JPH043415B2 - - Google Patents

Info

Publication number
JPH043415B2
JPH043415B2 JP14960783A JP14960783A JPH043415B2 JP H043415 B2 JPH043415 B2 JP H043415B2 JP 14960783 A JP14960783 A JP 14960783A JP 14960783 A JP14960783 A JP 14960783A JP H043415 B2 JPH043415 B2 JP H043415B2
Authority
JP
Japan
Prior art keywords
coagulation
discharge nozzle
tank
powder
liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP14960783A
Other languages
Japanese (ja)
Other versions
JPS6042428A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP14960783A priority Critical patent/JPS6042428A/en
Publication of JPS6042428A publication Critical patent/JPS6042428A/en
Publication of JPH043415B2 publication Critical patent/JPH043415B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Processes Of Treating Macromolecular Substances (AREA)
  • Processing And Handling Of Plastics And Other Materials For Molding In General (AREA)

Description

【発明の詳細な説明】 [発明の技術分野] 本発明は、熱可塑性樹脂の製造装置に関し、更
に詳しくは、重合体ラテツクス吐出ノズルが閉塞
することがなく、粉体特性が優れた重合体粉末を
製造することが可能な熱可塑性樹脂の製造装置に
関する。
Detailed Description of the Invention [Technical Field of the Invention] The present invention relates to an apparatus for producing thermoplastic resin, and more particularly, to a method for producing a thermoplastic resin, and more specifically, a polymer powder having excellent powder properties without clogging of a polymer latex discharge nozzle. The present invention relates to a thermoplastic resin manufacturing apparatus capable of manufacturing.

[発明の技術的背景とその問題点] 重合反応により樹脂・塗料・接着剤等を製造す
る高分子化学工業において乳化重合法は優れた機
能を有する樹脂の製造方法として、近年、高付加
価値樹脂の重合工程に盛んに利用されている。
[Technical background of the invention and its problems] In the polymer chemical industry, which manufactures resins, paints, adhesives, etc. through polymerization reactions, emulsion polymerization has been used as a method for producing resins with excellent functions, and in recent years, high value-added resins have been used. It is widely used in the polymerization process.

乳化重合法における製造工程は、通常、塗料や
接着剤等の如く最終製品をラテツクス状で使用す
る場合を除き、重合工程、凝固工程、洗浄・脱水
工程、乾燥工程及び後加工工程よりなつている。
The manufacturing process in the emulsion polymerization method usually consists of a polymerization process, a coagulation process, a washing/dehydration process, a drying process, and a post-processing process, except when the final product is used in latex form such as paints and adhesives. .

樹脂のフアイン化、機能化が強く要求される現
状では重合工程の重要性はいうまでもなく、同時
に、凝固工程における乳化重合体ラテツクスの凝
固手段は、それが得られる重合体の粉末の性状を
大きく左右するため、品質面及び操作性・経済性
からも重要視されている。
It goes without saying that the polymerization process is important in the current situation where there is a strong demand for finer and functionalized resins. Since it has a large influence on the quality, it is also considered important from the viewpoint of quality, operability, and economy.

凝固工程は、重合で得られたラテツクス状の重
合体が凝固剤により凝固反応を経て凝固物となる
工程であるが、その手法によつて得られる重合体
の形状、つまり粉体性状が異なるため、粒径が均
一で、嵩比重が大きく、脱水性が良く、流動性が
良いなどの特性を有する粉体を得ることは、製造
工程における操作性、作業性、工程安定性、エネ
ルギーコスト、省力化及び安全性の点から大きな
メリツトとなる。
The coagulation process is a process in which the latex-like polymer obtained by polymerization undergoes a coagulation reaction with a coagulant to become a coagulated product, but the shape of the polymer obtained, that is, the powder properties, differs depending on the method. Obtaining a powder with characteristics such as uniform particle size, high bulk specific gravity, good dehydration properties, and good flowability is important for operability, workability, process stability, energy cost, and labor saving in the manufacturing process. This has great advantages in terms of security and safety.

従つて、乳化重合工程と共に、凝固工程の技術
の確立は重要である。しかし、従来通りの凝固法
ないし凝固装置では満足すべき粉体性状を有する
凝固物は得られず、したがつて凝固技術或いは凝
固装置の開発が待たれるところであつた。以下
に、従来技術の欠点を詳細に説明する。
Therefore, it is important to establish technology for the coagulation process as well as the emulsion polymerization process. However, conventional coagulation methods and coagulation apparatuses have not been able to obtain coagulated products with satisfactory powder properties, and therefore the development of coagulation techniques and coagulation apparatuses has been awaited. Below, the drawbacks of the prior art will be explained in detail.

従来の技術による樹脂粉体は、形態的には不安
定で粒度分布の巾が広く、微粉状の粉末と粗大粒
子が混在していたため、取扱い上多くの問題があ
つた。このため、粉末の飛散、配管内及び貯槽出
口での詰り、粉地爆発の危険性等の作業性、作業
環境、安全性を改善すべく、新しい凝固法の検討
が種々加えられ、樹脂粉末の粉体特性を向上する
ための手法がいくつか提案されている。その代表
的な例として、噴霧乾燥法及び噴霧凝固法が挙げ
られる。
Resin powder produced by conventional techniques was morphologically unstable, had a wide particle size distribution, and contained a mixture of fine powder and coarse particles, which caused many problems in handling. For this reason, various new coagulation methods have been investigated to improve workability, work environment, and safety, such as powder scattering, clogging in pipes and storage tank outlets, and the risk of powder explosion. Several methods have been proposed to improve powder properties. Typical examples include spray drying and spray coagulation.

これらの手法は、重合体ラテツクスを霧状にし
て直接乾燥又は凝固雰囲気中で凝固体を製造する
ものであるが、何れも気相を利用し霧滴の形状を
固定する技術であるため、多大なエネルギーコス
ト或いは高価な装置の建設コストを要する手法で
ある。又、得られら粉体特性は従来の凝固物に比
してより球形に近い状態である、が粒径は小さく
微粉に類似した特性を有している。
These methods involve atomizing polymer latex and directly drying it or producing a coagulated product in a coagulating atmosphere, but since all of these techniques use a gas phase to fix the shape of the mist droplets, they require a lot of effort. This is a method that requires significant energy costs or construction costs for expensive equipment. In addition, the resulting powder has characteristics that are closer to a spherical shape than conventional coagulated materials, but the particle size is small and has characteristics similar to fine powder.

以上のように気相を利用した凝固或いは乾燥手
法では霧径のコントロールに限度があつて、自と
粒径の最大値が決まつてしまい、粉体形状からも
改善の余地が残されていた。
As mentioned above, the coagulation or drying method using the gas phase has a limit in controlling the mist diameter, and the maximum particle size is determined by itself, and there is still room for improvement in terms of powder shape. .

これに加えて、襲来型の凝固法ないしは凝固装
置を改善することは、建設費、運転コストの面で
有利であり、前述の優れた粉体特性を有する粉体
を製造する方法の開発検討には重要な意義があ
る。
In addition, improving the conventional coagulation method or coagulation equipment is advantageous in terms of construction costs and operating costs, and is useful for developing methods to produce powder with the aforementioned excellent powder properties. has important significance.

[発明の目的] 本発明は、重合体ラテツクス吐出ノズルが閉塞
することがなく、粉体特性が優れた重合体粉末を
製造することが可能な熱可塑性樹脂の製造装置を
提供することを目的とする。
[Objective of the Invention] An object of the present invention is to provide a thermoplastic resin manufacturing apparatus capable of manufacturing a polymer powder with excellent powder characteristics without clogging a polymer latex discharge nozzle. do.

[発明の概要] 本発明者らは上述の目的に添つて幾つかの提案
を行なつてきたが、特願昭56−73115号に提案し
た液相凝固法を基礎として鋭意研究を行つた結
果、本発明の装置を完成するに至つた。
[Summary of the Invention] The present inventors have made several proposals in accordance with the above-mentioned objectives, and as a result of intensive research based on the liquid phase solidification method proposed in Japanese Patent Application No. 73115/1982, the present inventors have made several proposals. , we have completed the device of the present invention.

即ち、本発明者らが開発した液相凝固法によれ
ば、前述の噴霧乾燥法や噴霧凝固法の如く気相領
域を必要とせず、任意の粒径を有する粉体特性が
優れた樹脂粉末を製造することができる。つま
り、この液相凝固法によれば、重合体ラテツクス
の吐出ノズルを構成する細管の内径を変更させる
ことによつて、数十μmから数mmの範囲の粒径を
有する粉粒体が得られる。かくして得られる粉粒
体の粒径分布はその巾が狭く、かつ数十μm以下
の微粉が少ないため流動性が優れている。さらに
また、得られた粉流体は顆粒状を呈し、嵩比重が
大きく、湿粉時の脱水性が良いなど、良好な特性
を有し、従来の湿式凝固法では得られない特徴を
備えている。
That is, the liquid phase coagulation method developed by the present inventors does not require a gas phase region like the above-mentioned spray drying method or spray coagulation method, and can produce resin powder having an arbitrary particle size and excellent powder properties. can be manufactured. In other words, according to this liquid phase coagulation method, by changing the inner diameter of the thin tube that constitutes the polymer latex discharge nozzle, it is possible to obtain powder having a particle size ranging from several tens of micrometers to several millimeters. . The particle size distribution of the powder thus obtained has a narrow width, and there are few fine particles of several tens of micrometers or less, so it has excellent fluidity. Furthermore, the obtained powder fluid has a granular shape, has a large bulk specific gravity, and has good properties such as good dehydration properties when wet powder, and has characteristics that cannot be obtained by conventional wet coagulation methods. .

この液相凝固法によれば、凝固液中に乳化重合
体ラテツクスを細管で構成されたノズルから吐出
すれば該ラテツクスは凝固液と接触し凝固反応を
伴なつて凝固し、糸状に賦形されて凝固液の流れ
と同伴して溢粒口から排出される。賦形した凝固
液は、柔かい状態で容易に粉砕されて粒状となつ
てその散液となるため、吐出ノズル周辺の凝固液
の流れが操作安全性及び液体物性に重要な影響を
もたらす。本発明者らは凝固液の流れと操作安全
性に関して多くの検討を加えた結果、多数の細管
を有する吐出ノズルより吐出する重合体ラテツク
スと均一に凝固液が接触する流れをつくり、賦形
した凝固物が蓄積することなく排出が可能な凝固
法を見出した。つまり、吐出ノズル周辺で凝固液
の流れが渦巻状の乱流を起すと、凝固物が吐出ノ
ズルの先端に溜つて凝固物が団子状となり、長時
間の運転が不可能になる。したがつて、吐出ノズ
ル周辺の流れを遅くするとノズル付近の凝固物の
輸送状態を良くすることになる。しかしながら、
凝固物は時間の経過と共に比重が大きくなり、沈
降し易くなる特質を持つ。これは重合体の真比重
が凝固液よりも大きいためであるが、このような
性質を有する重合体を凝固槽より滞留なく排出す
るためには、凝固槽の出口に向つて凝固液の流速
が増大するようにしてやれば良い。かくして、本
発明者らは、以下の装置を完成するに至つた。
According to this liquid phase coagulation method, when an emulsion polymer latex is discharged into a coagulation liquid from a nozzle composed of a thin tube, the latex comes into contact with the coagulation liquid, coagulates with a coagulation reaction, and is shaped into a thread. It is discharged from the overflow port along with the flow of coagulation liquid. The shaped coagulated liquid is easily pulverized in a soft state and becomes granular to form a dispersion, so the flow of the coagulated liquid around the discharge nozzle has an important effect on operational safety and physical properties of the liquid. As a result of much research into the flow of the coagulating liquid and operational safety, the present inventors created a flow in which the coagulating liquid came into uniform contact with the polymer latex discharged from a discharge nozzle having a large number of thin tubes, and shaped the polymer latex. We have discovered a coagulation method that allows discharge of coagulum without accumulating it. In other words, if the flow of the coagulated liquid causes swirl-like turbulence around the discharge nozzle, the coagulated material accumulates at the tip of the discharge nozzle and becomes lump-like, making long-term operation impossible. Therefore, slowing down the flow around the discharge nozzle improves the transport state of the coagulated material around the nozzle. however,
The solidified material has a characteristic that its specific gravity increases with the passage of time, making it easier to settle. This is because the true specific gravity of the polymer is higher than that of the coagulation liquid, but in order to discharge the polymer with such properties from the coagulation tank without retention, the flow rate of the coagulation liquid towards the outlet of the coagulation tank must be increased. It would be better if you let it increase. In this way, the present inventors completed the following device.

即ち、本発明の熱可塑性樹脂の製造装置は、 凝固槽;該凝固槽内に設置された重合体ラテツ
クス吐出ノズル;該凝固槽内に凝固液を供給する
手段;及び該重合体ラテツクスの凝固物を取り出
すために該凝固槽に設けられた溢流口からなる熱
可塑性樹脂の製造装置であつて、 該吐出ノズルから吐出される重合体ラテツクス
と同一方向に凝固液を供給する凝固液供給手段及
び該吐出ノズルから吐出される重合体ラテツクス
の垂直上方方向に凝固液を供給する凝固液供給手
段を該凝固槽に設置してなることを特徴とする。
That is, the thermoplastic resin manufacturing apparatus of the present invention comprises: a coagulation tank; a polymer latex discharge nozzle installed in the coagulation tank; a means for supplying a coagulation liquid into the coagulation tank; and a coagulated product of the polymer latex. A thermoplastic resin manufacturing apparatus comprising an overflow port provided in the coagulation tank for taking out the polymer latex, the coagulation liquid supply means supplying the coagulation liquid in the same direction as the polymer latex discharged from the discharge nozzle; The present invention is characterized in that a coagulating liquid supply means for supplying a coagulating liquid vertically upward to the polymer latex discharged from the discharge nozzle is installed in the coagulating tank.

本発明の装置を、図面に基づき、更に詳細に説
明する。
The apparatus of the present invention will be explained in more detail based on the drawings.

第1図は、本発明装置の好ましい実施態様を示
したものであり、図中、1は凝固槽、2は凝固槽
1内に配置された重合体ラテツクス吐出ノズル、
3は吐出ノズル2から吐出される重合体ラテツク
スと同一方向に凝固液を供給する凝固液供給手
段、4は吐出ノズル2から吐出される該重合体ラ
テツクスの垂直上方方向に凝固液を供給する凝固
液供給手段、5は重合体ラテツクスの凝固物を取
り出すために該凝固槽1に設けられた溢流口、6
は凝固槽1の底面を表す。
FIG. 1 shows a preferred embodiment of the apparatus of the present invention, in which 1 is a coagulation tank, 2 is a polymer latex discharge nozzle disposed in the coagulation tank 1,
3 is a coagulating liquid supply means for supplying a coagulating liquid in the same direction as the polymer latex discharged from the discharge nozzle 2, and 4 is a coagulating liquid supplying means for supplying the coagulating liquid in a vertically upward direction of the polymer latex discharged from the discharge nozzle 2. A liquid supply means 5 includes an overflow port 6 provided in the coagulation tank 1 for taking out the coagulated product of polymer latex.
represents the bottom surface of the coagulation tank 1.

凝固槽1及び溢流口5はいかなる構造を有して
いてもよいが、図示したように、凝固槽の底面6
は前記吐出ノズル2の設置部位から溢流口5の方
向へ、上方に、水平面から1〜45度の角度で傾斜
していることが本発明の効果を奏する上で好まし
く、さらにこの場合は、凝固液の量を減らしたと
きでも凝固物の排出が容易であるという利点も生
じる。また、凝固槽の底面6を間仕切板にしても
よく、この場合は間仕切板により底面6の傾斜角
に任意を変えることができる(図示せず)。一方、
吐出ノズル2は、従来から用いられているもので
あればいかなるものでもよいが、通常、微細な口
径を有する細管を円板に数十本から数百本埋め込
んだものが用いられる。
The coagulation tank 1 and the overflow port 5 may have any structure, but as shown in the figure, the bottom surface 6 of the coagulation tank
is preferably inclined upward from the installation site of the discharge nozzle 2 in the direction of the overflow port 5 at an angle of 1 to 45 degrees from the horizontal plane in order to achieve the effects of the present invention, and in this case, There is also the advantage that the coagulated material can be easily discharged even when the amount of coagulated liquid is reduced. Further, the bottom surface 6 of the coagulation tank may be made into a partition plate, and in this case, the inclination angle of the bottom surface 6 can be arbitrarily changed by the partition plate (not shown). on the other hand,
The discharge nozzle 2 may be any conventionally used one, but usually one in which several tens to several hundreds of thin tubes with a minute diameter are embedded in a disk is used.

凝固液供給手段3は、通常、溢流口5から、吐
出ノズル1をはさんで相対向する位置であつて、
凝固槽1の側壁に設けられるが、吐出ノズル2か
ら叶出される重合体ラテツクスと同一方向に凝固
液を供給することができるのであれば、その設置
位置は格別限定されない。また、凝固液供給手段
4は、通常凝固槽の底面6であつて、吐出ノズル
2の下方に設けられるが、吐出ノズル2から吐出
される該重合体ラテツクスの垂直上方方向(吐出
ノズルに対し垂直上方方向)に凝固液を供給する
ことができるのであれば、この設置位置は格別限
定されない。なお、図では、凝固液供給手段3及
び4として凝固液の供給管を示したが、本発明に
おいては、凝固槽に凝固液を供給し得る手段であ
ればいかなるものであつてもよい。また、その手
段の数も一つに限らず、二つ以上用いてもよい。
さらに、本発明においては、必要であれば、凝固
液供給手段4のやや上方に適宜感覚のスリツトを
有する多孔板を設け、底部吹き出し口7を介して
底面6から上方に凝固液を均一に供給してもよい
(第2図参照)。
The coagulating liquid supply means 3 is usually located opposite to the overflow port 5 with the discharge nozzle 1 in between,
Although it is installed on the side wall of the coagulation tank 1, its installation position is not particularly limited as long as the coagulation liquid can be supplied in the same direction as the polymer latex discharged from the discharge nozzle 2. Further, the coagulating liquid supply means 4 is usually provided on the bottom surface 6 of the coagulating tank and below the discharge nozzle 2, but it is provided in a vertically upward direction (perpendicular to the discharge nozzle) of the polymer latex discharged from the discharge nozzle 2. The installation position is not particularly limited as long as the coagulating liquid can be supplied in the upward direction. In the figure, coagulation liquid supply pipes are shown as the coagulation liquid supply means 3 and 4, but in the present invention, any means may be used as long as it can supply the coagulation liquid to the coagulation tank. Further, the number of means is not limited to one, and two or more may be used.
Furthermore, in the present invention, if necessary, a perforated plate having appropriate slits is provided slightly above the coagulating liquid supply means 4 to uniformly supply the coagulating liquid upward from the bottom surface 6 through the bottom outlet 7. (See Figure 2).

次に、第2図に基づき、本発明装置の操作法に
ついて説明する。凝固液を凝固液供給手段3及び
4から凝固槽1に供給して該槽内に充填し、この
中に供給管8を介して重合体ラテツクスを吐出ノ
ズル2から供給せしめる。該重合体ラテツクスは
凝固液と接触して凝固せしめられ、精製した凝固
物は溢流口5から排出され、固化槽9に移送され
る。
Next, a method of operating the apparatus of the present invention will be explained based on FIG. The coagulating liquid is supplied from the coagulating liquid supply means 3 and 4 to the coagulating tank 1 to fill the tank, and the polymer latex is supplied from the discharge nozzle 2 through the supply pipe 8 into the tank. The polymer latex is coagulated by contacting the coagulating liquid, and the purified coagulated product is discharged from the overflow port 5 and transferred to the solidifying tank 9.

[発明の効果] 本発明の装置を使用すれば、吐出ノズルから吐
出される重合体ラテツクスと同一方向及び垂直上
方方向に凝固液を供給することができるため、叶
出ノズルの周辺、時にその中心における凝固液の
流れが阻止されることはない。したがつて、吐出
ノズルしたラテツクスが糸状になつて凝固物同志
が会合し合うことはないため、吐出ノズルの周辺
に凝固物が蓄積し、凝固物が団子状となつてその
先端部を閉塞するという不都合な事態は回避され
る。この効果は、多数の細管を有する吐出ノズル
を使用して処理量を増大させた場合に、一層顕著
となる。このため、凝固処理の長時間駆動が可能
となり得る。さらには、本発明の装置を用いて得
られた樹脂粉体は良好な粉体特性を有しているた
め、本発明装置は工業上、多大な利益をもたらす
ものと言える。
[Effects of the Invention] By using the device of the present invention, it is possible to supply the coagulating liquid in the same direction as the polymer latex discharged from the discharge nozzle and in the vertically upward direction. The flow of coagulating liquid at is not obstructed. Therefore, the latex discharged from the nozzle becomes thread-like and the coagulated substances do not meet with each other, so the coagulated substances accumulate around the discharge nozzle, form a lump, and block the tip. This inconvenient situation is avoided. This effect becomes even more pronounced when a discharge nozzle with a large number of tubes is used to increase the throughput. Therefore, it may be possible to drive the coagulation process for a long time. Furthermore, since the resin powder obtained using the apparatus of the present invention has good powder characteristics, it can be said that the apparatus of the present invention brings great industrial benefits.

[発明の実施例] 実施例 1 ラテツクスの吐出方向と同一方向及び垂直上方
方向にそれぞれ凝固液を供給する凝固液供給手段
並びに10mmのスリツトを有する100mm巾の多孔板
を底部に設けた、巾300mm、深さ400mm、流さが
1500mm、底面の傾斜が15度である第1図の如き凝
固槽を使用して凝固操作を実施した。運転中の凝
固液としては0.5%の硫酸水溶液を使用し、これ
を250/minの割合で前記凝固槽に供給した。
なお、このうち吐出されるラテツクスに対して垂
直上方方向への凝固液の供給量は50/minであ
つた。
[Embodiments of the Invention] Example 1 A coagulating liquid supply means for supplying coagulating liquid in the same direction as the discharge direction of latex and in a vertically upward direction, and a 300 mm wide plate provided with a 100 mm wide perforated plate having a 10 mm slit at the bottom. , depth 400mm, flow
The coagulation operation was carried out using a coagulation tank as shown in Fig. 1 with a diameter of 1500 mm and a bottom slope of 15 degrees. A 0.5% sulfuric acid aqueous solution was used as the coagulation liquid during operation, and was supplied to the coagulation tank at a rate of 250/min.
Incidentally, the rate of supply of the coagulating liquid in the vertically upward direction relative to the discharged latex was 50/min.

吐出ノズルは外径180mmの円板に外径3mm、内
径0.8mm、流さ70mmの細管450本を埋め込んだもの
を、吐出されるラテツクスに対して水平方向の凝
固液の流れと重合体ラテツクスの吐出方向とが一
致するように前記凝固槽に設置した。次いで、該
ノズルに単量体成分として、ブタジエン30部、ア
クリロニトリル21部、スチレン49部から得られた
重合体ラテツクスを5.5/minの割合で流した。
吐出ノズルより吐出した重合体ラテツクスは凝固
液と接触しながら凝固した。凝固した重合体ラテ
ツクスは凝固液の流れに同伴して溢流口より排出
された。吐出した重合体は溜ることなく移動し、
長時間運転しても凝固物が吐出ノズルに蓄積する
ことはなかつた。
The discharge nozzle is a disk with an outer diameter of 180 mm, in which 450 thin tubes with an outer diameter of 3 mm, an inner diameter of 0.8 mm, and a flow rate of 70 mm are embedded. It was installed in the coagulation tank so that the directions were the same. Next, a polymer latex obtained from 30 parts of butadiene, 21 parts of acrylonitrile, and 49 parts of styrene as monomer components was flowed into the nozzle at a rate of 5.5/min.
The polymer latex discharged from the discharge nozzle was coagulated while coming into contact with the coagulation liquid. The coagulated polymer latex was discharged from the overflow port along with the flow of the coagulating liquid. The discharged polymer moves without accumulation,
No coagulum accumulated in the discharge nozzle even after long-term operation.

次いで、これを内温90℃に保たれた固化槽へ移
し重合体を加熱固化した後に遠心脱水し、さら
に、箱型乾燥器により十分乾燥して顆粒状の熱可
塑性樹脂の粉体を得た。
Next, this was transferred to a solidification tank maintained at an internal temperature of 90°C, and the polymer was solidified by heating, followed by centrifugal dehydration, and then thoroughly dried in a box-type dryer to obtain granular thermoplastic resin powder. .

該粉内の特性値は平均粒子径が0.84mm、嵩比重
が0.48、流動性指数が93であつた。250メツシユ
標準篩の通過量は全体量の0.21%であり、微粉の
極めて少ない粉末が得られた。
The characteristic values of the powder were as follows: average particle diameter was 0.84 mm, bulk specific gravity was 0.48, and fluidity index was 93. The amount that passed through the 250-mesh standard sieve was 0.21% of the total amount, and powder with extremely low fines was obtained.

比較例 1 容量50のバツフル付撹拌槽に1%硫酸水溶液
を10入れ、これを撹拌し65℃に昇温しながら実
施例1と同一の重合体ラテツクス15を徐々に滴
下しラテツクスを凝固させた。滴下が終了したら
撹拌槽の温度を95℃に昇温し重合体を固化した
後、遠心脱水機により重合体の湿粉を得た。この
方法は従来より行なわれている重合体ラテツクス
の一般的な回分式凝固法である。次いで、得られ
た湿粉を乾燥器で十分乾燥して乾燥粉末とし、該
粉末の粉体特性を評価した。
Comparative Example 1 10 ml of 1% sulfuric acid aqueous solution was placed in a stirred tank with a baffle having a capacity of 50 ml, and while stirring and raising the temperature to 65°C, 15 ml of the same polymer latex as in Example 1 was gradually added dropwise to solidify the latex. . When the dropping was completed, the temperature of the stirring tank was raised to 95°C to solidify the polymer, and then a wet powder of the polymer was obtained using a centrifugal dehydrator. This method is a conventional batch coagulation method for polymer latex. Next, the obtained wet powder was sufficiently dried in a drier to obtain a dry powder, and the powder characteristics of the powder were evaluated.

その結果、平均粒子径は0.33mm、嵩比重が
0.37、250メツシユ標準篩の通過量は全体の3.5%
であり、流動指数が74で、実施例1よりも微粉が
多く流動性の悪い粉末であることがわかつた。
As a result, the average particle diameter was 0.33mm, and the bulk specific gravity was
The amount passing through the 0.37, 250 mesh standard sieve is 3.5% of the total.
It was found that the powder had a fluidity index of 74 and had more fine powder than Example 1 and had poor fluidity.

実施例 2 実施例1と同一形状の凝固槽を使用して凝固操
作を行なつた。単量体成分としてブタジエン70
部、メタクリル酸メチル10部及びスチレン20部を
用いて得られた熱可塑性樹脂ラテツクスを用い
た。凝固液としては、0.3%の硫酸水溶液を用い、
これを前記凝固槽に300/minの流速で流し、
そのうち吐出されるラテツクスに対して垂直上方
方向への凝固液の供給量は100/minであつた。
Example 2 A coagulation bath having the same shape as in Example 1 was used to carry out the coagulation operation. Butadiene 70 as a monomer component
10 parts of methyl methacrylate and 20 parts of styrene was used. A 0.3% sulfuric acid aqueous solution was used as the coagulation liquid.
This is passed through the coagulation tank at a flow rate of 300/min,
The rate of supply of the coagulating liquid vertically upward relative to the discharged latex was 100/min.

吐出ノズルとしては、180mmの円板に外径3mm、
内径1mm、流さ90mmの細管を7500本埋め込んだも
のを使用し、吐出されるラテツクスに対して水平
方向の凝固液の流れと重合体ラテツクスの吐出方
向とが一致するように凝固槽内に配置し、該ノズ
ルに重合体ラテツクスを9/minの割合で流し
た。その結果吐出ノズルより吐出したラテツクス
は凝固液と接触しながら凝固した。凝固した重合
体は凝固液の流れに乗つて、凝固槽より排出され
た。このときノズルより吐出された重合体は溜る
ことなくスムーズに排出され、ラテツクスの吐出
状態は非常に安定していた。
The discharge nozzle is a 180mm disk with an outer diameter of 3mm.
7500 thin tubes with an inner diameter of 1 mm and a flow rate of 90 mm were used, and they were placed in the coagulation tank so that the flow of the coagulating liquid in the horizontal direction with respect to the discharged latex coincided with the discharge direction of the polymer latex. , the polymer latex was flowed through the nozzle at a rate of 9/min. As a result, the latex discharged from the discharge nozzle coagulated while coming into contact with the coagulating liquid. The coagulated polymer was discharged from the coagulation tank along with the flow of the coagulation liquid. At this time, the polymer discharged from the nozzle was discharged smoothly without accumulation, and the latex discharge condition was very stable.

この重合体を内温が88℃に保たれた固化槽へ移
し、加熱固化した後遠心脱水し、さらに、箱型乾
燥器によつて十分乾燥して顆粒状の熱可塑性樹脂
の粉体を得た。
This polymer was transferred to a solidification tank whose internal temperature was kept at 88°C, solidified by heating, centrifugally dehydrated, and thoroughly dried in a box dryer to obtain granular thermoplastic resin powder. Ta.

該粉体の特性値を測定したところ平均粒子径は
0.96mm、嵩比重は0.52、流動性指数は94であつ
た。250メツシユ標準篩通過量は全体量の0.15%
であり、微粉が極めて少なく流動性のよい粉末で
あることがわかつた。
When the characteristic values of the powder were measured, the average particle diameter was
It was 0.96 mm, bulk specific gravity was 0.52, and fluidity index was 94. The amount passing through the 250 mesh standard sieve is 0.15% of the total amount.
It was found that the powder contained very little fine powder and had good fluidity.

比較例 2 吐出されるラテツクスに対して垂直上方方向に
は凝固液を供給しなかつたことを除き、実施例2
と同様に凝固操作を行なつた。
Comparative Example 2 Example 2 except that the coagulating liquid was not supplied vertically upward to the discharged latex.
The coagulation operation was carried out in the same manner as above.

その結果、吐出ノズルから吐出したラテツクス
のうち、凝固液と十分に接触する部分は糸状を呈
していたが、凝固液の流れが少ない部分はラテツ
クスが塊状となつており、このため凝固物の排出
がスムーズに行われなくなつて次第に吐出ノズル
の閉塞を起こし運転が不可能な状態となつた。吐
出ノズルを凝固液から取り出して観察したとこ
ろ、ノズル円板の中心部に埋め込んだノズル先端
部に未凝固のラテツクスが付着していた。これ
は、ラテツクスが凝固液と十分に接触できなかつ
たために生じた現象であると考えられる。
As a result, it was found that the latex discharged from the discharge nozzle had a string-like shape in the part where there was sufficient contact with the coagulating liquid, but in the part where the flow of the coagulating liquid was small, the latex was in the form of a lump, and as a result, the discharge of the coagulated material was difficult. As a result, the discharge nozzle gradually became clogged, making operation impossible. When the discharge nozzle was removed from the coagulation liquid and observed, uncoagulated latex was found to be attached to the tip of the nozzle embedded in the center of the nozzle disk. This phenomenon is thought to be due to the latex not being able to sufficiently contact the coagulating liquid.

実施例 3 ラテツクスの吐出方向と同一方向及び垂直上方
方向にそれぞれ凝固液を供給する凝固液供給手段
並びに5mmの多孔板を底部に設けた、巾150mm、
深さ200mm、流さが1000mm、底面の傾斜が10度で
ある第1図の如き凝固槽を使用して凝固操作を実
施した。運転中の凝固液としては0.5%の硫酸マ
グネシウム水溶液を使用し、これを32/minの
割合で前記凝固槽に供給した。なお、このうち吐
出されるラテツクスに対して垂直上方方向への凝
固液の供給量は10/minであつた。
Example 3 A coagulating liquid supply means for supplying coagulating liquid in the same direction as the latex discharge direction and vertically upward direction, and a 5 mm perforated plate at the bottom, width 150 mm,
The coagulation operation was carried out using a coagulation tank as shown in Fig. 1 having a depth of 200 mm, a flow rate of 1000 mm, and a bottom slope of 10 degrees. A 0.5% aqueous magnesium sulfate solution was used as the coagulation liquid during operation, and was supplied to the coagulation tank at a rate of 32/min. Incidentally, the rate of supply of the coagulating liquid in the vertically upward direction relative to the discharged latex was 10/min.

吐出ノズルは外径90mmの円板に外径3mm、内径
1.2mm、長さ100mmの細管95本を埋め込んだものを
叶出されるラテツクスに対して水平方向の凝固液
の流れと重合体ラテツクスの吐出方向とが一致す
るように前記凝固槽に設置した。次いで、該ノズ
ルに単量体成分として、アクリル酸ブチル12部、
アクリル酸エチル8部、メタクリル酸60部及びス
チレン20部から得られた重合体ラテツクスを1.2
/minの割合で流した。吐出ノズルより吐出し
た重合体ラテツクスは凝固液と接触しながら凝固
した。凝固した重合体は凝固液の流れに同伴して
溢流口より排出された。吐出した重合体は溜るこ
となく移動し、長時間運転しても凝固物が吐出ノ
ズルに蓄積することはなかつた。
The discharge nozzle is a disk with an outer diameter of 90 mm and an outer diameter of 3 mm and an inner diameter.
95 thin tubes each having a diameter of 1.2 mm and a length of 100 mm were embedded in the coagulation tank so that the flow of the coagulation liquid in the horizontal direction with respect to the latex to be produced coincided with the discharge direction of the polymer latex. Next, 12 parts of butyl acrylate was added to the nozzle as a monomer component,
1.2 parts of a polymer latex obtained from 8 parts of ethyl acrylate, 60 parts of methacrylic acid and 20 parts of styrene.
/min. The polymer latex discharged from the discharge nozzle was coagulated while coming into contact with the coagulation liquid. The coagulated polymer was discharged from the overflow port along with the flow of the coagulating liquid. The discharged polymer moved without accumulation, and no coagulum accumulated in the discharge nozzle even after long-term operation.

次いで、これを内温85℃に保たれた固化槽へ移
し重合体を加熱固化した後に遠心脱水し、さら
に、箱型乾燥器により十分乾燥して顆粒状の熱可
塑性樹脂の粉体を得た。
Next, this was transferred to a solidification tank maintained at an internal temperature of 85°C, and the polymer was solidified by heating, followed by centrifugal dehydration, and then sufficiently dried in a box-type dryer to obtain granular thermoplastic resin powder. .

該粉内の特性値は平均粒子径が1.15mm、嵩比重
が0.54、流動性指数が95であつた。250メツシユ
標準篩の通過量は全体量の0.10%であり、微粉の
極めて少ない粉末が得られた。
The characteristic values of the powder were as follows: average particle diameter was 1.15 mm, bulk specific gravity was 0.54, and fluidity index was 95. The amount that passed through the 250-mesh standard sieve was 0.10% of the total amount, and a powder with very little fine powder was obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明装置の実施例を示す斜視図、第
2図は本発明装置を用いた凝固操作中の物質の流
れを示す概略図である。 1……凝固槽、2……重合体ラテツクス吐出ノ
ズル、3……吐出ノズルから吐出される重合体ラ
テツクスと同一方向に凝固液を供給する凝固液供
給手段、4……吐出ノズルから吐出される重合体
ラテツクスの垂直上方方向に凝固液を供給する凝
固液供給手段、5……溢流口、6……凝固槽の底
面、7……底部吹き出し口、8……供給管、9…
…固化槽。
FIG. 1 is a perspective view showing an embodiment of the apparatus of the present invention, and FIG. 2 is a schematic diagram showing the flow of material during a coagulation operation using the apparatus of the present invention. 1... Coagulation tank, 2... Polymer latex discharge nozzle, 3... Coagulation liquid supply means for supplying a coagulation liquid in the same direction as the polymer latex discharged from the discharge nozzle, 4... Discharged from the discharge nozzle. Coagulation liquid supply means for supplying a coagulation liquid vertically upward of the polymer latex, 5... Overflow port, 6... Bottom surface of coagulation tank, 7... Bottom outlet, 8... Supply pipe, 9...
...Solidification tank.

Claims (1)

【特許請求の範囲】 1 凝固槽;該凝固槽内に設置された重合体ラテ
ツクス吐出ノズル;該凝固槽内に凝固液を供給す
る手段;及び該重合体ラテツクスの凝固物を取り
出すために該凝固槽に設けられた溢流口からなる
熱可塑性樹脂の製造装置であつて、 該吐出ノズルから吐出される重合体ラテツクス
と同一方向に凝固液を供給する凝固液供給手段及
び該吐出ノズルから吐出される重合体ラテツクス
の垂直上方方向に凝固液を供給する凝固液供給手
段を該凝固槽に設置してなることを特徴とする熱
可塑性樹脂の製造装置。 2 凝固槽の底面が、吐出ノズル設置部位から溢
流口の方向に上方へ、水平面から1〜45度傾斜し
ている特許請求の範囲第1項記載の熱可塑性樹脂
の製造装置。
[Scope of Claims] 1. A coagulation tank; a polymer latex discharge nozzle installed in the coagulation tank; means for supplying a coagulation liquid into the coagulation tank; A thermoplastic resin manufacturing apparatus comprising an overflow port provided in a tank, comprising: a coagulating liquid supply means for supplying a coagulating liquid in the same direction as the polymer latex discharged from the discharge nozzle; 1. An apparatus for producing a thermoplastic resin, characterized in that the coagulating tank is provided with a coagulating liquid supply means for supplying the coagulating liquid vertically upward of the polymer latex. 2. The thermoplastic resin manufacturing apparatus according to claim 1, wherein the bottom surface of the coagulation tank is inclined from a horizontal plane by 1 to 45 degrees upward from the discharge nozzle installation site toward the overflow port.
JP14960783A 1983-08-18 1983-08-18 Production unit for thermoplastic resin Granted JPS6042428A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14960783A JPS6042428A (en) 1983-08-18 1983-08-18 Production unit for thermoplastic resin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14960783A JPS6042428A (en) 1983-08-18 1983-08-18 Production unit for thermoplastic resin

Publications (2)

Publication Number Publication Date
JPS6042428A JPS6042428A (en) 1985-03-06
JPH043415B2 true JPH043415B2 (en) 1992-01-23

Family

ID=15478902

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14960783A Granted JPS6042428A (en) 1983-08-18 1983-08-18 Production unit for thermoplastic resin

Country Status (1)

Country Link
JP (1) JPS6042428A (en)

Also Published As

Publication number Publication date
JPS6042428A (en) 1985-03-06

Similar Documents

Publication Publication Date Title
JPH03153704A (en) Gas sparger of fluidized bed vapor phase polymerization apparatus
US4429114A (en) Method for treating emulsified latex
JPS5887102A (en) Process and apparatus for producing coagulated latex
JPH043415B2 (en)
JPH043414B2 (en)
JPH0460125B2 (en)
JP5626996B2 (en) Method for producing synthetic resin particles and synthetic resin particles
JPS60124626A (en) Production of polymer powder
JPS59155402A (en) Production of thermoplastic resin
JPS60127312A (en) Manufature of thermoplastic resin powder
JPS60127311A (en) Manufacture of thermoplastic resin powder
JP3813011B2 (en) Method and apparatus for collecting polymer solids
JPS60163933A (en) Recovery of polymer
JPH032362B2 (en)
KR930000666B1 (en) Process and equipment for soildified particle of polymeric latex
IE41493B1 (en) Granules of salts of substituted or unsubstituted poly- -hydroxyacrylic acids and their production
KR930002714B1 (en) Method for preparing of coagulating particles of polymer latex and apparatus thereof
JPH0139444B2 (en)
JP4526675B2 (en) Dewatering method and dewatering equipment for slurry containing pitch particle
JPH0365375B2 (en)
JP2000239315A (en) Production of polymer
KR910005234B1 (en) Process of preparation for coagulating particle of polymeric latex and apparatus thereof
KR0179454B1 (en) Method of continuous separating a thermoplastic powder
JPS60124627A (en) Production of thermoplastic resin powder
JPH032363B2 (en)