JPH032361B2 - - Google Patents

Info

Publication number
JPH032361B2
JPH032361B2 JP5770583A JP5770583A JPH032361B2 JP H032361 B2 JPH032361 B2 JP H032361B2 JP 5770583 A JP5770583 A JP 5770583A JP 5770583 A JP5770583 A JP 5770583A JP H032361 B2 JPH032361 B2 JP H032361B2
Authority
JP
Japan
Prior art keywords
nozzle
coagulating
substrate
latex
coagulation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP5770583A
Other languages
Japanese (ja)
Other versions
JPS59182801A (en
Inventor
Teruhiko Sugimori
Takayuki Tajiri
Akio Hironaka
Hideaki Habara
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Rayon Co Ltd
Priority to JP5770583A priority Critical patent/JPS59182801A/en
Publication of JPS59182801A publication Critical patent/JPS59182801A/en
Publication of JPH032361B2 publication Critical patent/JPH032361B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Description

【発明の詳細な説明】 本発明は重合体ラテツクスの凝固方法に関する
ものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for coagulating polymer latex.

化学工業においては凝固性物質、例えば重合体
ラテツクス、ゴムラテツクス等は多量に扱われて
おり、その内一部は接着剤や塗料等として液状の
まま使用されているが、大部分のものは凝固剤に
より凝固した後使用されているのが現状である。
従つて凝固操作はこれらの分野では重要な位置を
占める操作であるにもかかわらず現状では凝固の
方法あるいは凝固装置は従来からの経験により得
られた古い技術に基くものが使用されている。
In the chemical industry, large amounts of coagulable substances such as polymer latex and rubber latex are handled, and some of them are used in liquid form as adhesives and paints, but most of them are used as coagulants. Currently, it is used after being solidified.
Therefore, although the coagulation operation is an important operation in these fields, currently the coagulation methods and coagulation apparatuses are based on old techniques obtained through conventional experience.

ところで樹脂工業に限つて述べるならば、乳化
重合法により製造された重合体ラテツクスから重
合体粉末を製造する場合、一般にはラテツクスと
酸類あるいは無機質の多価塩類からなる凝固剤と
を接触せしめ凝析した後熱処理等の方法により重
合体を固化せしめ、しかる後に脱水、乾燥等の操
作を経て重合体の乾燥粉末とするのが通常であ
る。しかるに通常採用されている方法によれば得
られる粉末の粒子は不定形をしており粒度分布も
広く、粗大粒子が含まれる反面微粉末も相当の量
存在する。従つて前記微粉末の飛散に基づく歩留
りの低下、あるいは環境問題、さらには粉末の低
流動性に基づく配管、貯槽出口等での詰り、粉塵
発生による作業環境の悪化、粉塵爆発の危険性の
増大等好ましからざる問題を有している。また重
合体粉末の嵩比重が小さく脱水機における脱水性
が悪いため輸送、貯蔵のコストが高く、しかも乾
燥工程で多大の熱エネルギーを消費しているのが
現状である。
By the way, speaking specifically in the resin industry, when producing polymer powder from polymer latex produced by emulsion polymerization, it is generally coagulated by bringing the latex into contact with a coagulant consisting of acids or inorganic polyvalent salts. After that, the polymer is usually solidified by a method such as heat treatment, and then subjected to operations such as dehydration and drying to form a dry powder of the polymer. However, according to the commonly used method, the particles of the powder obtained have an irregular shape and a wide particle size distribution, and while they contain coarse particles, a considerable amount of fine powder is also present. Therefore, there is a reduction in yield due to the scattering of the fine powder, or environmental problems, and furthermore, clogging at piping, storage tank outlet, etc. due to the low fluidity of the powder, deterioration of the working environment due to dust generation, and increased risk of dust explosion. It has some undesirable problems. In addition, the bulk specific gravity of the polymer powder is small and dehydration properties in a dehydrator are poor, so transportation and storage costs are high, and moreover, a large amount of thermal energy is consumed in the drying process.

ところで近年凝固操作の重要性に鑑み重合体粉
末の粉末特性を向上しようとする研究が多く見ら
れる。これらの研究開発の動向の一つとして従来
の凝固方法あるいは凝固装置の若干の改善、他の
ものとして気相反応を利用した噴霧乾燥や気相凝
固等の方法がある。しかしながら、かかる方法は
依然として粉末として低品位なものであつたり、
多大なエネルギーコストと建設コストを強いるも
のであつたりするなど決定的な改善策とはなつて
いない。
In recent years, in view of the importance of coagulation operations, many studies have been conducted to improve the powder properties of polymer powders. One of these trends in research and development is the slight improvement of conventional coagulation methods or coagulation equipment, and other methods include methods such as spray drying and vapor phase coagulation that utilize gas phase reactions. However, such methods still produce low-quality powder,
It is not a decisive improvement measure, as it imposes large energy costs and construction costs.

このような状況下において本発明者らは特定の
条件を満す細管より乳化ラテツクスを凝固液中に
吐出させることにより微粉および粗大粒子を実質
的に含まない高嵩比重粉粒体とし得る発明につい
て先に特願昭56−73115号(特開昭57−187322号)
として特許出願した。
Under these circumstances, the present inventors have developed an invention in which a high-bulk specific gravity powder and granular material substantially free of fine powder and coarse particles can be obtained by discharging emulsified latex into a coagulating liquid from a capillary that satisfies specific conditions. Patent application No. 1987-73115 (Japanese Patent Application No. 187322)
A patent application was filed as

本発明者らは先の発明に基づき、さらに鋭意検
討した結果、ラテツクス凝固用ノズルとして基板
の中央部より凝固液の吐出が可能な構造であり、
しかも特定の関隙と特定の長さを有する細管を基
板に設けたものを重合体ラテツクスの凝固に使用
することにより粉体特性に極めて優れる重合体粉
粒体とし得ることを見出し本発明に到達した。
Based on the previous invention, the inventors of the present invention further conducted intensive studies, and found that the nozzle for latex coagulation has a structure that allows the coagulation liquid to be discharged from the center of the substrate.
Moreover, they discovered that by using a substrate with a thin tube having a specific gap and a specific length for coagulating polymer latex, it was possible to obtain a polymer powder with extremely excellent powder properties, resulting in the present invention. did.

本発明は重合体ラテツクスを凝固する際に、ラ
テツクス凝固用ノズルとして基板の中央部より凝
固液の吐出が可能な構造であり、しかも細管相互
の間隙が1mm以上で、且つ基板上の突出長が3mm
以上となるように基板に複数本の細管が設けられ
たものを使用することを特徴とする重合体ラテツ
クスの凝固方法である。
The present invention has a structure that allows a latex coagulating nozzle to discharge a coagulating liquid from the center of a substrate when coagulating a polymer latex, and furthermore, the gap between the capillary tubes is 1 mm or more, and the protrusion length on the substrate is 3mm
As described above, this method of coagulating a polymer latex is characterized by using a substrate having a plurality of thin tubes.

本発明において使用するラテツクス凝固用ノズ
ル構造を図面にに基づいて説明する。第1図はノ
ズル中央部が円形状にくり抜かれたもので全体的
にリングドーナツ型を呈している場合のもので、
且つ細管を基板の厚み分迄差し込んだ場合の第三
角法による正面図1−1および1−1図の−
線に沿つた側面断面図1−2である。このような
構造により凝固液はノズルの後方から周囲及び中
央部を通過するように流すことが可能である。ま
た第2図はノズル中央部に凝固液導入管を別途設
けたもので、且つ細管を基板の厚み分迄差し込ん
だ場合の第三角法による正面図2−1と2−1図
の−線に沿つた側面断面図2−2である。こ
のような構造により凝固液は凝固液導入管に任意
の流量で流すことができる。第1図および第2図
においては細管、2は基板、3はホルダー、4
はガスケツト、5は締結具である。また第2図の
6は凝固液導入管である。第1図および第2図の
ノズルにおいて細管1と基板2は直接または接着
剤等によつて固着されている。またホルダー3と
基板2はガスケツト4を介して密着しておりホル
ダー内部の重合体ラテツクスのような凝固性物質
が基板とホルダーの接合部から外部へ漏れること
はない。
The nozzle structure for latex coagulation used in the present invention will be explained based on the drawings. Figure 1 shows a case where the center of the nozzle is hollowed out in a circular shape and the overall shape is a ring donut.
In addition, when the thin tube is inserted to the thickness of the board, the front view of Figure 1-1 and Figure 1-1 is -
1-2 is a side cross-sectional view taken along line 1-2. This structure allows the coagulating liquid to flow from the rear of the nozzle to the periphery and through the center. In addition, Figure 2 shows a case in which a coagulating liquid introduction tube is separately provided in the center of the nozzle, and the thin tube is inserted as far as the thickness of the substrate.It is a front view based on the trigonometry shown in Figures 2-1 and 2-1. FIG. 2-2 is a side cross-sectional view taken along the line 2-2. Such a structure allows the coagulating liquid to flow into the coagulating liquid introducing pipe at an arbitrary flow rate. 1 and 2, a thin tube, 2 a substrate, 3 a holder, and 4
is a gasket, and 5 is a fastener. Further, 6 in FIG. 2 is a coagulation liquid introduction tube. In the nozzles shown in FIGS. 1 and 2, the thin tube 1 and the substrate 2 are fixed directly or with an adhesive or the like. Furthermore, the holder 3 and the substrate 2 are in close contact with each other via the gasket 4, so that coagulable substances such as polymer latex inside the holder will not leak out from the joint between the substrate and the holder.

本発明におけるラテツクス凝固用ノズルの構造
は第1図および第2図のものに限定されず、要は
基板の中央部より凝固液の吐出が可能な構造であ
り、しかも細管相互の間隙が1mm以上で、且つ基
板上の突出長、即ち第1図におけるA、第2図に
おけるBの長さが3mm以上となるように基板に複
数本の細管が設けられたものであれば基本的には
いかなる構造でもよい。
The structure of the nozzle for latex coagulation in the present invention is not limited to that shown in FIGS. 1 and 2, but the essential point is that the structure allows the coagulation liquid to be discharged from the center of the substrate, and the gap between the thin tubes is 1 mm or more. Basically, any type of thin tube can be used as long as the substrate is provided with a plurality of thin tubes so that the protruding length on the substrate, that is, the length A in Fig. 1 and the length B in Fig. 2 is 3 mm or more. It can also be a structure.

本発明におけるラテツクス凝固用ノズルの外観
構造はその代表的な例とした示した第1図および
第2図からもわかるようにノズル中央部へ凝固液
を供給することができ、しかも複数本の細管から
構成される生花で使用される剣山のような特徴あ
る構造をしているものである。このような構造を
をつていることにより凝固性物質と凝固液の接触
をよくし、ノズルから吐出される凝固性物質を特
徴ある形状で凝固せしめ、粉体特性に極めて優れ
る重合体粉粒体の製造が可能となるものである。
As can be seen from FIGS. 1 and 2, which are representative examples, the external structure of the nozzle for latex coagulation according to the present invention is capable of supplying the coagulating liquid to the center of the nozzle, and has a plurality of thin tubes. It has a distinctive structure similar to the tsurugisan used in fresh flowers. This structure improves the contact between the coagulable substance and the coagulating liquid, and allows the coagulable substance discharged from the nozzle to coagulate in a distinctive shape, resulting in a polymer powder with extremely excellent powder properties. This makes manufacturing possible.

このようにノズル中央部への凝固液の供給は安
定した凝固操作を行う上で不可欠であるが、凝固
液の流路中に凝固性物質の吐出方向が凝固液流の
下流方向を向くようにノズルを設置した場合、凝
固液の流れはノズルホルダーあるいは基板に邪魔
されてこれらの下流側、即ち細管付近で乱れが生
じ渦が発生する。従つて細管が基板より3mm以
上、好ましくは10mm以上突出していれば細管の先
端は渦域の外部に存在する層流域に達することに
なり先端より吐出される凝固性物質は層流の凝固
液に乗つて静かに流れながら凝固反応して微粉お
よび粗大粒子を実質的に含まない特徴ある形状を
した高嵩比重の重合体粉流体が得られることとな
る。なお本発明においては細管の基板からの突出
長は実質的には制限されないものであるが、工業
的生産性の見地からいつてその上限値は200mm位
である。
In this way, supplying the coagulating liquid to the center of the nozzle is essential for stable coagulating operation, but it is important to ensure that the discharge direction of the coagulating substance in the coagulating liquid flow path is in the downstream direction of the coagulating liquid flow. When a nozzle is installed, the flow of the coagulating liquid is obstructed by the nozzle holder or the substrate, causing turbulence on the downstream side of these, ie, near the capillary, and generating a vortex. Therefore, if the capillary protrudes from the substrate by 3 mm or more, preferably by 10 mm or more, the tip of the capillary will reach the laminar region that exists outside the vortex region, and the coagulable substance discharged from the tip will become a laminar coagulating liquid. A polymer powder fluid with a high bulk specific gravity and a characteristic shape substantially free of fine powder and coarse particles is obtained by coagulation reaction while flowing quietly. In the present invention, the protrusion length of the thin tube from the substrate is not substantially limited, but from the viewpoint of industrial productivity, the upper limit thereof is about 200 mm.

しかしながら細管相互の間隙が狭く1mm未満で
あれば細管群間に凝固液の流入が困難となり細管
群の周辺部を除いて良好な凝固が不可能となる。
一方、仮に強制的手段により凝固液を細管群間に
流入せしめた場合でも細管相互の間隙が1mm未満
であれば吐出した凝固性物質がもたらすジエツト
流のゆらぎのため各細管から吐出した凝固性物質
は互いに合一しあい大きな塊状粒子となつて良好
な性状の粉体が製造不可能となる。従つて本発明
においては細管相互の間隙は1mm以上、好ましく
は3mm以上であることが必要である。なお細管相
互の間隙は重合体粉粒体の生産速度を考慮すると
その範囲は20mm位迄、好ましくは10mm位迄であ
る。
However, if the gap between the capillary tubes is narrow and less than 1 mm, it will be difficult for the coagulating liquid to flow between the capillary groups, and good coagulation will not be possible except in the periphery of the capillary groups.
On the other hand, even if the coagulating liquid is made to flow between the groups of capillary tubes by forced means, if the gap between the capillary tubes is less than 1 mm, the coagulable material discharged from each capillary will cause fluctuations in the jet flow caused by the coagulable material discharged. The particles coalesce together to form large lumpy particles, making it impossible to produce powder with good properties. Therefore, in the present invention, the gap between the thin tubes must be 1 mm or more, preferably 3 mm or more. Note that the gap between the thin tubes is up to about 20 mm, preferably up to about 10 mm, considering the production rate of the polymer powder.

ラテツクス凝固用ノズルを構成する基板の材質
はガラス類;無機焼結体類;ポリメチルメタクリ
レート、ポリ塩化ビニル、ポリアミド、ポリエス
テル、ポリカーボネート、ポリプロピレン、ポリ
エチレン、ABS樹脂、ポリアセタール、AS樹
脂、フツ素樹脂等の合成樹脂類;ステンレススチ
ール、銅、白金、金、鉛等の金属類が好ましい
が、これらに限定されず凝固液および凝固性物質
に対し化学的に安定な物質であればいかなるもの
でも使用可能である。また基板の形状については
円形、正方形、矩形、長円形等任意の形状のもの
が使用できる。
The material of the substrate constituting the nozzle for latex coagulation is glass; inorganic sintered bodies; polymethyl methacrylate, polyvinyl chloride, polyamide, polyester, polycarbonate, polypropylene, polyethylene, ABS resin, polyacetal, AS resin, fluororesin, etc. Synthetic resins; metals such as stainless steel, copper, platinum, gold, and lead are preferred, but any material can be used as long as it is chemically stable against coagulating liquids and coagulating substances. It is. Further, as for the shape of the substrate, any shape such as circular, square, rectangular, oval, etc. can be used.

さらにラテツクス凝固用ノズルを構成する細管
は先に出願した特願昭56−73115号(特開昭57−
187322号)によつて規定される細管であり、その
管径については特に制約ないが内径は3mm以下、
外径は5mm以下が好ましい。またその材質につい
ては前記基板を構成する材質を同じく用いること
ができ、その他凝固液および凝固性物質に対し化
学的に安定な物質であればいかなるものでもよ
い。
Furthermore, the thin tube constituting the nozzle for latex coagulation was previously filed in Japanese Patent Application No. 56-73115 (Japanese Unexamined Patent Publication No. 57-731).
187322), and there are no particular restrictions on the tube diameter, but the inner diameter is 3 mm or less,
The outer diameter is preferably 5 mm or less. As for its material, the same material constituting the substrate as described above can be used, and any other material can be used as long as it is chemically stable against coagulating liquids and coagulable substances.

なお図面には示されていないが細管と基板は固
着されている必要がある。固着の方法としては接
着剤による方法、細管と基板を直接固着する方
法、一体物として成形する方法、ネジ込みによる
方法等が挙げられる。接着剤を使用する場合には
凝固液および重合体ラテツクスに対し化学的に安
定であつて細管および基板を接着せしめる能力を
有するものであればいかなるものも使用すること
ができ、例えばエポキシ系接着剤、ゴム系接着
剤、ホツトメルト型接着剤等が使用できる。細管
と基板を直線固着する方法では細管を固定した型
の中に基板を形成する重合性物質を流し込み重合
反応せしめることにより細管と基板とを固着せし
める方法、さらには細管を固定した型の中に基板
を形成する溶融物質を流し込んだ後冷却固化せし
めることにより細管と基板とを固着せしめる方法
により行うことができる。また一体物として成形
方法する方法では合成樹脂を用いた射出成形、金
属を用いた鋳込成形等により成形することができ
る。さらにネジ込みによる方法では細管に雄ネ
ジ、基板に雌ネジを切り細管を基板にネジ込んで
やることに細管と基板とを固着せしめることがで
きる。
Although not shown in the drawings, the thin tube and the substrate must be firmly attached. Examples of the fixing method include a method using an adhesive, a method of directly fixing the thin tube and the substrate, a method of molding the tube as an integral body, and a method of screwing. When using an adhesive, any adhesive can be used as long as it is chemically stable to the coagulating liquid and polymer latex and has the ability to bond the capillary and the substrate, such as epoxy adhesives. , rubber adhesive, hot melt adhesive, etc. can be used. In the method of fixing the thin tube and the substrate in a straight line, the thin tube and the substrate are fixed by pouring a polymerizable substance forming the substrate into a mold in which the thin tube is fixed and causing a polymerization reaction. This can be carried out by a method in which the thin tube and the substrate are fixed by pouring a molten substance forming the substrate and then cooling and solidifying it. In addition, in the method of molding it as an integral part, it can be molded by injection molding using synthetic resin, casting molding using metal, or the like. Furthermore, in the screwing method, the thin tube and the substrate can be fixed by cutting a male thread on the thin tube and a female thread on the substrate and screwing the thin tube into the substrate.

図面において3で示したホルダーは配管より供
給される重合体ラテツクスを細管に分配するため
のものであり、通常は漏斗状の形状をしたものが
使用されるが特にこれに限定されるものではな
い。ホルダーの材質としては前述した基板の材質
類が使用できる。なお基板とホルダーは保守を容
易にする目的で通常分離できる構造が好ましいが
必ずしもこれに限定されず、一体成形されたもの
でもよい。図面に示されるような基板とホルダー
が分離できるような構造の場合にはガスケツトの
ようなシール部材を介して締結具により接合され
る。ガスケツトとしてはゴム板、ポリテトラフル
オロエチレン板、O−リング等が使用できる。ま
た締結具としてはボルト、万力、締め付けリング
等の通常の手段が利用でき、その材質としては前
述した基板の材質類が使用できる。
The holder indicated by 3 in the drawing is for distributing the polymer latex supplied from the piping into the thin tubes, and a funnel-shaped holder is usually used, but it is not limited to this. . As the material of the holder, the materials of the substrate described above can be used. Note that, although it is preferable that the substrate and the holder are normally separable for the purpose of easy maintenance, the structure is not necessarily limited to this, and they may be integrally molded. In the case of a structure in which the substrate and holder can be separated as shown in the drawings, they are joined by a fastener through a sealing member such as a gasket. As the gasket, a rubber plate, a polytetrafluoroethylene plate, an O-ring, etc. can be used. Further, ordinary means such as bolts, vices, tightening rings, etc. can be used as the fasteners, and the materials of the above-mentioned substrates can be used as the materials.

さらに第2図中の6で示した凝固液導入管は任
意の量の凝固液を強制的にノズル近傍に供給する
ものであり、その材質としては前述した基板の材
質類が使用できる。
Furthermore, the coagulating liquid introduction tube shown by 6 in FIG. 2 is for forcibly supplying an arbitrary amount of coagulating liquid to the vicinity of the nozzle, and the material for the tube may be the same as that of the substrate described above.

本発明において使用する重合体ラテツクスは乳
化重合で得られ回収しうる高分子ラテツクスのほ
とんどが適用可能である。特に効果を発揮する重
合体ラテツクスとしては、エチレン性単量体の乳
化重合によつて得られるラテツクス、ゴム状重合
体ラテツクス、ゴム状重合体にエチレン性単量体
をグラフト重合させたラテツクス、エチレン性単
量体の重合体にゴム形成単量体をグラフト重合さ
せたラテツクスおよびこれらの混合ラテツクス等
が挙げられる。
As the polymer latex used in the present invention, most polymer latexes that can be obtained by emulsion polymerization and can be recovered can be used. Particularly effective polymer latexes include latexes obtained by emulsion polymerization of ethylenic monomers, rubbery polymer latexes, latexes obtained by graft polymerizing ethylenic monomers onto rubbery polymers, and ethylene Latexes obtained by graft-polymerizing a rubber-forming monomer onto a polymer of a rubber-forming monomer, and mixed latexes thereof can be mentioned.

エチレン性単量体としては、スチレン、α−メ
チルスチレン、O−エチルスチレン、O−クロル
スチレン、P−クロルスチレン、ジビニルベンゼ
ンなどのスチレン系単量体、アクリロニトリル、
シアン化ビニリデンなどのアクリロニトリル系単
量体、アクリル酸やアクリル酸メチル、アクリル
酸エチルなどのアクリル酸エステル、メタクリル
酸やメタクリル酸メチル、メタクリル酸エチルな
どのメタクリル酸エステル、酢酸ビニルなどのビ
ニルエステル、塩化ビニリデンなどのビニリデ
ン、塩化ビニルなどのハロゲン化ビニルなどや他
にビニルケトン、アクリルアミド、無水マレイン
酸などが挙げられ、これらの単量体は単独で、ま
たは混合して使用される。
Examples of ethylenic monomers include styrene monomers such as styrene, α-methylstyrene, O-ethylstyrene, O-chlorostyrene, P-chlorostyrene, and divinylbenzene, acrylonitrile,
Acrylonitrile monomers such as vinylidene cyanide, acrylic acid esters such as acrylic acid, methyl acrylate, and ethyl acrylate, methacrylic acid esters such as methacrylic acid, methyl methacrylate, and ethyl methacrylate, vinyl esters such as vinyl acetate, Examples include vinylidene such as vinylidene chloride, vinyl halides such as vinyl chloride, vinyl ketone, acrylamide, maleic anhydride, and the like, and these monomers may be used alone or in combination.

ゴム状重合体としては、天然ゴム、ブタジエン
ゴム、スチレン−ブタジエン共重合体、アクリロ
ニトリル−ブタジエン共重合体、イソプレンゴ
ム、クロロブレンゴム、アクリルゴム、エチレン
−酢酸ビニル共重合体などの天然または合成ゴム
状重合体があげられる。
Rubbery polymers include natural or synthetic rubbers such as natural rubber, butadiene rubber, styrene-butadiene copolymer, acrylonitrile-butadiene copolymer, isoprene rubber, chloroprene rubber, acrylic rubber, and ethylene-vinyl acetate copolymer. Polymers such as

本発明に用いられる高分子ラテツクスの凝固剤
としては、一般に使用される酸または水溶性無機
塩が全て使用可能であり、酸としては、硫酸・塩
酸類の鉱酸、酢酸等の解離定数10-6mol/以上
の有機酸(安息香酸、サルチル酸、ギ酸、酒石酸
を含む)、塩としては硫酸マグネシウム、硫酸ナ
トリウム等の硫酸塩や塩化物、酢酸塩を含み、こ
れらの混合物も使用可能である。
As a coagulant for the polymer latex used in the present invention, all commonly used acids or water-soluble inorganic salts can be used. Examples of acids include mineral acids such as sulfuric acid and hydrochloric acid, and acetic acid, which has a dissociation constant of 10 - 6 mol/or more of organic acids (including benzoic acid, salicylic acid, formic acid, and tartaric acid), salts include sulfates such as magnesium sulfate and sodium sulfate, chlorides, and acetates; mixtures of these can also be used. .

高分子ラテツクスに予め分散剤、滑剤、増粘
剤、界面活性剤、可塑剤、酸化防止剤、着色剤、
発泡剤などの公知の添加物を添加こともできる。
特に分散剤は、凝固して形成された二次粒子の粒
子形状安定性に大きく影響を与える場合もある。
分散剤としては乳化重合や顕濁重合の安定剤とし
て通常使用される無機系分散剤や有機系分散剤が
使用可能である。無機系分散剤としては炭酸マグ
ネシウム、第三リン酸カルシウムなどが、また有
機系分散剤のうち、天然及び合成高分子分散剤と
してはデンプン、ゼラチン、アクリルアミド、部
分ケン化ポリビニルアルコール、部分ケン化ポリ
メタクリル酸メチル、ポリアクリル酸およびその
塩、セルロース、メチルセルロース、ポリアルキ
レンオキシド、ポリビニルピロリドン、ポリビニ
ルイミダゾール、スルフオン化ポリスチレンなど
が挙げられ、また低分子分散剤として、例えばア
ルキルベンゼンスルフオン酸塩、脂肪酸塩などの
通常の乳化剤も使用可能である。
Dispersants, lubricants, thickeners, surfactants, plasticizers, antioxidants, colorants, etc. are added to the polymer latex in advance.
Known additives such as blowing agents may also be added.
In particular, the dispersant may greatly affect the particle shape stability of the secondary particles formed by coagulation.
As the dispersant, inorganic dispersants and organic dispersants that are commonly used as stabilizers for emulsion polymerization and suspension polymerization can be used. Examples of inorganic dispersants include magnesium carbonate and tribasic calcium phosphate, and among organic dispersants, natural and synthetic polymer dispersants include starch, gelatin, acrylamide, partially saponified polyvinyl alcohol, and partially saponified polymethacrylic acid. Methyl, polyacrylic acid and its salts, cellulose, methyl cellulose, polyalkylene oxide, polyvinylpyrrolidone, polyvinylimidazole, sulfonated polystyrene, etc., and as low molecular weight dispersants, for example, alkylbenzene sulfonates, fatty acid salts, etc. Emulsifiers can also be used.

また増粘剤として水あめ、パラフイン等を添加
することにより二次粒子の形成を容易にし、粒子
形状を制御することも可能である。
It is also possible to facilitate the formation of secondary particles and control the particle shape by adding starch syrup, paraffin, etc. as a thickener.

本発明で使用するノズルはその中央部分より凝
固液の供給が可能であり、その結果細管より吐出
された凝固性物質は凝固液と万遍なく接触するこ
とができ、良好な凝固操作が可能である特徴を有
する。
The nozzle used in the present invention can supply the coagulating liquid from its central part, and as a result, the coagulable substance discharged from the thin tube can come into contact with the coagulating liquid evenly, enabling a good coagulating operation. have certain characteristics.

本発明を実施するにはラテツクス凝固用ノズル
全体を凝固浴の中に浸漬し、重合体ラテツクスを
ホルダーに導入してから細管先端より吐出してノ
ズル周囲およびノズル中央部分より流れる凝固液
と接触するとにより微粉および粗大粒子を実質的
に含まない粉体特性に優れた高嵩比重の重合体粉
粒体とすることができる。
To carry out the present invention, the entire latex coagulating nozzle is immersed in a coagulating bath, and the polymer latex is introduced into a holder and then discharged from the tip of the capillary tube to come into contact with the coagulating liquid flowing around the nozzle and from the center of the nozzle. As a result, it is possible to obtain a high bulk specific gravity polymer powder which is substantially free of fine powder and coarse particles and has excellent powder characteristics.

以下実施例により本発明を具体的に説明する。
なお実施例、比較例中「部」および「%」は全て
「重量部」および「重量%」である。
The present invention will be specifically explained below using Examples.
In the Examples and Comparative Examples, "parts" and "%" are all "parts by weight" and "% by weight."

実施例 1 その中央部分に内径60mmの孔をくり抜いた外径
200mm、厚さ5mmのポリメタクリル酸メチル製の
基板に外径2.5mm、内径1.0mm、長さ50mmのガラス
製細管を細管相互の間隙が3mmとなるように合計
600本差し込み基板と細管をエポキシ系接着剤ア
ラルダイト(商品名;チバガイギー社製)で固着
した。細管の基板上の突出長は45mmである。これ
を第1図に示すような形状をしたポリメタクリル
酸メチル製ホルダーにシリコーンゴムガスケツト
を介して接合し第1図のような凝固用ノズルを製
作した。
Example 1 A hole with an inner diameter of 60 mm is bored in the center of the outer diameter.
Glass tubes with an outer diameter of 2.5 mm, an inner diameter of 1.0 mm, and a length of 50 mm are placed on a 200 mm, 5 mm thick polymethyl methacrylate substrate so that the gap between the tubes is 3 mm.
The 600-insertion board and thin tube were fixed with epoxy adhesive Araldite (trade name; manufactured by Ciba Geigy). The protrusion length of the capillary above the substrate is 45 mm. This was joined to a polymethyl methacrylate holder having the shape shown in FIG. 1 via a silicone rubber gasket to produce a coagulation nozzle as shown in FIG.

このような構成からなるラテツクス凝固用ノズ
ルに重合体ラテツクスの導入管を設けた後、該ノ
ズルを硫酸1%を含む凝固液が静かに流れる凝固
浴中に浸漬する。このとき凝固液の流れと吐出さ
れる重合体ラテツクスの流れが同一の方向となる
ようにノズルの位置を調節する。しかる後にブタ
ジエン35部、スチレン45部、アクリロニトリル20
部からなる重合体ラテツクスを前記凝固用ノズル
に導入し細管より吐出せしめた。吐出した重合体
ラテツクスはノズル中央部分およびノズル外周を
流れる凝固液と接触して糸状に凝固したので、こ
れを固化槽へ移し、重合体の温度を93℃に昇温せ
しめて重合体粒子を固化し、その後遠心脱水機
(遠心力は600G)にて遠心脱水した。その結果得
られた湿粉中の水分は14.7%(ドライベース)で
あつた。
After a polymer latex introduction pipe is provided in the latex coagulating nozzle having such a structure, the nozzle is immersed in a coagulating bath in which a coagulating solution containing 1% sulfuric acid flows gently. At this time, the position of the nozzle is adjusted so that the flow of the coagulating liquid and the flow of the discharged polymer latex are in the same direction. Then add 35 parts of butadiene, 45 parts of styrene, and 20 parts of acrylonitrile.
A polymer latex consisting of 50% was introduced into the coagulating nozzle and discharged from the thin tube. The discharged polymer latex came into contact with the coagulation liquid flowing in the center of the nozzle and around the nozzle and coagulated into a thread, so it was transferred to a solidification tank and the temperature of the polymer was raised to 93℃ to solidify the polymer particles. Then, it was centrifugally dehydrated using a centrifugal dehydrator (centrifugal force: 600G). The moisture content of the resulting wet powder was 14.7% (dry basis).

一連の操作は連続して2時間続けられたが、そ
の間ラテツクスの吐出状態は極めめて安定してお
り、ノズルの閉塞は観測されなかつた。また乾燥
後の粉体嵩比重は0.46、平均粒径は0.97mm、250
メツシユ標準篩通過量は全体の0.02%であつた。
The series of operations continued for two hours, during which time the latex discharge condition was extremely stable and no nozzle clogging was observed. In addition, the bulk specific gravity of the powder after drying is 0.46, the average particle size is 0.97mm, 250
The amount passing through the mesh standard sieve was 0.02% of the total.

本実施例で得られた粉体は後述の比較例1で得
られた粉体とくらべて極めて脱水性がよく、嵩比
重が大きく、且つ平均粒径が大きく、しかも極端
に微粉が少ないものであつて粉体として理想的な
ものであつた。
Compared to the powder obtained in Comparative Example 1 described later, the powder obtained in this example has extremely good dehydration properties, has a large bulk specific gravity, has a large average particle size, and has an extremely small amount of fine powder. It was ideal as a powder.

実施例 2 外径200mm、厚さ6mmのポリメタクリル酸メチ
ル製基板に外径2mm、内径0.8mm、長さ50mmのポ
リメタクリル酸メチル製細管を細管相互の間隙が
4mmとなるように差し込み、さらにこれに外径25
mm、内径20mmのステンレススチール製凝固液導入
管を取り付け第2図り示す如きノズルを製作し
た。
Example 2 A polymethyl methacrylate capillary with an outer diameter of 2 mm, an inner diameter of 0.8 mm, and a length of 50 mm was inserted into a polymethyl methacrylate substrate with an outer diameter of 200 mm and a thickness of 6 mm so that the gap between the capillaries was 4 mm, and then This has an outer diameter of 25
A nozzle as shown in the second diagram was manufactured by attaching a stainless steel coagulation liquid inlet tube with an inner diameter of 20 mm.

次にこのノズルに重合体ラテツクスの導入管を
取り付けた後該ノズルを硫酸0.4重量%を含む凝
固液が静かに流れる凝固浴中に浸漬し、凝固液の
流れと重合体ラテツクスの吐出方向が同じ向きに
なるようにノズルの向きを調節する。さらに凝固
浴より凝固液の一部を抜き取りポンプを介してノ
ズルに設けた凝固液導入管に導き毎分7の流量
でこれを流す。次いでブタジエン50部、メタクリ
ル酸メチル15部、スチレン40部からなる重合体の
ラテツクスを前記凝固用ノズルに導入し、細管よ
り凝固浴中に吐出せしめた。吐出した重合体ラテ
ツクスは凝固液導入管より吐出した凝固液および
ノズル外周を流れる凝固液と良好に接触して糸状
に凝固したので、これを固化槽へ移し、重合体の
温度を84℃に昇温せしめて重合体粒子を固化した
後遠心脱水機(遠心力は600G)で脱水した。
Next, after attaching a polymer latex inlet tube to this nozzle, the nozzle is immersed in a coagulation bath in which a coagulating liquid containing 0.4% by weight of sulfuric acid flows gently, so that the flow of the coagulating liquid and the discharge direction of the polymer latex are the same. Adjust the nozzle direction so that the Further, a part of the coagulating liquid is extracted from the coagulating bath and introduced through a pump into a coagulating liquid introduction pipe provided in a nozzle at a flow rate of 7 per minute. Next, a polymer latex consisting of 50 parts of butadiene, 15 parts of methyl methacrylate, and 40 parts of styrene was introduced into the coagulation nozzle and discharged from the thin tube into the coagulation bath. The discharged polymer latex made good contact with the coagulation liquid discharged from the coagulation liquid inlet pipe and the coagulation liquid flowing around the nozzle, and coagulated into a filament, so it was transferred to a solidification tank and the temperature of the polymer was raised to 84°C. After heating to solidify the polymer particles, they were dehydrated using a centrifugal dehydrator (centrifugal force: 600G).

一連の操作は連続して80時間続けられたがその
間ラテツクスの吐出状態は極めて安定しており、
ノズルの閉塞は観測されなかつた。
The series of operations continued for 80 hours, during which time the latex discharge condition was extremely stable.
No nozzle blockage was observed.

得られた湿粉の水分は16.2%(ドライベース)
であり、乾燥後の粉体の嵩比重は0.46平均粒径は
0.86mm、メツシユ標準篩通過量は全体の0.01%以
下であつた。
The moisture content of the obtained wet powder is 16.2% (dry base)
The bulk specific gravity of the powder after drying is 0.46, and the average particle size is
0.86 mm, the amount passing through the standard mesh sieve was less than 0.01% of the total.

実施例 3 細管が内径0.7mm、長さ15mmのポリカーボネー
ト製で作られている以外は実施例1と同一のノズ
ルを用い、実施例1と同一の方法でアクリル酸ブ
チル50部、アクリロニトリル15部、スチレン35部
からなる重合体ラテツクスを凝固し、重合体の湿
粉を得た。操作は連続して72時間続けられたが、
その間ラテツクスの吐出状態は極めて安定してお
り、ノズルの閉塞は認められなかつた。また得ら
れた湿粉の水分は19.6%(ドライベース)であ
り、乾燥後の粉体の嵩比重は0.44、平均粒径は
1.03mm、250メツシユ標準篩通過量は全体の0.10
%であつた。
Example 3 50 parts of butyl acrylate, 15 parts of acrylonitrile, A polymer latex consisting of 35 parts of styrene was coagulated to obtain a wet polymer powder. The operation continued for 72 consecutive hours,
During this period, the latex discharge condition was extremely stable, and no nozzle clogging was observed. The moisture content of the obtained wet powder was 19.6% (dry base), the bulk specific gravity of the powder after drying was 0.44, and the average particle size was
1.03mm, 250 mesh standard sieve passing amount is 0.10 of the total
It was %.

実施例 4 外径250mm、厚さ5mmのポリカーボネート製基
板に外径2mm、内径0.5mm、長さ30mmのガラス製
細管を細管相互の間隙が4mmとなるように差し込
み、さらにこれに口径60mmのステンレススチール
製凝固液導入管を取る付け第2図に示す如きノズ
ルを製作した。
Example 4 A glass tube with an outer diameter of 2 mm, an inner diameter of 0.5 mm, and a length of 30 mm was inserted into a polycarbonate substrate with an outer diameter of 250 mm and a thickness of 5 mm so that the gap between the tubes was 4 mm, and a stainless steel tube with a diameter of 60 mm was inserted into this. A steel coagulation liquid inlet tube was attached and a nozzle as shown in Fig. 2 was manufactured.

次にこのノズルに重合体ラテツクスの導入管を
取り付けた後該ノズルを凝固液としてPH1.2の硫
酸水溶液が静かに流れる凝固浴中に浸漬し凝固液
の流れと重合体ラテツクスの吐出方向が同じ向き
になるようにノズルの向きを調節する。さらに凝
固浴より凝固液の一部を抜き取りポンプを介して
ノズルに設けた凝固液導入管に導き毎分10の流
量でこれを流す。次いでブタジエン50部、スチレ
ン32部、アクリロニトリル18部からなる重合体の
ラテツクスを前記凝固用ノズルに導入し、細管よ
り凝固浴中に吐出せしめた。吐出した重合体ラテ
ツクスは凝固液導入管より吐出した凝固液および
ノズル外周を流れる凝固液と良好に接触して糸状
に凝固したので、これを固化槽へ移し、重合体の
温度を91℃に昇温せしめて重合体粒子を固化した
後、遠心脱水機(遠心力は600G)で脱水した。
Next, after attaching a polymer latex introduction pipe to this nozzle, the nozzle is immersed in a coagulation bath in which a sulfuric acid solution with a pH of 1.2 is flowing gently as a coagulating liquid, so that the flow of the coagulating liquid and the discharge direction of the polymer latex are the same. Adjust the nozzle direction so that the Further, a part of the coagulating liquid is extracted from the coagulating bath and introduced into a coagulating liquid introducing pipe provided in the nozzle via a pump, and is allowed to flow at a flow rate of 10 per minute. Next, a polymer latex consisting of 50 parts of butadiene, 32 parts of styrene, and 18 parts of acrylonitrile was introduced into the coagulation nozzle and discharged from the thin tube into the coagulation bath. The discharged polymer latex made good contact with the coagulation liquid discharged from the coagulation liquid inlet tube and the coagulation liquid flowing around the nozzle, and coagulated into a thread, so it was transferred to a solidification tank and the temperature of the polymer was raised to 91°C. After heating to solidify the polymer particles, they were dehydrated using a centrifugal dehydrator (centrifugal force: 600G).

一連の操作は連続して50時間続けられたがその
間ラテツクスの吐出状態は極めて安定しており、
ノズルの閉塞は観測されなかつた。
The series of operations continued for 50 hours, during which time the latex discharge condition was extremely stable.
No nozzle blockage was observed.

得られた湿粉の水分は21.3%(ドライベース)
であり、乾燥後の粉体の嵩比重は0.41、平均粒径
は0.43mm、250メツシユ標準篩通過量は全体の
0.08%であつた。
The moisture content of the obtained wet powder is 21.3% (dry base)
The bulk specific gravity of the powder after drying is 0.41, the average particle size is 0.43 mm, and the amount passing through a 250-mesh standard sieve is
It was 0.08%.

比較例 1 80の容器に1%硫酸水溶液を30入れ、これ
を撹拌しながら、さらに実施例1で用いた重合体
ラテツクス20を注ぎ凝析スラリーをつくる。
Comparative Example 1 30ml of 1% aqueous sulfuric acid solution was put into an 80ml container, and while stirring, 20ml of the polymer latex used in Example 1 was added to make a coagulation slurry.

この方法は従来より広く一般的に行なわれてき
た凝固方法である。該スラリーを93℃に昇温せし
めて重合体粒子を固化した後、遠心脱水機(遠心
力は600G)で脱水した。
This method is a coagulation method that has been widely used in the past. The slurry was heated to 93° C. to solidify the polymer particles, and then dehydrated using a centrifugal dehydrator (centrifugal force: 600 G).

得られた湿粉の水分は33%(ドライベース)で
あり、乾燥後の粉体の嵩比重は0.32、平均粒経は
0.25mm、250メツシユ標準篩通過量は全体の2.03
重量%であつた。
The moisture content of the obtained wet powder was 33% (dry base), the bulk specific gravity of the powder after drying was 0.32, and the average particle size was
0.25mm, 250 mesh standard sieve passing amount is 2.03 of the total
It was in weight%.

比較例 2 夫々の直径が80mm、120mm、160mmおよび200mm
で、同一の厚さ6mmのポリメタクリル酸メチル製
円形基板4枚に直径2mmの孔を相互の間隙が3.5
mmとなるように開けた。この場合、実施例1〜3
とは異り基板上の区画割りは行わず、点対称径に
直径80mm、120mm、160mmおよび200mmの板に対し
て夫々127個、290、550個、870個の孔を開けた。
次いで各孔に直径2mm、内径0.6mm、長さ50mmの
ガラス製細管を基板上の突出長が40mmとなるよう
貫通せしめ細管と基板をエポキシ系接着剤アラル
ダイド(商品名、チバガイギー社製)で固着し
た。さらにこれらを漏斗状のガラス製ホルダーに
シリコーンガスケツトを介して接合し、凝固用ノ
ズルを製作した。
Comparative example 2 The respective diameters are 80mm, 120mm, 160mm and 200mm
Then, holes with a diameter of 2 mm were placed in four circular polymethyl methacrylate substrates with a thickness of 6 mm, with a gap of 3.5 mm between each other.
It was opened so that it was mm. In this case, Examples 1 to 3
Unlike in the previous example, the board was not divided into sections, but 127, 290, 550, and 870 holes were drilled at a point symmetrical diameter on plates with diameters of 80 mm, 120 mm, 160 mm, and 200 mm, respectively.
Next, a glass tube with a diameter of 2 mm, an inner diameter of 0.6 mm, and a length of 50 mm was inserted through each hole so that the protrusion length above the substrate was 40 mm, and the tube and the substrate were fixed using an epoxy adhesive Araldide (trade name, manufactured by Ciba Geigy). did. Furthermore, these were joined to a funnel-shaped glass holder via a silicone gasket to produce a coagulation nozzle.

本ノズルに重合体ラテツクスの導入管を設けた
後、該ノズルを硫酸1%を含む凝固液が静かに流
れる凝固浴中に実施例1と同じように浸漬、設置
した。しかる後に実施例1と同じ重合体ラテツク
スを前記凝固用ノズルに導入し細管より吐出せし
めた。その結果直径80mmの基板に127本の細管を
貫通せしめたノズルおよび直径120mmの基板に290
本の細管を貫通せしめたノズルは連続して8時
間、安定した凝折操作ができたものの、直径160
mmおよび200mmの鏡板に夫々550本および870本の
細管を貫通せしめて製作した2つのノズルについ
てはいずれも運転開始後10分以内に凝析した重合
体の粗大塊が連続的に発生するようになり、安定
した凝固操作が不能であつた。
After this nozzle was provided with a polymer latex introduction tube, the nozzle was immersed and placed in a coagulation bath in which a coagulation solution containing 1% sulfuric acid was flowing gently in the same manner as in Example 1. Thereafter, the same polymer latex as in Example 1 was introduced into the coagulation nozzle and discharged from the thin tube. As a result, a nozzle with 127 thin tubes penetrated through a substrate with a diameter of 80 mm, and a nozzle with 290 tubes penetrated into a substrate with a diameter of 120 mm.
Although the nozzle that penetrated the thin tube was able to perform stable condensation for 8 hours continuously,
For the two nozzles manufactured by passing 550 and 870 thin tubes through the end plates of mm and 200 mm, respectively, coarse lumps of coagulated polymer were continuously generated within 10 minutes after the start of operation. Therefore, stable coagulation operation was impossible.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図および第2図は本発明におけるラテツク
ス凝固用ノズルの実施態様例であり、第1図はノ
ズル中央部が円形状にくり抜かれたリングドーナ
ツ型のノズルの第三角法による正面図1−1およ
び1−1図の−線に沿つた側面断面図であ
る。第2図はノズル中央部に凝固液導入管を別途
設けたノズルの第三角法による正面図2−1およ
び2−1図の−線に沿つた側面断面図であ
る。 1……細管、2……基板、3……ホルダー、4
……ガスケツト、5……締結具、6……凝固液導
入管。
1 and 2 are embodiments of a latex coagulating nozzle according to the present invention, and FIG. 1 is a front view of a ring-doughnut-shaped nozzle with a circularly hollowed-out central portion, taken by the third trigonometric method. FIG. 1 is a side cross-sectional view taken along the - line in FIGS. 1 and 1-1. FIG. 2 is a front view 2-1 of a nozzle in which a coagulating liquid introducing pipe is separately provided in the center of the nozzle, and a side sectional view taken along the line - in FIG. 2-1. 1...Thin tube, 2...Substrate, 3...Holder, 4
... Gasket, 5... Fastener, 6... Coagulation liquid introduction pipe.

Claims (1)

【特許請求の範囲】 1 重合体ラテツクスを凝固する際に、ラテツク
ス凝固用ノズルとして基板の中央部より凝固液の
吐出が可能な構造であり、しかも細管相互の間隙
が1mm以上で、且つ基板上の突出長が3mm以上と
なるように基板に複数本の細管が設けられたもの
を使用することを特徴とする重合体ラテツクスの
凝固方法。 2 基板上の突出長が10mm以上なるラテツクス凝
固用ノズルであることを特徴とする特許請求の範
囲第1項記載の重合体ラテツクスの凝固方法。 3 基板と細管が接着剤により固着されたラテツ
クス凝固用ノズルであることを特徴とする特許請
求の範囲第1項または第2項記載の重合体ラテツ
クスの凝固方法。 4 基板と細管が重合反応により固着されたラテ
ツクス凝固用ノズルであることを特徴とする特許
請求の範囲第1項または第2項記載の重合体ラテ
ツクスの凝固方法。 5 基板と細管が、基板を形成する溶融物質を冷
却固化することによつて固着されたラテツクス凝
固用ノズルであることを特徴とする特許請求の範
囲第1項または第2項記載の重合体ラテツクスの
凝固方法。 6 基板と細管が一体成形により固着されたラテ
ツクス凝固用ノズルであることを特徴とする特許
請求の範囲第1項または第2項記載の重合体ラテ
ツクスの凝固方法。 7 基板と細管がネジ込により固着されたラテツ
クス凝固用ノズルであることを特徴とする特許請
求の範囲第1項または第2項記載の重合体ラテツ
クスの凝固方法。
[Scope of Claims] 1. When coagulating polymer latex, the latex coagulating nozzle has a structure capable of discharging coagulating liquid from the center of the substrate, and furthermore, the gap between the capillary tubes is 1 mm or more, and A method for coagulating a polymer latex, characterized in that a substrate is provided with a plurality of thin tubes so that the protruding length of the latex is 3 mm or more. 2. The method for coagulating polymer latex according to claim 1, characterized in that the nozzle is a latex coagulating nozzle having a protruding length on the substrate of 10 mm or more. 3. A method for coagulating polymer latex according to claim 1 or 2, characterized in that the nozzle is a latex coagulating nozzle in which a substrate and a thin tube are fixed with an adhesive. 4. A method for coagulating polymer latex according to claim 1 or 2, wherein the nozzle is a latex coagulating nozzle in which a substrate and a thin tube are fixed together by a polymerization reaction. 5. The polymer latex according to claim 1 or 2, which is a latex solidifying nozzle in which the substrate and the thin tube are fixed by cooling and solidifying the molten substance forming the substrate. coagulation method. 6. The method for coagulating polymer latex according to claim 1 or 2, wherein the nozzle is a latex coagulating nozzle in which a substrate and a thin tube are fixed by integral molding. 7. The method for coagulating polymer latex according to claim 1 or 2, wherein the nozzle is a latex coagulating nozzle in which the substrate and the thin tube are fixed by screwing.
JP5770583A 1983-03-31 1983-03-31 Method for coagulating polymer latex Granted JPS59182801A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5770583A JPS59182801A (en) 1983-03-31 1983-03-31 Method for coagulating polymer latex

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5770583A JPS59182801A (en) 1983-03-31 1983-03-31 Method for coagulating polymer latex

Publications (2)

Publication Number Publication Date
JPS59182801A JPS59182801A (en) 1984-10-17
JPH032361B2 true JPH032361B2 (en) 1991-01-14

Family

ID=13063351

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5770583A Granted JPS59182801A (en) 1983-03-31 1983-03-31 Method for coagulating polymer latex

Country Status (1)

Country Link
JP (1) JPS59182801A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021010861A (en) 2019-07-04 2021-02-04 国立研究開発法人日本原子力研究開発機構 Nozzle for ejecting liquid phase

Also Published As

Publication number Publication date
JPS59182801A (en) 1984-10-17

Similar Documents

Publication Publication Date Title
US4429114A (en) Method for treating emulsified latex
PL105366B1 (en) METHOD OF MAKING SOAP-RUBBER PIECES
US6610798B1 (en) Controlled suspension polymerization process without mechanical agitation
JPWO2007114468A1 (en) Spray dryer, spray drying method and polymer powder
US4744744A (en) Extrusion nozzle for coagulation of polymer latices
JPH032361B2 (en)
JPH032362B2 (en)
CN112142881A (en) ABS graft latex coagulating method and device thereof
JPH0365376B2 (en)
JPH032363B2 (en)
JPH0365375B2 (en)
US4277426A (en) Method for production of coagulated synthetic polymer latex
US6943223B1 (en) Controlled shear and turbulence flow pattern within a liquid in a vessel
JP3411070B2 (en) Method for producing polymer powder
JPS60127311A (en) Manufacture of thermoplastic resin powder
CA1042127A (en) Continuous method of agglomerating aqueous latices and apparatus therefor
JPS6042427A (en) Production unit for thermoplastic resin
JPS6042428A (en) Production unit for thermoplastic resin
JPH0224295B2 (en)
JP2560032B2 (en) Granular body manufacturing method
JP6255648B2 (en) Continuous reaction apparatus for inorganic particles and method for continuous reaction crystallization of inorganic particles
JPS60124626A (en) Production of polymer powder
JPH07157502A (en) Method for continuous coagulation fattening of rubber latex
JPS60127312A (en) Manufature of thermoplastic resin powder
CN113145036A (en) Preparation device and method of polymer microspheres with uniform particle size