temperature not lower than the glass transition temperature of the polymer and subjected to heat treatment. Such processing is called solidification processing. The temperature of the solidification treatment depends on the glass transition temperature of the polymer, but is usually 60
~ 120 ℃, treatment time is 1 ~ 60
It's about a minute.

本発明においては、凝析粒子のスラリーに有機液体を
加え攪拌または振盪して凝析粒子を造粒する際に、該ス
ラリーの分散媒と有機液体間の界面張力を0.5〜30dyne/
cm、好ましくは0.5〜20dyne/cmの範囲に制御することに
より、得られる粉粒状重合体の粒径を制御することもで
きる。
In the present invention, when the organic liquid is added to the slurry of coagulated particles and the coagulated particles are granulated by stirring or shaking, the interfacial tension between the dispersion medium of the slurry and the organic liquid is 0.5 to 30 dyne /
It is also possible to control the particle size of the obtained powdery granular polymer by controlling the particle size in cm, preferably in the range of 0.5 to 20 dyne / cm.

分散媒と有機液体間の界面張力を0.5dyne/cm未満にす
ると、有機液体による液体架橋力が弱まり、得られる粉
粒状重合体の粒度分布が広くなり、微粉が増加し、流動
性も悪化するので好ましくない。一方、界面張力が30dy
ne/cmを超えると、液体架橋力による凝集力が非常に大
きくなるため、凝析粒子の造粒が進み過ぎて、直径が1c
m程度の粒子まで成長し、安定な造粒が困難になる。特
に連続式で造粒を行う場合には、1cm程度にまで成長し
た粗大粒子が造粒層から排出されず蓄積してしまうとい
う不都合を生ずる。そして、第1図に示したようなオー
バーフロー式の造粒槽(15)では、粗大粒子がオーバー
フローライン(20)を閉塞させて長時間の安定運転が困
難になる。したがって、上述したような造粒の不安定さ
を回避するために界面張力は30dyne/cm以下、好ましく
は20dyne/cm以下であることが必要である。
When the interfacial tension between the dispersion medium and the organic liquid is less than 0.5 dyne / cm, the liquid crosslinking force by the organic liquid is weakened, the particle size distribution of the obtained powdery granular polymer is broadened, the fine powder is increased, and the fluidity is deteriorated. It is not preferable. On the other hand, the interfacial tension is 30dy
When it exceeds ne / cm, the cohesive force due to the liquid bridging force becomes very large, and the coagulated particles are granulated too much and the diameter is 1c.
It grows up to about m particles, making stable granulation difficult. In particular, in the case of performing continuous granulation, there is a disadvantage that coarse particles grown to a size of about 1 cm are not discharged from the granulation layer and accumulate. Then, in the overflow type granulation tank (15) as shown in FIG. 1, coarse particles block the overflow line (20), which makes stable operation for a long time difficult. Therefore, the interfacial tension must be 30 dyne / cm or less, preferably 20 dyne / cm or less in order to avoid the above-mentioned instability of granulation.

分散媒と有機液体間の界面張力の測定は、20℃の下に
次のような方法で行う。凝析粒子スラリーを濾過し、凝
析粒子と分散媒を分離する。該分散媒に造粒操作を行う
時と同じ量比および温度で、有機液体およびその他の添
加物を加え、約1分間ゆるやかに攪拌した後静置し、分
散媒相と有機液体相の界面を作り界面張力を測定する。
界面張力の測定には市販の表面張力計を使用できる。後
述の実施例では協和科学(株)の協和CBVP式表面張力計
A3型とガラス製のプレートを使用した。
The interfacial tension between the dispersion medium and the organic liquid is measured at 20 ° C by the following method. The coagulated particle slurry is filtered to separate the coagulated particles from the dispersion medium. The organic liquid and other additives were added to the dispersion medium at the same amount ratio and temperature as when granulating the mixture, and the mixture was gently stirred for about 1 minute and then allowed to stand to bring the interface between the dispersion medium phase and the organic liquid phase. Measure the interfacial tension.
A commercially available surface tensiometer can be used for measuring the interfacial tension. In the examples described below, the Kyowa CBVP surface tension meter from Kyowa Kagaku Co.
A3 type and glass plate were used.

分散媒と有機液体間の界面張力を0.5dyne/cm未満にす
ると、有機液体による造粒効果が弱まり好ましくない。
When the interfacial tension between the dispersion medium and the organic liquid is less than 0.5 dyne / cm, the granulation effect of the organic liquid is weakened, which is not preferable.

分散媒と有機液体間の界面張力は、界面活性剤の添加
により制御することができる。界面活性剤としては、重
合体ラテックスを凝析するのに使用する凝析剤により、
界面活性効果が失われないものが好ましい。例えば前述
したアルキルスルホン酸ナトリウム、アルキルアリルス
ルホン酸ナトリウム、アミドスルホン酸ナトリウム、ジ
アルキルスルホコハク酸ナトリウム、アルキルベンゼン
スルホン酸ナトリウム、アルキルナフタレンスルホン酸
ナトリウム等のスルホン酸基含有の陰イオン界面活性剤
および部分鹸化ポリビニルアルコール等を使用すること
ができる。
The interfacial tension between the dispersion medium and the organic liquid can be controlled by adding a surfactant. As the surfactant, depending on the coagulant used for coagulating the polymer latex,
It is preferable that the surfactant effect is not lost. For example, the above-mentioned anionic surfactants containing sulfonic acid groups such as sodium alkylsulfonate, sodium alkylallylsulfonate, sodium amidosulfonate, sodium dialkylsulfosuccinate, sodium alkylbenzenesulfonate and sodium alkylnaphthalenesulfonate, and partially saponified polyvinyl. Alcohol or the like can be used.

また界面活性剤の使用量は、前述したのと同じく有機
液体に対して0.05〜2重量%、好ましくは0.05〜1.5重
量%の範囲である。使用量が2.0重量%を超えると得ら
れる重合体の純度を低下させると共に、製品のコストア
ップの原因ともなり、好ましくない。
The amount of the surfactant used is in the range of 0.05 to 2% by weight, preferably 0.05 to 1.5% by weight, based on the organic liquid, as described above. If the amount used exceeds 2.0% by weight, the purity of the obtained polymer is lowered and the cost of the product is increased, which is not preferable.

界面活性剤の添加方法は特に限定されず、有機液体ま
たは水に溶解または分散して添加される。
The method of adding the surfactant is not particularly limited, and the surfactant is dissolved or dispersed in an organic liquid or water and added.

次に本発明のの実施に使用される代表的な装置を第1
図を参照しながら説明する。
Next, a typical apparatus used for carrying out the present invention will be described first.
This will be described with reference to the drawings.

重合体ラテックスは定量ポンプ(1)よりライン
(2)を経て凝析槽(5)に送られる。凝析剤は定量ポ
ンプ(3)よりライン(4)を経て凝析槽(5)に送ら
れる。凝析槽(5)は温度調節用媒体の出入口(7),
(8)をもつジャケット(9)および攪拌機(6)を備
えている。ここで供給された重合体ラテックスを凝析剤
で凝析させる。凝析されたラテックスはスラリー状にな
り、オーバーフローまたは圧送により、ライン(10)を
経て造粒槽(15)に送られ、定量ポンプ(11)でライン
(12)を経て供給される有機液体、および必要に応じて
定量ポンプ(13)でライン(14)を経て供給される水と
造粒槽(15)内で連続的に混合され、凝析粒子を造粒す
る。造粒槽(15)は温度調節用媒体の出入口(16),
(17)をもつジャケット(19)そして加熱用の水蒸気吹
込み口(28)、および攪拌機(18)を備えている。造粒
スラリーはオーバーフローにより、ライン(20)を経て
固化槽(21)に送られ、固化処理されると同時に有機液
体を共沸により除去する。固化槽(21)は温度調節用媒
体の出入口(23)、(24)をもつジャケット(25)、攪
拌機(22)、有機液体回収用のコンデンサー(26)およ
び水蒸気吹き込み用のライン(29)を備えている。固化
処理されたスラリーはオーバーフローによりライン(2
7)から取り出され、図示していない濾過、洗滌および
乾燥工程で処理され、所望の粉粒状重合体が得られる。
The polymer latex is sent from the metering pump (1) to the coagulation tank (5) via the line (2). The coagulant is sent from the metering pump (3) to the coagulation tank (5) via the line (4). The coagulation tank (5) has a temperature control medium inlet / outlet port (7),
It is equipped with a jacket (9) with (8) and a stirrer (6). The polymer latex supplied here is coagulated with a coagulant. The coagulated latex becomes a slurry and is sent to the granulation tank (15) through the line (10) by overflow or pressure feeding, and is fed by the metering pump (11) through the line (12) to the organic liquid, And, if necessary, it is continuously mixed with water supplied through a line (14) by a metering pump (13) in a granulation tank (15) to granulate coagulated particles. The granulation tank (15) has a temperature control medium inlet / outlet port (16),
A jacket (19) having (17), a steam inlet (28) for heating, and an agitator (18) are provided. The granulated slurry is sent to the solidification tank (21) through the line (20) due to overflow, and is solidified, and at the same time, the organic liquid is azeotropically removed. The solidification tank (21) includes a temperature control medium inlet / outlet port (23), a jacket (25) having (24), an agitator (22), an organic liquid recovery condenser (26) and a steam injection line (29). I have it. The solidified slurry overflowed to the line (2
It is taken out from 7) and treated in a filtration, washing and drying process (not shown) to obtain a desired powdery granular polymer.

以下、実施例により本発明をさらに詳しく説明する。
なお、実施例は第1図に示すような装置を用いて行っ
た。
Hereinafter, the present invention will be described in more detail with reference to examples.
The examples were carried out using an apparatus as shown in FIG.

〔実施例〕〔Example〕

実施例1 乳化重合法で得たメチルメタクリレート(85重量%)
とブチルアクリレート(15重量%)との共重合体ラテッ
クス(固形分含有率27.8重量%)と、第1表に示した種
類の凝析剤を第1表に示す供給量で凝析槽(5)に定量
ポンプ(1),(3)で連続的に供給した。なお凝析槽
(5)は円筒状であり、付設の攪拌機(6)は回転数約
700rpmで回転した。凝析後のスラリー(凝析粒子が水に
分散したスラリー。以後「凝析スラリー」と略記す
る。)は凝析槽(5)のオーバーフロー口からオーバー
フローし、ライン(10)を経て造粒槽(15)に入った。
Example 1 Methyl methacrylate obtained by emulsion polymerization method (85% by weight)
Copolymer latex of butyl acrylate (15% by weight) (solid content 27.8% by weight) and the coagulant of the kind shown in Table 1 in the coagulation tank (5 ) Was continuously supplied to the above) by metering pumps (1) and (3). The coagulation tank (5) had a cylindrical shape, and the stirrer (6) attached to it had a rotational speed of about
It was rotated at 700 rpm. The slurry after coagulation (slurry in which coagulated particles are dispersed in water; hereinafter abbreviated as “coagulation slurry”) overflows from the overflow port of the coagulation tank (5) and passes through the line (10) to the granulation tank. I entered (15).

凝析スラリーが造粒槽(15)に入り始めると同時に有
機液体および水を連続的に定量ポンプ(11),(13)で
造粒槽(15)に供給した。また第1表に示す種類および
量の界面活性剤を第1表に示す媒体に溶かして造粒槽
(15)に供給した。なお、造粒槽(15)は円筒状で、付
設の攪拌機(18)は、回転数500rpmで回転した。造粒ス
ラリーは、凝析槽(15)よりオーバーフローし、ライン
(20)を経て固化槽(21)に入った。固化槽(21)から
スラリーがオーバーフローし始めてから8時間経過後約
1のスラリーサンプルを採取し、脱水、洗浄、乾燥を
行い、粉粒状重合体を得た。得られた粉粒状重合体の嵩
比重、平均粒子径、粒度分布、粒子の均整度について測
定した。
At the same time when the coagulated slurry began to enter the granulation tank (15), the organic liquid and water were continuously supplied to the granulation tank (15) by the quantitative pumps (11) and (13). Further, the types and amounts of the surfactants shown in Table 1 were dissolved in the media shown in Table 1 and supplied to the granulating tank (15). The granulating tank (15) had a cylindrical shape, and the attached stirrer (18) was rotated at a rotation speed of 500 rpm. The granulated slurry overflowed from the coagulation tank (15) and entered the solidification tank (21) via the line (20). About 8 hours after the slurry started to overflow from the solidification tank (21), about 1 slurry sample was collected, dehydrated, washed, and dried to obtain a granular polymer. The bulk specific gravity, average particle diameter, particle size distribution, and particle uniformity of the obtained powdery granular polymer were measured.

嵩比重はJIS K-6721により測定しまた流動性はJIS K-
6721で用いられる嵩比重測定機に粉粒体を入れ、ダンパ
ーを取り外した際の流出状態を観察し、その流動性を下
記の基準で判定した。
Bulk specific gravity is measured according to JIS K-6721 and fluidity is measured according to JIS K-
The granules were put into the bulk specific gravity measuring machine used in 6721, and the outflow state when the damper was removed was observed, and its fluidity was judged according to the following criteria.

流出状態 ○:ダンパーを取り外すと試料が自然流出する ×:衝撃を連続的に加えると流出する ××:衝撃を連続的に加えても流出しない また平均粒子径D50は重量基準のメジアン径のことで
ある。
Outflow condition ○: The sample spontaneously flows out when the damper is removed ×: It flows out when a shock is continuously applied XX: It does not flow out even when a shock is continuously applied. Also, the average particle diameter D 50 is the median diameter on a weight basis. That is.

さらに粒子の均整度Nは下記式 N=D75/D25 (式中D75は積算重量分布曲線の75%にある粒子径(μ
m)またD25は粒子群の積算重量分布曲線の25%にある
粒子径(μm)を表わす。) で表わした。これらの測定法は以下の実施例および比較
例に共通である。測定結果を第1表に示す。使用した有
機液体はn−ヘキサンであり、水との共沸温度Aは約61
℃である。粒度分布がシャープであり、37μm以下の微
粉量も少なく流動性の良好な粉粒状重合体が得られた。
Further, the degree of particle uniformity N is expressed by the following formula N = D 75 / D 25 (where D 75 is the particle size at 75% of the cumulative weight distribution curve (μ
m) The D 25 represents a particle size in the 25% of the cumulative weight distribution curve of the particles ([mu] m). ). These measuring methods are common to the following examples and comparative examples. The measurement results are shown in Table 1. The organic liquid used was n-hexane, and the azeotropic temperature A with water was about 61.
° C. A powdery polymer having a sharp particle size distribution and a small amount of fine particles of 37 μm or less and good flowability was obtained.

実施例2 第1表に示す条件のもとで実施例1と同様の方法で粉
粒状重合体を得た。微粉量が少なく、粒子の均整度が2.
5以下すなわち2.2と粒度分布がシャープであり、流動性
の良好な粉粒状重合体が得られた。
Example 2 A powdery polymer was obtained in the same manner as in Example 1 under the conditions shown in Table 1. The amount of fine powder is small, and the uniformity of particles is 2.
A powdery granular polymer having a sharp particle size distribution of 5 or less, ie 2.2, and having good fluidity was obtained.

実施例3 第1表に示す条件のもとで実施例1と同様の方法で粉
粒状重合体を得た。有機液体としてn−ヘプタンを使用
しているので、水との共沸温度Aは約79℃である。微粉
量が少なく、粒子の均整度が1.9と粒度分布がシャープ
であり、流動性の良好な粉粒状重合体が得られた。
Example 3 A powdery polymer was obtained in the same manner as in Example 1 under the conditions shown in Table 1. Since n-heptane is used as the organic liquid, the azeotropic temperature A with water is about 79 ° C. The amount of fine powder was small, the particle uniformity was 1.9, the particle size distribution was sharp, and a powdery polymer with good fluidity was obtained.

比較例1 第1表に示す条件のもとで実施例1と同様の方法で粉
粒状重合体を得た。しかし造粒槽内の混合物の温度Tが
所定の範囲外であるため850μm以上の粗大粒子を多量
含み粒子の均整度が3.0と大きく流動性も悪い粉粒状重
合体しか得られなかった。
Comparative Example 1 A powdery granular polymer was obtained in the same manner as in Example 1 under the conditions shown in Table 1. However, since the temperature T of the mixture in the granulation tank was out of the predetermined range, only a granular polymer containing a large amount of coarse particles of 850 μm or more and having a large particle uniformity ratio of 3.0 and poor fluidity was obtained.

比較例2 第1表に示す条件のもとで実施例1と同様の方法で粉
粒状重合体を得た。しかし造粒槽内の混合物温度Tが共
沸温度より高いため造粒槽内で共沸が起こり槽内の安定
な攪拌操作が行なえず、粒子の均整度Nが3.1と大き
く、かつ850μm以上の粗大粒子を多量含んだ流動性も
悪い粉粒状重合体しか得られなかった。
Comparative Example 2 A powdery granular polymer was obtained in the same manner as in Example 1 under the conditions shown in Table 1. However, since the mixture temperature T in the granulation tank is higher than the azeotropic temperature, azeotropy occurs in the granulation tank and stable stirring operation in the tank cannot be performed, and the particle uniformity ratio N is as large as 3.1 and 850 μm or more. Only a granular polymer containing a large amount of coarse particles and having poor fluidity was obtained.

実施例4〜6 造粒槽内での混合物の滞在時間を変化させるために造
粒槽の容積を変え実施例1と同様の方法で第2表に示す
条件のもとで粉粒状重合体を得た。造粒槽内での混合物
の平均滞在時間が所定の範囲内であるため微粉量が少な
く粒子の均整度が2.5以下と粒度分布がシャープであり
流動性も良好な粉粒状重合体が得られた。
Examples 4 to 6 In the same manner as in Example 1 except that the volume of the granulation tank was changed in order to change the residence time of the mixture in the granulation tank, the powdery and granular polymer was prepared under the conditions shown in Table 2. Obtained. Since the average residence time of the mixture in the granulation tank was within the predetermined range, the amount of fine powder was small and the particle uniformity was 2.5 or less, the particle size distribution was sharp, and a powdery polymer with good fluidity was obtained. .

比較例3 造粒槽での平均滞在時間をさらに短縮した以外は実施
例1と同様の方法で第2表に示す条件のもとで粉粒状重
合体を得た。造粒槽内での混合物の平均滞在時間が所定
の範囲外であるため微粉量が多く粒子の均整度が2.5以
上であり流動性の悪い粉粒状重合体しか得られなかっ
た。
Comparative Example 3 A granular polymer was obtained under the conditions shown in Table 2 in the same manner as in Example 1 except that the average residence time in the granulation tank was further shortened. Since the average residence time of the mixture in the granulation tank was out of the predetermined range, the amount of fine powder was large, and the uniformity of the particles was 2.5 or more, and only a powdery polymer having poor fluidity was obtained.

実施例7、8 界面活性剤として陰イオン界面活性剤であり分子内に
スルホン酸基を含むジオクチルスルホコハク酸ナトリウ
ムとドデシルベンゼンスルホン酸ナトリウムの2種類を
使用し第3表に示す条件のもとで実施例1と同様の方法
で粉粒状重合体を得た。
Examples 7 and 8 Two kinds of sodium dioctyl sulfosuccinate and sodium dodecylbenzene sulfonate, which are anionic surfactants and have a sulfonic acid group in the molecule, are used as the surfactants under the conditions shown in Table 3. A powdery granular polymer was obtained in the same manner as in Example 1.

微粉量が少なく粒子の均整度が2.5以下と粒度分布が
シャープであり流動性も良好な粉粒状重合体が得られ
た。
A powdery granular polymer having a small amount of fine powder and a particle uniformity of 2.5 or less, a sharp particle size distribution and good fluidity was obtained.

実施例9 界面活性剤として重合度約500のポリビニルアルコー
ルを使用し第3表に示す条件のもとで実施例1と同様の
方法で粉粒状重合体を得た。
Example 9 A powdery granular polymer was obtained in the same manner as in Example 1 under the conditions shown in Table 3 using polyvinyl alcohol having a degree of polymerization of about 500 as a surfactant.

微粉量が少なく粒子の均整度が2.5以下と粒度分布が
シャープであり流動性の良好な粉粒状重合体が得られ
た。
A powdery polymer having a fine particle size distribution and a sharp particle size distribution and good fluidity was obtained with a small amount of fine powder and a particle uniformity ratio of 2.5 or less.

参考例1〜5 第4表に示す条件のもとで実施例1と同様の方法で粉
粒状重合体を得た。微粉が少なく粒子の均整度が2.5以
下と粒度分布がシャープであり、流動性の良好な粉粒状
重合体が得られた。さらに全混合物中に対する水の重量
割合が減少するに従い嵩比重が大きくなっており嵩比重
の制御が可能であった。
Reference Examples 1 to 5 Under the conditions shown in Table 4, powdery granular polymers were obtained in the same manner as in Example 1. A fine-grained polymer having a small particle size and a particle size distribution of 2.5 or less and a sharp particle size distribution and good fluidity was obtained. Further, the bulk specific gravity increased as the weight ratio of water to the total mixture decreased, and the bulk specific gravity could be controlled.

比較例4 第4表に示す条件のもとで実施例1と同様の操作を行
なった。造粒槽(15)の全混合物中の水の混合割合が少
ないため造粒槽(15)出ライン(20)からスラリーが排
出された時から約10分後にライン(20)が閉そくしスラ
リーが固化槽へ排出しなくなった。
Comparative Example 4 The same operation as in Example 1 was performed under the conditions shown in Table 4. About 10 minutes after the slurry was discharged from the discharge line (20) of the granulation tank (15), the line (20) was closed and the slurry was mixed because the mixing ratio of water in the total mixture in the granulation tank (15) was small. It is no longer discharged to the solidification tank.

実施例10および参考例6 使用する有機液体量を重合体ラテックス中の固形分10
0重量部に対し20重量部及び100重量部とし、第5表に示
す条件のもとで実施例1と同様の方法で粉粒状重合体を
得た。微粉が少なく粒子の均整度は2.5以下と粒度分布
がシャープであり流動性も良好な粉粒状重合体が得られ
た。
Example 10 and Reference Example 6 The amount of the organic liquid used was 10% of the solid content in the polymer latex.
20 parts by weight and 100 parts by weight relative to 0 parts by weight were used to obtain a powdery granular polymer in the same manner as in Example 1 under the conditions shown in Table 5. A fine-grained polymer having a small particle size distribution and a particle size distribution of 2.5 or less with a sharp particle size distribution and good fluidity was obtained.

比較例5 有機液体を全く使用せずに第5表に示す条件のもとで
実施例1と同様の方法で粉粒状重合体を得た。微粉量が
多く粒子の均整度が3.2と大きく粒度分布が広く、流動
性も悪い粉粒状重合体しか得られなかった。
Comparative Example 5 A granular polymer was obtained in the same manner as in Example 1 under the conditions shown in Table 5 without using any organic liquid. Only a granular polymer with a large amount of fine powder, a large particle uniformity ratio of 3.2, a wide particle size distribution, and poor fluidity was obtained.

比較例6 使用する有機液体量を重合体ラテックス中の固形分10
0重量部に対し10重量部として第5表に示す条件のもと
で実施例1と同様の方法で粉粒状重合体を得た。微粉量
が多く粒子の均整度が3.2と大きく粒度分布が広く、流
動性も悪い粉粒状重合体しか得られなかった。
Comparative Example 6 The amount of organic liquid used was 10% solids in the polymer latex.
A powdery polymer was obtained in the same manner as in Example 1 under the conditions shown in Table 5 with 0 parts by weight being 10 parts by weight. Only a granular polymer with a large amount of fine powder, a large particle uniformity ratio of 3.2, a wide particle size distribution, and poor fluidity was obtained.

比較例7 使用する有機液体量を重合体ラテックス中の固形分10
0重量部に対し180重量部として第5表に示す条件のもと
で実施例1と同様の方法で粉粒状重合体を得た。微粉量
は少ないが、粒子の均整度が3.5であり悪く850μm以上
の粗大粒子を多量に含み流動性の悪い粉粒状重合体しか
得られなかった。
Comparative Example 7 The amount of organic liquid used was 10% solids in the polymer latex.
A powdery granular polymer was obtained in the same manner as in Example 1 under the conditions shown in Table 5 with 180 parts by weight relative to 0 parts by weight. Although the amount of fine powder was small, the uniformity of the particles was 3.5, which was bad and contained only a large amount of coarse particles of 850 μm or more, so that only a granular polymer having poor fluidity was obtained.

実施例11 凝析槽の攪拌回転数を1200rpm、造粒槽の攪拌回転数
を1200rpmとして、第6表に示す条件で実施例1と同様
にして粉粒状重合体を得た。粒子の均整度が2.5以下と
粒度分布がシャープで、流動性も良好な粉粒状重合体が
得られた。
Example 11 A powdery polymer was obtained in the same manner as in Example 1 under the conditions shown in Table 6 with the stirring rotation speed of the coagulation tank set to 1200 rpm and the stirring rotation speed of the granulation tank set to 1200 rpm. A granular polymer having a particle size distribution of 2.5 or less and a sharp particle size distribution and good fluidity was obtained.

実施例12〜14 第7表の条件で実施例11と同様にして粉粒状重合体を
得た。造粒槽の全混合物に体する重合体の重量分率が高
いほど、嵩比重が大きくなった。
Examples 12 to 14 Powdered and granular polymers were obtained in the same manner as in Example 11 under the conditions shown in Table 7. The higher the weight fraction of polymer in the total mixture in the granulation tank, the higher the bulk specific gravity.

比較例8 造粒槽の全混合物に対する重合体の重量分率が8%と
低い以外は、実施例12〜14と同様にして粉粒状重合体を
得たが、嵩比重が著しく小さかった。
Comparative Example 8 A powdery granular polymer was obtained in the same manner as in Examples 12 to 14 except that the weight ratio of the polymer to the total mixture in the granulation tank was as low as 8%, but the bulk specific gravity was extremely low.

実施例15〜17 メチルメタクリレート(90重量%)とブチルアクリレ
ート(10重量%)との共重合体ラテックス(固形分含有
率27.8重量%)を用い、第8表の条件で実施例1と同様
にして粉粒状重合体を得た。粒子の均整度が2.5以下と
粒度分布がシャープで流動性も良好であった。
Examples 15 to 17 A copolymer latex of methyl methacrylate (90% by weight) and butyl acrylate (10% by weight) (solid content 27.8% by weight) was used and the same procedure as in Example 1 was carried out under the conditions shown in Table 8. To obtain a granular polymer. The uniformity of the particles was 2.5 or less, and the particle size distribution was sharp and the fluidity was good.

比較例9 実施例3において、造粒槽の温度を45℃に変更した以
外は全く同様にして粒状重合体を製造した。その評価結
果を表8に示した。
Comparative Example 9 A granular polymer was produced in the same manner as in Example 3, except that the temperature in the granulation tank was changed to 45 ° C. The evaluation results are shown in Table 8.

実施例18〜21 乳化重合法で得たメチルメタクリレート(85重量%)
とブチルアクリレート(15重量%)との共重合体ラテッ
クス(固形分含有率27.8%)と、第9表に示す種類の凝
析剤を、第9表に示す供給量で凝析槽(5)に定量ポン
プ(1),(3)で連続的に供給した。なお、凝析槽
(5)は円筒状であり、付設の攪拌機(6)は回転数70
0rpmで回転した。凝析スラリーは、凝析槽(5)のオー
バーフロー口からオーバーフローし、ライン(10)を経
て造粒槽(15)に入った。
Examples 18 to 21 Methyl methacrylate obtained by emulsion polymerization method (85% by weight)
Copolymer latex of styrene and butyl acrylate (15 wt%) (solid content 27.8%) and coagulant of the type shown in Table 9 at the supply amount shown in Table 9 in the coagulation tank (5) Was continuously supplied to the container by the metering pumps (1) and (3). The coagulation tank (5) had a cylindrical shape, and the stirrer (6) attached to it had a rotational speed of 70
It was rotated at 0 rpm. The coagulation slurry overflowed from the overflow port of the coagulation tank (5) and entered the granulation tank (15) via the line (10).

凝析スラリーが造粒槽(15)に入り始めると同時に、
有機液体および水を定量ポンプ(11),(13)で造粒槽
(15)に供給した。また第9表に示す種類および量の界
面活性剤を第9表に示す媒体に溶かして造粒槽(15)に
供給した。なお、造粒槽(15)は円筒状で、付設の攪拌
機(18)は回転数500rpmで回転した。
As soon as the coagulated slurry begins to enter the granulation tank (15),
The organic liquid and water were supplied to the granulation tank (15) by the metering pumps (11) and (13). Further, the kinds and amounts of the surfactants shown in Table 9 were dissolved in the media shown in Table 9 and supplied to the granulation tank (15). The granulating tank (15) had a cylindrical shape, and the attached stirrer (18) rotated at a rotation speed of 500 rpm.

造粒スラリーは、凝析槽(5)よりオーバーフロー
し、ライン(20)を経て固化槽(21)に入った。固化槽
(21)からスラリーがオーバーフローし始めてから8時
間経過後、約1のスラリーサンプルを採取し、脱水、
洗浄、乾燥を行い粉粒状重合体を得た。得られた粉粒状
重合体の嵩比重、平均粒子径、粒子分布、粒子の均整度
について測定した。
The granulated slurry overflowed from the coagulation tank (5) and entered the solidification tank (21) through the line (20). Eight hours after the slurry began to overflow from the solidification tank (21), about 1 slurry sample was taken and dehydrated,
It was washed and dried to obtain a powdery polymer. The bulk specific gravity, the average particle size, the particle distribution, and the uniformity of the particles of the obtained powdery granular polymer were measured.

また、分散媒と有機液体間の界面張力は、凝析槽
(5)からオーバーフローしたスラリーを固液分離して
得た分散媒に、造粒時と同じ量比および温度になるよう
に水、界面活性剤および有機液体を加えた混合物を、密
閉容器中に入れ1分間攪拌した後静置し、これを界面張
力測定用のシャーレに移し、協和科学(株)製の協和CB
VP式表面張力計A3型とガラス製測定プレートを用いて、
測定した。界面張力の測定法は以下の実施例および比較
例に共通である。測定結果を第9表に示す。微粉量が少
なく粒子の均整度が2.5以下と粒度分布がシャープであ
り、流動性の良好な粉粒状重合体が得られた。また界面
活性剤の有機液体に対する重合割合を増加させるに従い
平均粒子径が小さくなっており、平均粒子径の制御が可
能であった。
In addition, the interfacial tension between the dispersion medium and the organic liquid was determined by adding water to the dispersion medium obtained by solid-liquid separation of the slurry overflowing from the coagulation tank (5) so that the same amount ratio and temperature as during granulation were obtained. The mixture containing the surfactant and the organic liquid was placed in a closed container, stirred for 1 minute and then left to stand, transferred to a Petri dish for measuring interfacial tension, and manufactured by Kyowa Kagaku Co., Ltd. Kyowa CB.
Using VP type surface tension meter A3 type and glass measuring plate,
It was measured. The method for measuring the interfacial tension is common to the following examples and comparative examples. Table 9 shows the measurement results. A fine-grained polymer having a small amount of fine powder and a particle size distribution of 2.5 or less and a sharp particle size distribution and good fluidity was obtained. Further, the average particle diameter decreased as the polymerization ratio of the surfactant to the organic liquid increased, and the average particle diameter could be controlled.

参考例7 界面活性剤の添加量を第9表に示した量に増加した以
外は、実施例21と同様の方法で実施例27と同一の共重合
体ラテックスから粉粒状重合体を得た。得られた粉粒状
重合体の平均粒径は実施例27より低下したが、界面活性
剤の添加量が多く分散媒と有機液体(n−ヘプタン)間
の界面張力が低すぎるため、粒子の均整度が2.9と粒度
分布が広く、また37μm以下の微粉が極端に多かった。
Reference Example 7 A granular polymer was obtained from the same copolymer latex as in Example 27 by the same method as in Example 21, except that the amount of the surfactant added was increased to the amount shown in Table 9. The average particle size of the obtained powdery polymer was lower than that of Example 27, but the amount of the surfactant added was large and the interfacial tension between the dispersion medium and the organic liquid (n-heptane) was too low. The degree was 2.9 and the particle size distribution was wide, and the amount of fine powder of 37 μm or less was extremely large.

参考例8 界面活性剤を使用しない以外は実施例18と同様の方法
で、実施例24と同一の共重合体ラテックスを用いて粉粒
状重合体を得ることを試みた。しかし分散媒と有機液体
(n−ヘプタン)間の界面張力が大きすぎるため、造粒
槽内に粗大な粒子が蓄積し約10分後にオーバーフローラ
イン(20)が閉塞し、安定な造粒操作が行えなかった。
Reference Example 8 An attempt was made to obtain a powdery granular polymer by using the same copolymer latex as in Example 24 in the same manner as in Example 18 except that the surfactant was not used. However, since the interfacial tension between the dispersion medium and the organic liquid (n-heptane) is too large, coarse particles accumulate in the granulation tank and the overflow line (20) is blocked after about 10 minutes, and stable granulation operation is possible. I couldn't.

実施例22〜24 メチルメタクリレート(80重量%)とブチルアクリレ
ート(20重量%)の共重合体ラテックス(固形分27.8重
量%)を用い、凝析槽(5)および造粒槽(15)の攪拌
機回転数(攪拌機(6)および攪拌機(18)の回転数)
を1200rpmとした以外は、実施例18と同様の方法で、第1
0表の条件で、粉粒状重合体を得た。
Examples 22 to 24 Using a copolymer latex of methyl methacrylate (80% by weight) and butyl acrylate (20% by weight) (solid content 27.8% by weight), a stirrer for coagulation tank (5) and granulation tank (15) Number of rotations (number of rotations of stirrer (6) and stirrer (18))
Except that the speed was 1200 rpm, the same procedure as in Example 18 was repeated.
A powdery polymer was obtained under the conditions shown in Table 0.

微粉が少なく、粒度分布がシャープで流動性の良好な
粉粒状重合体が得られた。また、界面活性剤の添加量が
増加するに従い、平均粒子径が小さくなっており、粒子
径の制御が可能であった。
A finely divided powdery polymer having a sharp particle size distribution and good fluidity was obtained. Further, as the amount of the surfactant added increased, the average particle size became smaller, and it was possible to control the particle size.

実施例25〜27 ブタジエン(75重量%)とスチレン(25重量%)の組
成のゴム重合体60重量部に、メチルメタクリレート15重
量部とスチレン25重量部をグラフト重合した重合体ラテ
ックスを用いた以外は、実施例28と同様の方法で、第11
表の条件に従い造粒を行い粉粒状重合体を得た。
Examples 25 to 27 A polymer latex obtained by graft-polymerizing 15 parts by weight of methyl methacrylate and 25 parts by weight of styrene to 60 parts by weight of a rubber polymer having a composition of butadiene (75% by weight) and styrene (25% by weight) was used. In the same manner as in Example 28,
Granulation was performed according to the conditions in the table to obtain a powdery polymer.

微粉が少なく粒度分布がシャープで流動性も良好な粉
粒状重合体が得られた。また界面活性剤の添加量が増加
するに従い、平均粒径が小さくなっており、粒径の制御
が可能であった。
A powdery polymer having a small amount of fine powder and a sharp particle size distribution and good fluidity was obtained. Moreover, the average particle diameter decreased as the amount of the surfactant added increased, and the particle diameter could be controlled.

本発明の粉粒状重合体の製造法により、微粉が少な
く、かつ粒度分布がシャープであり、かつ嵩比重の制御
された粉粒状重合体が得られる。また使用する有機液体
が水に難溶でしかも使用量が少ないので、装置は小型で
良く、また有機溶剤の回収に必要なランニングコストも
非常に小さい。本発明により、乳化重合法で得られた重
合体を経済的に顆粒化することができる。さらに微粉が
少なく、かつ粒度分布がシャープな粉粒状重合体の粒径
を任意に制御することができ用途に最も適した粒径を有
する粉粒状重合体とすることができる等優れた効果を奏
する。
According to the method for producing a granular polymer of the present invention, a granular polymer having a small amount of fine powder, a sharp particle size distribution, and a controlled bulk specific gravity can be obtained. Further, since the organic liquid used is sparingly soluble in water and the amount used is small, the device can be small, and the running cost required for recovering the organic solvent is very small. According to the present invention, the polymer obtained by the emulsion polymerization method can be granulated economically. Further, it has an excellent effect such that the particle size of a powdery polymer having a small amount of fine powder and a sharp particle size distribution can be arbitrarily controlled, and a powdery polymer having a particle size most suitable for the application can be obtained. .

Claims (5)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】乳化重合法で得られた重合体ラテックスを
下記の工程(I)および工程(II)で順次処理すること
を特徴とする粉粒状重合体の連続的製造方法。 工程(I):重合体ラテックスを凝析し、凝析した粒子
が水に分散したスラリーとする工程。 工程(II):工程(I)で得られたスラリーと、水に難
溶でかつ前記重合体を溶解しない有機液体および所望に
応じて必要量の水を下記の(a)〜(c)の条件下で連
続的に混合し造粒する工程。 (a):全混合物中の水の割合が50〜85重量%である。 (b):前記有機液体が前記重合体ラテックス中の重合
体100重量部に対して20重量部〜60未満重量部である。 (c):全混合物の温度(℃)Tを下記式 A-26≦T≦A (式中、Aは混合物液の共沸温度(℃)を表わす。) の範囲において平均的に0.5分〜1時間保持する。
1. A continuous process for producing a powdery or granular polymer, which comprises successively treating a polymer latex obtained by an emulsion polymerization method in the following step (I) and step (II). Step (I): A step of coagulating the polymer latex to form a slurry in which coagulated particles are dispersed in water. Step (II): The slurry obtained in Step (I), an organic liquid that is sparingly soluble in water and does not dissolve the polymer, and, if desired, a necessary amount of water in the following (a) to (c) are added. A step of continuously mixing and granulating under conditions. (A): The proportion of water in the total mixture is 50 to 85% by weight. (B): 20 parts by weight to less than 60 parts by weight of the organic liquid with respect to 100 parts by weight of the polymer in the polymer latex. (C): The temperature (° C.) T of all the mixtures is averaged within 0.5 minutes in the range of the following formula A-26 ≦ T ≦ A (where A represents the azeotropic temperature (° C.) of the mixture liquid). Hold for 1 hour.
【請求項2】工程(II)で有機液体に対して0.05〜2重
量%量の分子内にスルホン酸基含有の陰イオン性界面活
性剤および/またはポリビニルアルコールを添加するこ
と、および造粒後に造粒した重合体粒子を固化処理する
請求の範囲1項記載の連続的製造方法。
2. In the step (II), an anionic surfactant containing a sulfonic acid group and / or polyvinyl alcohol is added in the molecule in an amount of 0.05 to 2% by weight based on the organic liquid, and after granulation, The continuous production method according to claim 1, wherein the granulated polymer particles are solidified.
【請求項3】工程(I)を下記の(d)および(e)の
条件下で実施し、 (d):凝析する温度が重合体ラテックス中の重合体の
ガラス転移温度より10℃以上低い温度。 (e):凝析した粒子の内、粒子直径が100μm以上の
粒子の割合が1重量%以下である。 かつ工程(II)で全混合物中の重合体の割合を10〜30重
量%とする請求項1または2記載の連続的製造方法。
3. The step (I) is carried out under the following conditions (d) and (e), and (d): the coagulation temperature is 10 ° C. or higher than the glass transition temperature of the polymer in the polymer latex. Low temperature. (E): Among coagulated particles, the proportion of particles having a particle diameter of 100 μm or more is 1% by weight or less. The continuous production method according to claim 1 or 2, wherein the proportion of the polymer in the total mixture is 10 to 30% by weight in the step (II).
【請求項4】添加する有機液体が、パラフィン系炭化水
素または脂環式炭化水素およびそのアルキル置換体であ
る請求の範囲1、2または3記載の連続的製造方法。
4. The continuous production method according to claim 1, 2 or 3, wherein the organic liquid to be added is a paraffinic hydrocarbon or an alicyclic hydrocarbon and an alkyl-substituted product thereof.
【請求項5】凝析したスラリーの分散媒と前記有機液体
との間の界面張力を0.5〜30dyne/cmの範囲とする請求の
範囲1、2、3または4記載の連続的製造方法。
5. The continuous production method according to claim 1, 2, 3 or 4, wherein the interfacial tension between the dispersion medium of the coagulated slurry and the organic liquid is in the range of 0.5 to 30 dyne / cm.
JP63507652A 1987-09-25 1988-09-26 Continuous production method of powdery and granular polymer and method of controlling particle size of the polymer Expired - Lifetime JP2559833B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63507652A JP2559833B2 (en) 1987-09-25 1988-09-26 Continuous production method of powdery and granular polymer and method of controlling particle size of the polymer

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP24179887 1987-09-25
JP62-241798 1987-09-25
JP63507652A JP2559833B2 (en) 1987-09-25 1988-09-26 Continuous production method of powdery and granular polymer and method of controlling particle size of the polymer

Publications (1)

Publication Number Publication Date
JP2559833B2 true JP2559833B2 (en) 1996-12-04

Family

ID=26535455

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63507652A Expired - Lifetime JP2559833B2 (en) 1987-09-25 1988-09-26 Continuous production method of powdery and granular polymer and method of controlling particle size of the polymer

Country Status (1)

Country Link
JP (1) JP2559833B2 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS595610A (en) * 1982-06-30 1984-01-12 Mitsubishi Electric Corp Transformer

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS595610A (en) * 1982-06-30 1984-01-12 Mitsubishi Electric Corp Transformer

Similar Documents

Publication Publication Date Title
JP5010465B2 (en) Method for producing coagulated latex particles
US4581444A (en) Flocculation of latex particles and production of thermoplastic resin
JPH0653810B2 (en) Granular polymer and method for producing the same
KR20070115980A (en) Process for producing aggregated latex particle
US4767803A (en) Method of producing coagulated colloidal particles
JP2890387B2 (en) Method for producing granular polymer
US4792490A (en) Compacted agglomerates of polymer latex particles
US5064938A (en) Continuous production process of particulate polymer and control method of the particle size of said polymer
AU625002B2 (en) Production process of particulate polymer
JP2559833B2 (en) Continuous production method of powdery and granular polymer and method of controlling particle size of the polymer
US4119759A (en) Powdered rubber
JP2977589B2 (en) Method for producing powdery granular polymer
US2542559A (en) Treatment of isobutylene polymer slurry to enlarge particle size
JPH0580937B2 (en)
JP2721717B2 (en) Method for producing powdery granular polymer
JPH0247482B2 (en) NETSUKASOSEIJUSHINOSEIZOHOHO
JP3505870B2 (en) Spherical polymer particles
JPS59155402A (en) Production of thermoplastic resin
JPH0459010B2 (en)
JPH03223303A (en) Production of particulate polymer
JPH0329812B2 (en)
JPS595610B2 (en) Method for producing graft copolymer
JPH01230605A (en) Method and apparatus for production of coagulated resin
JPH0386702A (en) Production of powdery polymer of excellent powder property
JPS6230106A (en) Method of recovering polymer