JPS60163933A - Recovery of polymer - Google Patents
Recovery of polymerInfo
- Publication number
- JPS60163933A JPS60163933A JP1698484A JP1698484A JPS60163933A JP S60163933 A JPS60163933 A JP S60163933A JP 1698484 A JP1698484 A JP 1698484A JP 1698484 A JP1698484 A JP 1698484A JP S60163933 A JPS60163933 A JP S60163933A
- Authority
- JP
- Japan
- Prior art keywords
- particles
- coagulation
- polymer
- thermoplastic resin
- coagulant
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Processes Of Treating Macromolecular Substances (AREA)
Abstract
Description
【発明の詳細な説明】
本発明は熱可塑性樹脂ラテックスからスクリーータイグ
絞シ脱水機を用いて連続的に重合体を回収する方法にか
んする◎
従来、熱可塑性樹脂ラテックスから重合体を回収する方
法として、通常最も多く採用されている方法は、熱可塑
性樹脂ラテックスに含まれる乳化剤を失活させる、いわ
ゆる凝固剤の添加により、凝固し遊離した微細な重合体
を合着造粒し、p過酸いは遠心脱水し、ある程度水分を
除いた後、さらに気流及び流動乾燥機で熱風乾燥後押出
機にて重合体を回収するという極めて多重多様の工程を
必要とし、かつ多大なユーティリティや労力を脅すこと
、工程中のロスが大きいこと、異物の混入を防ぐことが
困難なこと、吐出が不安定なことなどの好ましくない点
が多い。[Detailed Description of the Invention] The present invention relates to a method for continuously recovering a polymer from a thermoplastic resin latex using a scree tie squeeze dehydrator. Conventionally, as a method for recovering a polymer from a thermoplastic resin latex, The most commonly used method is to add a so-called coagulant, which deactivates the emulsifier contained in thermoplastic resin latex, to coalesce and granulate the coagulated and liberated fine polymers. Requiring extremely multiple and diverse processes such as centrifugal dehydration to remove a certain amount of water, drying with hot air in an airflow and fluidized dryer, and then recovering the polymer in an extruder, and requiring a great deal of utility and labor; There are many undesirable points such as large losses during the process, difficulty in preventing foreign matter from entering, and unstable discharge.
そこでこれらの欠点を改良するために種々の検討が行わ
れ、たとえば熱可塑性樹脂ラテックスを凝固処理した稜
、スラリー状でスクリュータイプの絞シ脱水機に供給し
、スクリュー内部で機械的絞りを行い大部分の水をスク
リュー後部に設けた脱水機構部よシスラリ−から脱水し
、さらにスクリュータイプに位置するペントロよシ残シ
の水分を排出し溶融した重合体を連続的に回収するとい
う、従来の凝固−説水一乾燥一造粒という多様の工程の
内、脱水、乾燥、造粒が一気に行なわれ、工程の簡略化
を可能にする方法が提案されている。Therefore, various studies have been conducted to improve these shortcomings. For example, thermoplastic resin latex is fed into a screw-type squeezing dehydrator in the form of a coagulated ridge or slurry, and then mechanically squeezed inside the screw to create a large Conventional coagulation involves dehydrating the water from the cis slurry using a dehydration mechanism installed at the rear of the screw, then draining the residual water from the pentrol located at the screw type and continuously recovering the molten polymer. - A method has been proposed that allows dehydration, drying, and granulation to be performed all at once among the various processes of soaking, drying, and granulation, thereby simplifying the process.
(特公昭50−17227号、特開昭56−13165
6号等)。しかしながら、前記の従来凝固法で得られる
凝固物は、凝固剤に無機酸を用いた場合、回収した粒子
は粗いものも含まれるが微細粒子もかなシ存在する巾の
広い粒径分布を呈し、又無機塩を用いた場合は、微細粒
子を多く含んだ粒径となる。従ってスクリュータイプ絞
シ脱水機を使用することで、造粒そのものは問題なく、
かつ工程の簡略化という点ではすぐれているものの、微
細粒子が脱水機構部から水に同伴して洩れそれがロスと
なシ、重合体を効率よく回収できないはかシか逆に洩れ
た微細粒子を回収するという余分の一工程の追加が、必
要となる、又吐出安定性が悪い勢の欠点が存在する。(Special Publication No. 50-17227, Japanese Patent Publication No. 56-13165
No. 6, etc.). However, when an inorganic acid is used as a coagulant, the coagulated material obtained by the conventional coagulation method described above exhibits a wide particle size distribution in which the recovered particles include coarse particles but also some fine particles. Furthermore, when an inorganic salt is used, the particle size will include many fine particles. Therefore, by using a screw type squeezing dehydrator, there is no problem with the granulation itself.
Although it is excellent in terms of simplifying the process, fine particles may leak along with water from the dehydration mechanism, resulting in loss, and the polymer may not be efficiently recovered or the fine particles leaked out. It requires an additional process of recovering the liquid, and there are disadvantages in that the discharge stability is poor.
そこで本発明の目的とするところの如何にして粒子の洩
れを防止して回収効率をあげ、かつ吐出安定性を向上さ
せるかという点について鋭意検討した。その方法として
■脱水機構をフィルター又はスリット構造とし開口サイ
ズを小さくするが、■凝固粒子を肥大化させるべく凝固
法の改善が考えられた。しかしながら■項の脱水機構の
開口サイズを小さくするには機械的強度の制約ならびに
脱水量の減少による能力低下などのためおのずと限界が
ある。Therefore, intensive studies were conducted to find out how to prevent particle leakage, increase collection efficiency, and improve discharge stability, which is the objective of the present invention. As a method, (1) the dehydration mechanism is made to have a filter or slit structure to reduce the opening size, and (2) improvements in the coagulation method were considered in order to enlarge the coagulated particles. However, there are limits to reducing the opening size of the dewatering mechanism described in item (2) due to constraints on mechanical strength and a decrease in capacity due to a decrease in the amount of water removed.
そのため本発明者らは、■項の粒子肥大化するための凝
固法の改善について種々鋭意研究を行った結果、適当な
凝固法をスクリュータイプの絞シ脱水機と組合せること
で回収効率及び吐出安定性が着しく向上することを見出
し本発明に到達した。Therefore, the inventors of the present invention conducted various intensive research on improving the coagulation method for enlarging the particles described in item The present invention was achieved by discovering that stability is significantly improved.
本発明に従って熱可塑性樹脂ラテックスから重合体を回
収する方法において、熱可塑性樹脂ラテックスを凝固処
理し、凝固粒子を肥大化させて粒径が0.251m以上
の大きい粒子をスラリー粒子全体の80%以上含有する
スラリーを形成させ、ついでかくして得られた大粒径の
粒子よシなるスラリーをスクリュータイプ絞シ脱水機に
供給することを特徴とする、熱可塑性樹脂ラテックスか
ら重合体の回収方法が提供される。In the method for recovering a polymer from a thermoplastic resin latex according to the present invention, the thermoplastic resin latex is coagulated, the coagulated particles are enlarged, and large particles with a particle size of 0.251 m or more account for 80% or more of the total slurry particles. A method for recovering a polymer from a thermoplastic resin latex is provided, the method comprising forming a slurry containing particles with a large particle size and then feeding the slurry containing particles with a large particle size thus obtained to a screw-type squeezing dehydrator. Ru.
本発明に適用される熱可塑性樹脂ラテックスとしては例
えば一般の乳化重合法で得られた■スチレン、α−メチ
ルスチレンなどのアルケニル芳香族単量体の重合体ラテ
ックス、■アクリロニトリル、メタアクリロニトリル、
メチルアクリレート、メチルメタアクリレート、ブチル
メタアクリレートなどめアクリル系単量体の重合体ラテ
ックス、■上記単量体の二種以上の混合物からなる共重
合体ラテックス、■上記単量体の少なくとも一種とポリ
ブタジェン又はブタジェンと七ジオレフィン糸単量体の
ブタジェン糸共重合体とのグラフト重合体ラテックス、
■上記単量体の少なくとも一種とポリブタジェンとブタ
ジェン糸共重合体の混合物とのグラフト重合体ラテック
ス、■前記の重合体ラテックス、共重合体ラテックス及
びグラフト重合体ラテックスの二種以上の混合ラテック
スが挙げられる。Examples of the thermoplastic resin latex that can be applied to the present invention include (1) a polymer latex of alkenyl aromatic monomers such as styrene and α-methylstyrene obtained by a general emulsion polymerization method, (2) acrylonitrile, methacrylonitrile,
Polymer latex of acrylic monomers such as methyl acrylate, methyl methacrylate, butyl methacrylate, ■ Copolymer latex consisting of a mixture of two or more of the above monomers, ■ At least one of the above monomers and polybutadiene or a graft polymer latex of butadiene and a butadiene yarn copolymer of a heptadolefin yarn monomer,
■Graft polymer latex of at least one of the above monomers and a mixture of polybutadiene and butadiene yarn copolymer; ■Mixed latex of two or more of the above polymer latex, copolymer latex, and graft polymer latex. It will be done.
本発明において凝固法の一つの好ましい態様として凝固
剤分割添加凝固法とは、熱可塑性樹脂ラテックスを凝固
させるに適当な凝固剤の一部を熱可塑性樹脂ラテックス
に添加し、好膚しくけ供給途中で混合させ、均一な高粘
度クリームをつくる。In the present invention, one preferable embodiment of the coagulation method is the coagulant divided addition coagulation method, in which a part of a coagulant suitable for coagulating the thermoplastic resin latex is added to the thermoplastic resin latex, and the coagulant is added to the thermoplastic resin latex during supply. Mix to create a uniform high viscosity cream.
そしてこの高粘度クリームをフィードノズルからストラ
ンド状で凝固槽に供給する。この時ノズルの閉塞防止の
ためノズル内部に掻き取シ機構を有するのが望ましい。This high viscosity cream is then fed in the form of a strand from a feed nozzle to a coagulation tank. At this time, it is desirable to have a scraping mechanism inside the nozzle to prevent the nozzle from clogging.
上記凝固槽内に更に凝固剤の残量を添加しつつ、かつ加
温及び攪拌されておシ、ここでストランド状の高粘度ク
リームは凝固される。さらに凝固槽同様加温、攪拌され
ている熟成槽内で粒子は熟成され強固な大粒径の粒子を
得る方法である。該凝固法によって得られた微細粒子を
殆んど含まないスラリーをスクリーータイノ絞シ脱水機
に供給すると脱水機構からの粒子洩れは著しく減少し、
ロスの少ないかつ工程が簡略化される新規な効率の良い
重合体の連続回収プロセスが可能となる。本発明は、上
記の如く微細粒子発生量の少ない凝固法とスクリーータ
イプ絞シ脱水機との組合わせを特徴とした重合体の回収
方法を提供するものである。The remaining amount of the coagulant is further added to the coagulation tank and heated and stirred, whereby the strand-shaped high viscosity cream is coagulated. Furthermore, the particles are aged in a maturing tank which is heated and stirred in the same manner as the coagulation tank to obtain strong, large-sized particles. When the slurry containing almost no fine particles obtained by this coagulation method is supplied to the Scree-Tino squeezing dehydrator, particle leakage from the dehydration mechanism is significantly reduced.
A new and efficient continuous polymer recovery process with less loss and simplified steps becomes possible. The present invention provides a method for recovering a polymer, which is characterized by a combination of a coagulation method that generates a small amount of fine particles as described above, and a scree type wringer dehydrator.
本発明における凝固法に用いられる凝固剤は、無機塩類
ではたとえばCaCl2. BaCl2. MgCl2
゜ZiCZ2j Az2(so4)3及びMgSO4:
無機酸類ではたとえばHCl 、 H2SO4などから
選ばれた化合物又はそれらの混合物である。上記凝固法
において凝固剤が無機塩でも無機酸でも得られる粒子径
には大差ないかに酸は粒子中に残存する硫酸根によって
設備、機器の腐食が懸念されるため、好ましくは無機塩
が良い。The coagulant used in the coagulation method of the present invention is an inorganic salt such as CaCl2. BaCl2. MgCl2
゜ZiCZ2j Az2(so4)3 and MgSO4:
Examples of inorganic acids include compounds selected from HCl, H2SO4, etc., or mixtures thereof. In the above-mentioned coagulation method, there is no significant difference in the particle size obtained whether the coagulant is an inorganic salt or an inorganic acid.Since acids are concerned about corrosion of equipment and equipment due to sulfate groups remaining in the particles, inorganic salts are preferred.
凝固剤量は熱可塑性樹脂ラテックスの重合時に使用され
る乳化剤の種類、量によシ決定されるものでおるが、一
般に重合体に対して0.5〜5.0重i%、好マシくは
1.0〜303にニーJisである。0.5重量%未満
では、ラテックスの凝固が不十分であシ、使用量が5.
0重量%を越えても得られる凝固状態、粒径には殆んど
変υがなく不経済である。The amount of coagulant is determined by the type and amount of emulsifier used during polymerization of thermoplastic resin latex, but it is generally 0.5 to 5.0% by weight based on the polymer, which is better. is from 1.0 to 303. If it is less than 0.5% by weight, the coagulation of the latex will be insufficient, and the amount used will be less than 5% by weight.
Even if it exceeds 0% by weight, there is almost no change in the coagulation state or particle size, which is uneconomical.
凝固剤量の分割比は、一段目の添加において均一な高粘
度クリームを生成させるに重要であシ、少なすぎるとス
トランド状に押出形成できる粘度に上がらず、又多すぎ
るとクリーム状でなく、流動性のないモグサ状となる。The dividing ratio of the amount of coagulant is important in order to produce a uniform high viscosity cream in the first stage of addition; if it is too small, the viscosity will not reach a level that can be extruded into strands, and if it is too large, the cream will not be creamy. It becomes moxa-like with no fluidity.
このため均一な高粘度状クリームを得るためには全添加
量の30〜60チを第一段目で添加するが、これは予め
テストにより、その粘度、性状から最適量をめるのがよ
い。高粘度クリームの生成は、必要に応じてラインミキ
サー等の混合機を使用することもできる。Therefore, in order to obtain a uniform and highly viscous cream, 30 to 60 g of the total amount should be added in the first step, but it is best to determine the optimum amount based on the viscosity and properties of the cream by testing in advance. . A mixer such as a line mixer may be used to generate the high viscosity cream, if necessary.
この高粘度クリームをフィードノズルからストランド状
で排出させるわけであるが、ストランド状に排出させる
だめのフィードノズルのノズル径μ2〜10s+iφが
適当である。2nφ未満だとクリームがフィードノズル
から噴射され、微細粒子が発生しやず(,101mφを
こえる場合は粗大々不拘−粒子となシ凝固槽での攪拌で
こわれやすい。好ましいノズル径は3〜5闘φでこの大
きさだと高粘度クリームが均一に排出され、しかもフィ
ードノズル内部に設けられている掻き取シ機構が常時回
転していると、ノズルの閉塞もなくスムースに排出され
る。This high viscosity cream is discharged from the feed nozzle in the form of a strand, and it is appropriate that the nozzle diameter of the feed nozzle for discharging the cream in the form of a strand is μ2 to 10s+iφ. If it is less than 2nφ, the cream will be injected from the feed nozzle and fine particles will not be generated (if it exceeds 101mφ, it will become coarse particles and will be easily broken by stirring in the coagulation tank.The preferred nozzle diameter is 3 to 5 With a diameter of this size, high viscosity cream can be discharged uniformly, and if the scraping mechanism provided inside the feed nozzle is constantly rotating, it can be discharged smoothly without clogging the nozzle.
排出されたクリームは二段目として残シの凝固剤が添加
されかつ高温で攪拌されている上記の凝固槽内に供給さ
れ凝固される。次いで同じく高温で攪拌している熟成槽
へ送られさらに熟成され強固な大粒径の粒子となる。槽
内の温度は、熱可塑性樹脂ラテックスにもよるが、一般
的としては、70℃以上が好ましい。又攪拌は槽内のス
ラリー粒子が均一に分散している程度の回転数でよい。The discharged cream is fed into the above-mentioned coagulation tank as a second stage, where the remaining coagulant is added and stirred at high temperature, where it is coagulated. Next, it is sent to an aging tank which is also stirred at a high temperature, where it is further aged to form strong, large-sized particles. The temperature in the tank depends on the thermoplastic resin latex, but is generally preferably 70° C. or higher. Further, stirring may be performed at a rotational speed such that the slurry particles in the tank are uniformly dispersed.
こうした凝固法で得られた強固な大粒径の粒子からなる
スラリーをスクリエータイプ絞シ脱水機に供給すると、
スラリーは絞シ脱水機内で機械的に圧搾され絞シ出され
た水分は絞シ脱水機内に設けられた脱水機構部から排出
される。スラリー粒径を大きく強固にしたことによシ、
このとき排出される水中への粒子の同伴は非常に少なく
、スラリーは殆んど全量絞シ脱水機内で溶融され残存ぜ
る少量の水はベントロから排出され乾燥した樹脂が先端
よシ押出される。このように凝固剤分割添加凝固法と絞
シ脱水機とを組合わせることで1.ロスの非常に少ない
、かつ工程の簡略された効率のよい回収プロセスができ
る。又、回収された重合体の品質も何ら従来の凝固法で
得られる品質と変わることはない。When the slurry made of strong, large-sized particles obtained by this coagulation method is fed to a scree-type squeezing dehydrator,
The slurry is mechanically squeezed in the wringer dehydrator, and the squeezed out water is discharged from a dewatering mechanism provided in the wringer dehydrator. By making the slurry particle size larger and stronger,
At this time, there are very few particles entrained in the discharged water, and almost all of the slurry is wrung out and melted in the dehydrator, the remaining small amount of water is discharged from the vent, and the dried resin is extruded from the tip. . In this way, by combining the coagulant division addition coagulation method and the squeezing dehydrator, 1. An efficient collection process with very little loss and simplified steps can be achieved. Furthermore, the quality of the recovered polymer is no different from that obtained by conventional coagulation methods.
本発明において凝固法の別の態様である加圧凝固法とは
、耐圧凝固槽内で加圧下に重合体の熱変形温度以上の温
度領域において熱可塑性樹脂ラテックスと凝固液とを接
触させ瞬間的に凝固させ粒子を得る凝固法である。条件
としては、圧力05〜1.8 Kf7cm Gの加圧下
で凝固温度11O〜130℃の範囲で凝固するのが望ま
しい。例えば、凝固剤に無機塩を用いて従来の凝固法で
凝固した場合、得られる凝固粒子は微粒子を多く含んだ
ものとなシ回収亀が非常に悪くなるが上記加圧凝固法で
凝固した場合、微粒子の少ない粒径分布のシャープなも
のが得られ従って回収率も向上する。In the present invention, the pressure coagulation method, which is another embodiment of the coagulation method, refers to the instantaneous coagulation method in which the thermoplastic resin latex and coagulation liquid are brought into contact with each other under pressure in a pressure-resistant coagulation tank in a temperature range equal to or higher than the heat distortion temperature of the polymer. This is a coagulation method to obtain particles by coagulating the particles. As for the conditions, it is desirable to solidify under a pressure of 05 to 1.8 Kf7cm G and a solidification temperature in the range of 110 to 130°C. For example, when coagulating using a conventional coagulation method using an inorganic salt as a coagulant, the resulting coagulated particles will contain many fine particles and the recovery rate will be very poor, but when coagulating using the pressure coagulation method described above, A sharp particle size distribution with fewer fine particles can be obtained, and the recovery rate can therefore be improved.
又、重合体の回収において、凝固スラリーをスクリュー
タイプの絞シ脱水機に供給すると機内でスラリーは脱水
、乾燥、溶融されるので、ことに他のi+++原料(例
えばアクリロニトリル−スチレン共重合体等)や添加剤
などを供給して同時にブレンド処理を行うプロセスとし
ての応用も可能である。In addition, when recovering the polymer, when the solidified slurry is fed to a screw-type wringer dehydrator, the slurry is dehydrated, dried, and melted inside the machine, so that other i+++ raw materials (such as acrylonitrile-styrene copolymer, etc.) It is also possible to apply it as a process in which blending is performed simultaneously by supplying additives, etc.
以下に実施例及び比較例によって本発明の詳細な説明す
る。尚以下の実施例、比較例における部及びチは特に断
らない限り、重量部及び重量%を意味する。又スクリュ
ータイプ絞シ脱水機の型式は実施例に記載のものに限定
されるものではなく一軸又は二軸、スクリューの噛み合
い、非噛み合いベントの有無、段数等特に制約するもの
ではない。The present invention will be explained in detail below using Examples and Comparative Examples. Note that parts and parts in the following Examples and Comparative Examples mean parts by weight and weight % unless otherwise specified. Further, the type of the screw type wringer dewatering machine is not limited to those described in the examples, and there are no particular restrictions on the type of screw type, such as single screw or double screw, meshing of the screws, presence or absence of non-meshing vents, number of stages, etc.
実施例1
(熱可塑性樹脂ラテックスIの製造)
ポリブタジェンラテックス25部(固形分)にステアリ
ン酸ソーダ1部、蒸留水200部及び触媒量のラジカル
重合触媒を混合し、これにスチレン53部、アクリロニ
トリル22部からなる混合物を滴下し乳化重合すること
によ如固形分含有量aO*の熱可塑性樹脂ラテックス■
を得た。Example 1 (Manufacture of thermoplastic resin latex I) 25 parts of polybutadiene latex (solid content) were mixed with 1 part of sodium stearate, 200 parts of distilled water, and a catalytic amount of a radical polymerization catalyst, and 53 parts of styrene, A thermoplastic resin latex with a solids content of aO* is produced by dropping a mixture of 22 parts of acrylonitrile and emulsion polymerizing it.
I got it.
(凝固)
上記ラテックスを用い第1図に示す凝内装徊゛によシ第
1表の凝固条件で凝固剤分割添加凝固法を下記のとお如
実施した。(Coagulation) Using the above latex, a coagulant-divided addition coagulation method was carried out as follows under the coagulation conditions shown in Table 1 and the coagulation interior shown in FIG.
熱可塑性樹脂ラテックスは貯蔵タンク1からフィードデ
ンプ2によシ供給される。一段目の凝固剤水溶液は3の
貯蔵タンクからフィードポンゾ4で供給される。ラテッ
クスと凝固剤水溶液の合流部5で高粘度クリームが生成
し6のフィードノズル(掻き取シ式)からストランド状
となって8の凝固槽へ排出される。凝固槽内に、二段目
の凝固剤水溶液を貯1タンク7から添加し、かつ加熱用
蒸気管10及び攪拌翼12によシ加温、攪拌されておシ
フリームは凝固される。次いで9の熟成槽へ送られ、こ
こでも加熱用蒸気1管11及び攪拌翼13によシ加温、
攪拌されており凝固物はさらに熟成され強固な大粒径の
粒子を形成する。Thermoplastic resin latex is supplied from a storage tank 1 to a feed starch 2. The first stage coagulant aqueous solution is supplied from a storage tank 3 by a feed pump 4. A high viscosity cream is generated at the confluence section 5 of the latex and coagulant aqueous solution, and is discharged from a feed nozzle 6 (scraping type) into a strand shape into a coagulation tank 8. A second-stage coagulant aqueous solution is added into the coagulation tank from the storage tank 7, and is heated and stirred by the heating steam pipe 10 and stirring blades 12 to coagulate the Shifreem. Next, it is sent to the aging tank 9, where it is also heated by a heating steam pipe 11 and a stirring blade 13.
While being stirred, the coagulated material is further matured to form strong, large-sized particles.
第1表に凝固条件を記す。Table 1 shows the coagulation conditions.
第1表
以上の凝固条件で実施した結果第2表の如く粒径分布の
粒子を得た。As a result of carrying out the coagulation under the coagulation conditions shown in Table 1 or higher, particles having a particle size distribution as shown in Table 2 were obtained.
(スクリュータイプ絞シ脱水機による造粒)前記凝固法
で得られた粒子をスラリー濃度2゜チに調整し、絞シ脱
水機にょる造粒を実施した。(Pelletization using a screw-type wringer dehydrator) The particles obtained by the above coagulation method were adjusted to a slurry concentration of 2°, and granulated using a wringer dehydrator.
スクリーータイプ絞シ脱水機は第2図に示すとおシであ
り、スクリーー二二軸噛合い同方向50nφ、い=28
.4、ベント:2段、脱水スリット二目開きO−25m
m(60m@i+hに相当)。The scree type squeezing dewatering machine is shown in Fig. 2, and the scree has two shafts meshing in the same direction, 50nφ, i=28
.. 4. Vent: 2 stages, double dehydration slit opening O-25m
m (equivalent to 60m@i+h).
第2図においてフィードホッパー1から投入されたスラ
リーは2のスクリューフィーダーを経てスクリュータイ
プ絞シ脱水機3へ供給される。スラリーは絞シ脱水機内
で機械的に圧搾され、絞ル出された大部分の水は4の脱
水スリットから排出される。この脱水スリットの目開き
は0.25 ramで60m@shに相当する。4の脱
水スリットから大部分の水が排出されたスラリーはその
後溶融状態となシ、残存する少量の水はベントロ5から
排出され、重合体が連続的に回収される。得られた重合
体は発泡もなく、乾燥も十分で従来の凝固−脱水−乾燥
−造粒で得られるものと比較しても伺ら遜色はない。In FIG. 2, slurry introduced from a feed hopper 1 is supplied to a screw type wringer dehydrator 3 via a screw feeder 2. The slurry is mechanically squeezed in a squeezing dehydrator, and most of the squeezed water is discharged from the dewatering slit 4. The opening of this dehydration slit is 0.25 ram, which corresponds to 60 m@sh. The slurry from which most of the water has been discharged from the dehydration slit 4 is then kept in a molten state, and the remaining small amount of water is discharged from the vent 5, and the polymer is continuously recovered. The obtained polymer has no foaming, dries well, and is comparable to that obtained by conventional coagulation-dehydration-drying-granulation method.
この実施例−1の凝固において得られたスラリー粒径は
前記第2表の如(0,25mm、以上の粒子が全粒子の
83俤を占めておシ、絞シ脱水機からの脱水液中への洩
れ粒子及びその粒径分布は第6表の結果となった。The particle size of the slurry obtained in the coagulation of Example 1 is as shown in Table 2 above (0.25 mm or larger particles accounted for 83 mm of the total particles). The leaked particles and their particle size distribution are shown in Table 6.
実施例2
(熱可塑性樹脂ラテックス■の製造)
ポリブタジェンラテックス18部(固形分)にステアリ
ン酸ソーダ1部、蒸留水200部及び触媒量のラジカル
重合触媒を混合し、これにスチレン60部及びアクリロ
ニトリル22部からなる混合物を滴下し、固形分含有量
32’%の熱可塑性樹脂ラテックス■を得た。Example 2 (Production of thermoplastic resin latex ■) 18 parts of polybutadiene latex (solid content) was mixed with 1 part of sodium stearate, 200 parts of distilled water, and a catalytic amount of a radical polymerization catalyst, and 60 parts of styrene and A mixture consisting of 22 parts of acrylonitrile was added dropwise to obtain a thermoplastic resin latex (2) with a solids content of 32'%.
(凝固)
上記ラテックスを用い第3図に示す凝固装置で加圧凝固
法を以下のとお如実施した。(Coagulation) Using the above latex, a pressure coagulation method was carried out in the coagulation apparatus shown in FIG. 3 as follows.
第3図において凝固槽1は、内容積7Jの耐圧攪拌槽で
攪拌翼2は直径110m1の45°傾斜3枚パドル翼で
あル、3段設置されている。攪拌軸は無段変速機9によ
j) 1200 rpmに調整した。ラテックスは、凝
固槽下部の配管4を通って、凝固機に供給される。凝固
剤溶液及び加熱用蒸気は凝固槽底部5及び6の配管から
供給され、凝固したスラリーは凝固槽上部横配管7から
排出されるように設置されている@
100℃以上の凝固温度が必要な場合には、凝固槽内圧
を一定に調節するために凝固スラリー排出管7に圧力調
整弁10を設置した。凝固槽内の液温度社、温度計8に
よシ検知され、水蒸気流量を調節することによυ所定温
度に調節することができる。In FIG. 3, the coagulation tank 1 is a pressure-resistant stirring tank with an internal volume of 7 J, and the stirring blades 2 are three paddle blades with a diameter of 110 m1 and inclined at 45°, and are installed in three stages. The stirring shaft was adjusted to 1200 rpm using a continuously variable transmission 9. The latex is supplied to the coagulation machine through piping 4 at the bottom of the coagulation tank. The coagulant solution and heating steam are supplied from piping at the bottom of the coagulation tank 5 and 6, and the solidified slurry is discharged from the horizontal pipe 7 at the top of the coagulation tank. In this case, a pressure regulating valve 10 was installed in the coagulation slurry discharge pipe 7 to keep the internal pressure of the coagulation tank constant. The temperature of the liquid in the coagulation tank is detected by a thermometer 8, and can be adjusted to a predetermined temperature by adjusting the water vapor flow rate.
凝固にさいし、凝固槽攪拌軸の回転を120゜rpm(
C調整して、熱可塑性樹脂ラテックス■を1、 Om
/hr 、 Q、 5%CaC12水溶液を1.2 m
/hrの割合で定量ポンプにて凝固槽に供給した。同
時に圧力3Kg/cm2Gの水蒸気を凝固槽内に導入し
、凝固槽内の液温度を105℃に調整した。尚、凝固槽
内圧を0.5 Kg/cm ・cに調整すべく、スラリ
ー排出管圧力NIl!l整弁を作動させた。During coagulation, the rotation of the coagulation tank stirring shaft was set at 120° rpm (
Adjust the thermoplastic resin latex to 1,000 m
/hr, Q, 1.2 m of 5% CaC12 aqueous solution
/hr was supplied to the coagulation tank using a metering pump. At the same time, water vapor at a pressure of 3 kg/cm2G was introduced into the coagulation tank, and the liquid temperature in the coagulation tank was adjusted to 105°C. In addition, in order to adjust the coagulation tank internal pressure to 0.5 Kg/cm ・c, the slurry discharge pipe pressure NIl! I activated the valve control.
上記凝固法によって得られた粒子の粒径分布は第3表の
如くであった。The particle size distribution of the particles obtained by the above coagulation method was as shown in Table 3.
第 3 宍
(スクリュータイツ絞ル脱水機による造粒)上記凝固法
で得られた粒子を実施例−1と同条件で絞ル脱水機にて
造粒を実施した。結果は第6表の如く、実施例−1と同
様となった。No. 3 (Pelletization using a screw tights wringer dehydrator) The particles obtained by the above coagulation method were granulated using a wringer dehydrator under the same conditions as in Example-1. The results, as shown in Table 6, were the same as in Example-1.
比較例1
実施例1で得られた熱可塑性樹脂ラテックス夏を用い、
第4図に示す凝固装置を使用する従来の凝固法によシ凝
固を実施した。Comparative Example 1 Using the thermoplastic resin latex summer obtained in Example 1,
Coagulation was performed by a conventional coagulation method using the coagulation apparatus shown in FIG.
熱可塑性樹脂ラテックスは貯蔵タンク1からフィードポ
ン7°2にて凝固槽5に導入される。凝固剤3は希釈水
4と配管中で混合され、凝固剤水溶液として同じく凝固
槽へ導入される。凝固槽は水蒸気9及び攪拌翼7によっ
て加熱攪拌されておシ、ここへ導入されたラテックスと
凝固剤水溶液は接触混合され凝固スラリーとなる。次い
でスラリー(17)
は凝固槽のオーバーフローシュートから熟成槽6へ導入
され熟成槽も凝固槽同様水蒸気lO及び攪拌翼8にて加
熱攪拌されておシ、粒子は熟成される。The thermoplastic resin latex is introduced from the storage tank 1 into the coagulation tank 5 through the feed pump 7°2. The coagulant 3 is mixed with dilution water 4 in a pipe, and is also introduced into the coagulation tank as an aqueous coagulant solution. The coagulation tank is heated and stirred by steam 9 and stirring blades 7, and the latex introduced therein and the aqueous coagulant solution are contacted and mixed to form a coagulation slurry. Next, the slurry (17) is introduced into the ripening tank 6 from the overflow chute of the coagulation tank, and the maturing tank is heated and stirred by steam lO and stirring blades 8, like the coagulation tank, to ripen the particles.
第4表に示す凝固条件で凝固を実施した結果、第5表の
粒径分布の粒子が得られた。As a result of coagulation under the coagulation conditions shown in Table 4, particles having the particle size distribution shown in Table 5 were obtained.
第 4 表
第 5 表
(スクリーータイプ絞シ脱水機による造粒)実施例−1
で使用したスクリエータイプ絞シ脱水機にて実施例−1
と同条件にて造粒を実施したが、上記凝固法で得られた
粒子は微細粒子が多く脱水スリットの口開き(0,25
mII s 60ml5h相当)よシ大きな粒子は60
%と実施例−1及び2に比べ少ない。造粒そのものに関
しては吐出がやや不安定であシ、そして脱水スリットか
ら多量の粒子が洩れ、その脱水液は白濁している。固形
分にして6〜8チで洩れ率はフィードに対して18q6
と多く非常に効率の−悪い重合体の回収方法である。Table 4 Table 5 (Pelletization using a scree type squeezing dehydrator) Example-1
Example-1 using the Scrier type wringer dehydrator used in
Granulation was carried out under the same conditions as above, but the particles obtained by the above coagulation method were mostly fine particles and the opening of the dehydration slit (0, 25
(equivalent to mII s 60ml 5h) Larger particles are 60
%, which is lower than in Examples-1 and 2. Regarding the granulation itself, the discharge was somewhat unstable, and a large amount of particles leaked from the dehydration slit, making the dehydration liquid cloudy. The solid content is 6 to 8 inches, and the leakage rate is 18q6 to the feed.
This is a very inefficient method for recovering polymers.
比較例−2
比較例−1で得た凝固スラリーを用いて、脱水スリット
の口開を0.1mm(150mesh相幽)と小さくし
て実施例−1と同条件でスクリュータイゾ絞シ脱水機に
て造粒を試みた結果造粒そのものは特に問題ないが運転
時間の経過と共に脱水スリットが目詰シを起こし、脱水
量が減少し、能力低下をきたし、吐出が不安定となシ、
効率よく連続的に重合体を回収することができなかった
。Comparative Example-2 Using the coagulated slurry obtained in Comparative Example-1, the dewatering slit opening was made as small as 0.1 mm (150 mesh) and the same conditions as in Example-1 were used in a screw-type squeezing dehydrator. As a result, the granulation itself was not particularly problematic, but as the operating time progressed, the dehydration slits became clogged, the amount of dewatering decreased, the capacity decreased, and the discharge became unstable.
It was not possible to efficiently and continuously recover the polymer.
尚、比較例−1,2についても結果を第6表に示した。The results of Comparative Examples 1 and 2 are also shown in Table 6.
実施例−1及び2及び比較例−1については、運転時間
5〜6hr実施したが、脱水スリットの目詰りも殆んど
なく能力の低下はみられなかった。Regarding Examples 1 and 2 and Comparative Example 1, the operation time was 5 to 6 hours, but there was almost no clogging of the dehydration slit and no decrease in performance was observed.
しかし比較例−2は脱水スリット1開きを0.1 Im
と細くしたため、運転時間と共に脱水スリットの目詰シ
が起こシ、脱水量が減少し次第に能力の低下をきたした
。(*運転時間4hrでフィード量72 Kf/hr→
50 Kp/hrに低下)However, in Comparative Example-2, the dehydration slit opening was 0.1 Im.
Because of this, the dewatering slits became clogged as the operating time increased, and the amount of dewatering decreased, resulting in a gradual decline in capacity. (*Feed amount 72 Kf/hr for 4 hours of operation →
(reduced to 50 Kp/hr)
第1図は本発明における凝固装置の1つの具体例の概略
図を示す。
l・・・ラテックス貯蔵タンク、3・・・凝固剤貯蔵タ
ンク、6・・・フィードノズル、8・・・凝固槽、10
゜11・・・加熱用蒸気配管、9・・・熟成槽第2図は
スクリーータイプ絞υ脱水機の概略図である。
2・−スクリエーフィダー、3・・・絞シ脱水機、4・
・・脱水機構部、
第3図は本発明における凝固装置の別の具体例の概略図
を示す。
l・・・凝固槽、4・・・ラテックス配管、5・・・凝
固剤配管、6・・・加熱用蒸気配管、2・・・攪拌翼、
8・・・温度計
第4図は従来の凝固装置の概略図である。FIG. 1 shows a schematic diagram of one embodiment of the coagulation device according to the present invention. l... Latex storage tank, 3... Coagulant storage tank, 6... Feed nozzle, 8... Coagulation tank, 10
゜11... Steam piping for heating, 9... Aging tank Figure 2 is a schematic diagram of a scree-type diaphragm dehydrator. 2.-Screen feeder, 3. Squeezing dehydrator, 4.
...Dewatering mechanism section, FIG. 3 shows a schematic diagram of another specific example of the coagulation device in the present invention. l... Coagulation tank, 4... Latex piping, 5... Coagulant piping, 6... Steam piping for heating, 2... Stirring blade,
8...Thermometer Figure 4 is a schematic diagram of a conventional coagulation device.
Claims (3)
法において、熱可塑性樹脂ラテックスを凝固処理し、凝
固粒子を肥大化させて粒径が0.25111に以上の大
きい粒子をスラリー粒子全体の8oチ以上含有するスラ
リーを形成させ、ついでかくして得られた大粒径の粒子
よシなるスラリーをスクリ為−タイブ絞シ脱水機に供給
することを特徴とする、熱可塑性樹脂ラテックスから重
合体の回収方法。(1) In a method for recovering a polymer from thermoplastic resin latex, the thermoplastic resin latex is coagulated, the coagulated particles are enlarged, and large particles with a particle size of 0.25111 or more are added to 80% of the entire slurry particles. A method for recovering a polymer from a thermoplastic resin latex, which comprises forming a slurry containing the above particles, and then supplying the slurry containing large particles thus obtained to a screen-tie squeezer dehydrator. .
ックスと混合させて均一な高粘度クリームを形成させ、
これをノズルよシ凝固槽に供給し、更に凝固剤を凝固槽
に添加し高粘度クリームを凝固させ、ついで凝固粒子を
熟成させることによシ行われる特許請求の範囲第1項記
載の1合体の回収方法。(2) the enlargement of the coagulated particles causes the coagulant to mix with the thermoplastic latex to form a uniform high viscosity cream;
1 coalescence according to claim 1, which is carried out by supplying the cream through a nozzle to a coagulation tank, further adding a coagulant to the coagulation tank to coagulate the high viscosity cream, and then ripening the coagulated particles. collection method.
て重合体の軟化点以上の温度で熱可塑性樹脂ラテックス
と凝固剤を混合し、凝固粒子を融着させることによシ行
われる特許請求の範囲第1項記載の重合体の回収方法。(3) Enlargement of the coagulated particles described above can be prevented by mixing the thermoplastic resin latex and coagulant at a temperature above the softening point of the polymer under pressure in a coagulation tank and fusing the coagulated particles. A method for recovering a polymer according to claim 1.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1698484A JPS60163933A (en) | 1984-02-03 | 1984-02-03 | Recovery of polymer |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1698484A JPS60163933A (en) | 1984-02-03 | 1984-02-03 | Recovery of polymer |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS60163933A true JPS60163933A (en) | 1985-08-26 |
Family
ID=11931310
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1698484A Pending JPS60163933A (en) | 1984-02-03 | 1984-02-03 | Recovery of polymer |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS60163933A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100381928B1 (en) * | 1999-06-24 | 2003-04-26 | 주식회사 엘지화학 | Method of preparing polymer resin powder |
KR100381929B1 (en) * | 1998-06-03 | 2004-03-26 | 주식회사 엘지화학 | Process and apparatus for continuously producing polymer latex into granules |
KR100471601B1 (en) * | 2002-11-05 | 2005-03-11 | 주식회사 엘지화학 | Method for Preparing Powder of High Macromolecule Latex Resin |
KR100984614B1 (en) * | 2002-04-26 | 2010-09-30 | 테크노 폴리머 가부시키가이샤 | Method for Recovering a Polymer |
JP2016135886A (en) * | 2011-04-21 | 2016-07-28 | ランクセス・ドイチュランド・ゲーエムベーハー | Method for obtaining and isolating polychloroprene solids |
-
1984
- 1984-02-03 JP JP1698484A patent/JPS60163933A/en active Pending
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100381929B1 (en) * | 1998-06-03 | 2004-03-26 | 주식회사 엘지화학 | Process and apparatus for continuously producing polymer latex into granules |
KR100381928B1 (en) * | 1999-06-24 | 2003-04-26 | 주식회사 엘지화학 | Method of preparing polymer resin powder |
KR100984614B1 (en) * | 2002-04-26 | 2010-09-30 | 테크노 폴리머 가부시키가이샤 | Method for Recovering a Polymer |
KR100471601B1 (en) * | 2002-11-05 | 2005-03-11 | 주식회사 엘지화학 | Method for Preparing Powder of High Macromolecule Latex Resin |
JP2016135886A (en) * | 2011-04-21 | 2016-07-28 | ランクセス・ドイチュランド・ゲーエムベーハー | Method for obtaining and isolating polychloroprene solids |
US9938363B2 (en) | 2011-04-21 | 2018-04-10 | Arlanxeo Deutschland Gmbh | Method for obtaining and isolating polychloroprene solids |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4802769A (en) | Apparatus for treating thermoplastic resin | |
JP4505038B1 (en) | Manufacturing method of wet masterbatch | |
JPS5938243B2 (en) | Process for making filaments or other shaped articles of acrylonitrile polymers | |
US4299952A (en) | Method for recovering synthetic resinous latex solids | |
US4429114A (en) | Method for treating emulsified latex | |
JPS60163933A (en) | Recovery of polymer | |
US5747640A (en) | Continunous process for preparing polytetrafluoroethlene wet powder | |
EP0818473A1 (en) | Process for finishing a resin from an emulsion polymerized latex | |
JPS59130315A (en) | Continuous liquid phase process for melt spinning acrylonitrile polymer | |
JPS6230106A (en) | Method of recovering polymer | |
JP3987755B2 (en) | Polymer recovery method | |
KR101436781B1 (en) | Polymer slurry having high solid content, and method of preparing the same | |
JP2006291187A (en) | Method and apparatus for recovering (rubber-reinforced) styrenic resin composition | |
JPH0139444B2 (en) | ||
JPH01230605A (en) | Method and apparatus for production of coagulated resin | |
KR101711243B1 (en) | Method and apparatus for preparing resin powders | |
JPS5827802B2 (en) | Method for continuously recovering polymer from polymer latex | |
Ghosh et al. | Processing of polymer latex emulsion: Batch coagulation | |
JPH03247603A (en) | Coagulation of polymer latex and production of granular polymer | |
CA1107883A (en) | Process for recovering graft copolymer latex solids wherin a fines fraction is recycled and incorporated in said solids | |
CN214327614U (en) | Polyvinyl chloride resin pasting device based on micro-suspension method | |
JPS62151466A (en) | Production of thermoplastic resin | |
JP4673085B2 (en) | Polymer recovery method and polymer recovery apparatus from polymer latex | |
KR20000000782A (en) | Process for preparing granular polymer from latex in sequence and apparatus thereof | |
JPH03223303A (en) | Production of particulate polymer |