JPH0364931A - Mos type semiconductor device - Google Patents

Mos type semiconductor device

Info

Publication number
JPH0364931A
JPH0364931A JP20180989A JP20180989A JPH0364931A JP H0364931 A JPH0364931 A JP H0364931A JP 20180989 A JP20180989 A JP 20180989A JP 20180989 A JP20180989 A JP 20180989A JP H0364931 A JPH0364931 A JP H0364931A
Authority
JP
Japan
Prior art keywords
gate
whole surface
region
conductivity type
source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20180989A
Other languages
Japanese (ja)
Inventor
Takeyoshi Nishimura
武義 西村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP20180989A priority Critical patent/JPH0364931A/en
Publication of JPH0364931A publication Critical patent/JPH0364931A/en
Pending legal-status Critical Current

Links

Landscapes

  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

PURPOSE:To reduce the gate-source capacitance and to obtain an MOS type semiconductor device having high switching rate by a method wherein a metallic electrode layer is formed not entirely on the whole surface of a gate provided on the region encircling respective regions distributed on a semiconductor substrate through gate insulating films but an opening is formed at a part thereof. CONSTITUTION:Gates 6 provided on the proper region of a substrate 1 exposed between channel diffused laters 2 of respective cells and extending outside source diffused layers 3 are provided on the whole surface encircling respective cells, however metallic electrode layers 7 covering the gates 6 through the intermediary of insulating films 8 of PSG, for example, exist not entirely on the whole surface. That is, Al-Si alloy, etc., is applied on the whole surface, the film 7 is partly removed by selective etching process to form opening parts 9. Accordingly, the insulating films 8 existing beneath the openings 9 have no capacitive component thus reducing the gate-source capacitance.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、半導体基板の両面にそれぞれ設けられた主電
極間に流れる主電流を制御するためのMO8構造を一面
上に備え、スイッチング電源として使用されるMOS型
半導体装置に関する。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention provides a semiconductor substrate with an MO8 structure on one side for controlling the main current flowing between main electrodes provided on both sides, and is used as a switching power supply. This invention relates to a MOS type semiconductor device used.

〔従来の技術〕[Conventional technology]

限られた面積の半導体基板の表面上に備えたMO8構造
によりできるだけ大きな主電流を制御するために、半導
体装置を複数の並列セルに分割する。第2図(al、(
b)は、その−例としてのたて型MOSFETを示し、
(alは平面透視図、(b)は(alのB−B線に沿っ
ての断面図である。各セルにおいてはn形シリコン基板
1の表面部にpチャネル拡散層としての9層2が形成さ
れ、その表面層にソース拡散層としてのn″″″層3成
されている。9層2の中央部には深いp+ウェル拡散層
4が形成されている。基板の表面には、一つのn°層3
と基板本来の領域でドレイン領域となるn層1の露出部
との間にはさまれたチャネル拡散層2の上から隣接セル
の同様なチャネル拡散層2の上までゲート酸化膜5を介
して多結晶シリコンゲート6が設けられている。n°層
3およびp゛層4接触する、例えばU−St金合金らな
る金属電8iIM7は、第2図ta+に斜線を引いて示
したように、並列接続のために各セルに対して共通に一
体に形成され、ゲート6との絶縁のため両者の間にPS
Gなどの絶縁膜8が介在している。第2図伽)に図式的
に示したように、金属電極膜7と多結晶Stゲート6の
間の絶縁膜8に容量成分11が存在する。金属電極膜7
はソース層3に接触しているので、この容量成分11は
ゲート・ソース間容量となる。
In order to control as large a main current as possible with an MO8 structure provided on the surface of a semiconductor substrate of limited area, the semiconductor device is divided into a plurality of parallel cells. Figure 2 (al, (
b) shows a vertical MOSFET as an example;
(al is a plan perspective view, and (b) is a sectional view taken along the line B-B of (al). In each cell, nine layers 2 as a p-channel diffusion layer are formed on the surface of an n-type silicon substrate 1. A deep p+ well diffusion layer 4 is formed in the center of the nine layers 2. A deep p+ well diffusion layer 4 is formed on the surface of the substrate. two n° layer 3
and the exposed part of the n-layer 1, which will become the drain region in the original region of the substrate, from the top of the channel diffusion layer 2 to the top of the similar channel diffusion layer 2 of the adjacent cell via the gate oxide film 5. A polycrystalline silicon gate 6 is provided. The metal electrode 8iIM7 made of, for example, U-St gold alloy, which contacts the n° layer 3 and the p′ layer 4, is common to each cell for parallel connection, as shown by diagonal lines in FIG. 2 ta+. is formed integrally with the gate 6, and a PS
An insulating film 8 made of G or the like is interposed. As schematically shown in FIG. 2, a capacitive component 11 exists in the insulating film 8 between the metal electrode film 7 and the polycrystalline St gate 6. Metal electrode film 7
Since is in contact with the source layer 3, this capacitance component 11 becomes a gate-source capacitance.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

第2図に示したようなMOS型半導体装置のスイッチン
グ速度を早くするには、ゲート・ドレイン間容量あるい
はゲート・ソース間容量を小さくする必要がある。その
ために従来のMOS型半導体装置では次のような方法が
考慮されていた。
In order to increase the switching speed of a MOS type semiconductor device as shown in FIG. 2, it is necessary to reduce the gate-drain capacitance or the gate-source capacitance. For this purpose, the following methods have been considered in conventional MOS semiconductor devices.

(11セル寸法あるいはチャネル面積を減らしたり、ゲ
ート酸化膜を厚くしてゲート・ドレイン間容量をへらす
(11) Reduce the cell size or channel area or thicken the gate oxide film to reduce the gate-drain capacitance.

(2)ゲート・ソース間の絶縁膜を厚くし、ゲート・ソ
ース間容量をへらす。
(2) Increase the thickness of the insulating film between the gate and source to reduce the capacitance between the gate and source.

しかし、方法(1)においては、他の特性が変化すると
いう問題があった。方法(2)においては、他の特性は
変化しないが絶縁膜を厚くするための時間がかかること
、エツチング工程の時間が長くかかること、およびその
ためにサイドエツチング等による不良が発生しやすくな
るという問題があった。
However, method (1) had a problem in that other characteristics changed. In method (2), other characteristics remain unchanged, but the problem is that it takes time to thicken the insulating film, the etching process takes a long time, and as a result, defects such as side etching are more likely to occur. was there.

本発明の目的は、上記の問題を解決し、ソース層に接触
する金属電極膜とゲートとの間に介在する絶縁膜を厚く
することなくゲート・ソース間容量をへらした、スイッ
チン・グ速度の早いMOS型半導体装置を提供すること
にある。
An object of the present invention is to solve the above problems, reduce the gate-source capacitance without increasing the thickness of the insulating film interposed between the gate and the metal electrode film in contact with the source layer, and increase the switching speed. It is an object of the present invention to provide a MOS type semiconductor device with high speed.

〔課題を解決するための手段〕[Means to solve the problem]

上記の目的を達成するために、本発明は第一導電形の半
導体基板の表面層に周縁と所定の間隔を介して環状の第
一導電形のソース層を備えた第二導電形のセル領域が複
数個分散配置され、各セル領域間の第一導電形基板本来
の領域の露出部上には各セル領域のソース層外側の部分
の上まで延びるゲートがゲート絶縁膜を介して存在し、
各ソース層および各セル領域のソース層内側の部分にそ
れぞれ接触する金属電極膜は相互に連結され、ゲートと
絶縁膜によって絶縁されているMOS型半導体装置にお
いて、金属電極膜が各セル領域にはさまれた領域上に存
在するゲートの上に開口部を有するものとする。
To achieve the above object, the present invention provides a cell region of a second conductivity type that is provided with a ring-shaped source layer of a first conductivity type on a surface layer of a semiconductor substrate of a first conductivity type, with a peripheral edge and a predetermined distance therebetween. A plurality of gates are arranged in a dispersed manner, and a gate is provided on the exposed portion of the original region of the first conductivity type substrate between each cell region, with a gate extending to above a portion outside the source layer of each cell region via a gate insulating film,
In a MOS type semiconductor device in which the metal electrode films in contact with each source layer and the inner part of the source layer of each cell region are interconnected and insulated by the gate and an insulating film, the metal electrode film is in contact with each cell region. It is assumed that an opening is provided above the gate existing on the sandwiched region.

〔作用〕[Effect]

金属電極膜がゲート上の全面に存在せず、一部に開口部
を有することにより、開口部の面積だけゲート金属電極
膜間の絶縁膜のもつ容量が減少し、ゲート・ソース間容
量が小さくなる。
Because the metal electrode film does not cover the entire surface of the gate and has an opening in a portion, the capacitance of the insulating film between the gate metal electrode film is reduced by the area of the opening, and the gate-source capacitance is small. Become.

〔実施例〕〔Example〕

第3図に示すように通常2鶴角ないし9wa角の寸法の
たて型MOSFETのチップ20には、ゲートと外部と
の接続のためのゲートバンド21と金属電極膜と外部と
の接続のためのソースバンド22が設けられている。第
1図1at、(b)は本発明の一実施例のたて型MOS
FETチップの第3図でA部として示したようなソース
バンドより離れた部分を示し、Talは透視平面図、伽
)は(MlのA−A線断面図であり、第2図と共通の部
分には同一の符号が付されている。この場合、各セルの
チャネル拡散層2の間に露出する暢20〜40#llの
基板1本来の領域上にゲート酸化膜5を介して設けられ
、−辺8〜40μの角環状のソース拡散層3の外側にあ
るチャネル拡散層2の上まで延びているゲート6は、第
2図の場合と同様、各セルを取囲む領域全面に設けられ
ているが、その上を、例えばPSGからなる絶縁膜8を
介して覆う金属電極膜7は第2図の場合と異なり全面に
存在しない、すなわち、U−31合金などを全面被着後
一部が選択エツチングで除去され、開口部9が形成され
ている。従って、この開口部9の下に存在する絶縁膜8
には容量成分はなく、それだけゲート・ソース間容量が
減少する。
As shown in FIG. 3, the chip 20 of the vertical MOSFET, which usually has dimensions of 2 square to 9 square Wa, includes a gate band 21 for connecting the gate to the outside, and a gate band 21 for connecting the metal electrode film to the outside. A source band 22 is provided. 1at and 1(b) show a vertical MOS according to an embodiment of the present invention.
It shows a part away from the source band as shown as part A in Fig. 3 of the FET chip, Tal is a perspective plan view, and 载 is a cross-sectional view of (Ml) taken along the line A-A, which is the same as Fig. 2. The same reference numerals are given to the parts. In this case, the gate oxide film 5 is provided on the original region of the substrate 1 of approximately 20 to 40 #ll exposed between the channel diffusion layers 2 of each cell. , - The gate 6 extending to the top of the channel diffusion layer 2 on the outside of the annular source diffusion layer 3 with sides of 8 to 40 μm is provided over the entire area surrounding each cell, as in the case of FIG. However, unlike the case in FIG. 2, the metal electrode film 7 covering the top with an insulating film 8 made of PSG, for example, does not exist on the entire surface, that is, after coating the entire surface with U-31 alloy, etc. is removed by selective etching to form an opening 9. Therefore, the insulating film 8 existing under this opening 9
Since there is no capacitive component, the gate-source capacitance is reduced accordingly.

金属電極1lK7に開口部9を設けることは、ソースバ
ンド22に流れる電流の通路を減らすことになる。第1
図に示したようにソースパッドから離れた部分ではその
電流が少ないため開口部を大きくとっても差支えないが
、第3図においてBで示したソースパッド22に近接し
た部分では電流通路が足りなくなるため、第4図(a)
、(b)に示したように開口部9の面積を小さくする。
Providing the opening 9 in the metal electrode 11K7 reduces the path of current flowing through the source band 22. 1st
As shown in the figure, there is no problem in making the opening large because the current is small in the part away from the source pad, but there is not enough current path in the part close to the source pad 22, indicated by B in FIG. Figure 4(a)
, the area of the opening 9 is reduced as shown in (b).

なお、第4図において(alは平面透視図であり、山)
はta+のC−C線に沿っての断面図である。
In addition, in Fig. 4 (al is a plane perspective view, and the mountain)
is a cross-sectional view of ta+ along line CC.

以上の実施例は、nチャネルたて型MOSFETに対す
るものであるが、pチャネルたて型MOSF4Tあるい
は基板の下面側に逆導電形の層を設けたn、p各チャネ
ルのwA縁ゲートバイポーラトランジスタなどのMOS
型半導体装置に対しても同様に実施できる。
The above embodiments are for n-channel vertical MOSFETs, but p-channel vertical MOSFETs, n- and p-channel wA edge gate bipolar transistors with layers of opposite conductivity type provided on the bottom side of the substrate, etc. MOS
The same method can be applied to type semiconductor devices.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、半導体基板に分散配置される各セル領
域をとり囲む領域上にゲート絶縁膜を介して設けられる
ゲート上の全面には金属電極膜を形成せず、一部に開口
部を設けることにより、ゲートと金属電極膜にはさまれ
た絶縁膜に生ずる容量成分を約20〜40%低減できる
ため、ゲート・ソース間容量が減じ、スイッチング速度
の早いMO8型半導体装置を得ることができた。
According to the present invention, a metal electrode film is not formed on the entire surface of a gate provided via a gate insulating film on a region surrounding each cell region distributed on a semiconductor substrate, but an opening is formed in a part of the gate. By providing this, the capacitance component generated in the insulating film sandwiched between the gate and the metal electrode film can be reduced by about 20 to 40%, so the gate-source capacitance is reduced and an MO8 type semiconductor device with high switching speed can be obtained. did it.

【図面の簡単な説明】[Brief explanation of drawings]

第1図t8)、(b)は本発明の一実施例のMOSFE
Tを示し、(a)は透視平面図、To)は(a)のA−
A線に沿っての要部断面図、第2図(1111,(bl
は従来のたで型MOSFETを示し、(a)は透視平面
図、山)はta+のB−B線に沿っての要部断面図、第
3図はMO5FETチップの概念的平面図、第4V!J
(a)、To)は本発明の一実施例のMOSFETの第
1図と異なる位置を示し、(alは透視平面図、Q+)
は(a)のC−C線に沿っての要部断面図である。 1:n形シリコン基板、2:チャネル拡散層(p層) 
 3:ソース拡散層 (n″−層)  5:ゲート酸化
膜、6:ゲート、7:金属電極膜、8:′$II!1 第21!l
Figure 1 t8) and (b) are MOSFEs of one embodiment of the present invention.
T, (a) is a perspective plan view, To) is A- in (a)
A sectional view of the main part along line A, Fig. 2 (1111, (bl
shows a conventional vertical MOSFET, (a) is a perspective plan view, (mountain) is a sectional view of the main part along the BB line of ta+, Fig. 3 is a conceptual plan view of MO5FET chip, 4th V ! J
(a), To) shows a different position from FIG. 1 of a MOSFET according to an embodiment of the present invention, (al is a perspective plan view, Q+)
FIG. 2 is a cross-sectional view of main parts taken along line CC in FIG. 1: N-type silicon substrate, 2: Channel diffusion layer (p layer)
3: Source diffusion layer (n''-layer) 5: Gate oxide film, 6: Gate, 7: Metal electrode film, 8:'$II!1 21st!l

Claims (1)

【特許請求の範囲】[Claims] 1)第一導電型の半導体基板の表面層に周縁と所定の間
隔を介して環状の第一導電形のソース層を備えた第二導
電形のセル領域が複数個分散配置され、各セル領域間の
第一導電形基板本来の領域の露出部上には各セル領域の
ソース層外側の部分の上まで延びるゲートがゲート絶縁
膜を介して存在し、各ソース層および各セル領域のソー
ス層内側の部分にそれぞれ接触する金属電極膜は相互に
連結され、ゲートと絶縁膜によって絶縁されているもの
において、金属電極膜が各セル領域にはさまれた領域上
に存在するゲートの上に開口部を有することを特徴とす
るMOS型半導体装置。
1) A plurality of cell regions of a second conductivity type each having an annular source layer of the first conductivity type are distributed and arranged on the surface layer of a semiconductor substrate of the first conductivity type, with a ring-shaped source layer of the first conductivity type interposed between the periphery and a predetermined interval, and each cell region On the exposed part of the original region of the first conductivity type substrate between, there is a gate extending to the outer part of the source layer of each cell region via a gate insulating film, and a gate exists between each source layer and the source layer of each cell region. In cases where the metal electrode films that respectively contact the inner parts are connected to each other and are insulated from the gate by an insulating film, the metal electrode film has an opening above the gate located on the region sandwiched between each cell region. A MOS type semiconductor device characterized by having a portion.
JP20180989A 1989-08-03 1989-08-03 Mos type semiconductor device Pending JPH0364931A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20180989A JPH0364931A (en) 1989-08-03 1989-08-03 Mos type semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20180989A JPH0364931A (en) 1989-08-03 1989-08-03 Mos type semiconductor device

Publications (1)

Publication Number Publication Date
JPH0364931A true JPH0364931A (en) 1991-03-20

Family

ID=16447276

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20180989A Pending JPH0364931A (en) 1989-08-03 1989-08-03 Mos type semiconductor device

Country Status (1)

Country Link
JP (1) JPH0364931A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04322471A (en) * 1991-04-23 1992-11-12 Mitsubishi Electric Corp Mos semiconductor device and manufacture thereof
JP2007027561A (en) * 2005-07-20 2007-02-01 Toshiba Corp Power semiconductor device
US9555981B2 (en) 2012-03-20 2017-01-31 Wegmann Automotive Gmbh & Co. Kg Apparatus and method for dispensing vehicle balancing weights

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62108572A (en) * 1985-11-06 1987-05-19 Fuji Electric Co Ltd Mis type field-effect transistor for electric power

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62108572A (en) * 1985-11-06 1987-05-19 Fuji Electric Co Ltd Mis type field-effect transistor for electric power

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04322471A (en) * 1991-04-23 1992-11-12 Mitsubishi Electric Corp Mos semiconductor device and manufacture thereof
JP2007027561A (en) * 2005-07-20 2007-02-01 Toshiba Corp Power semiconductor device
US9555981B2 (en) 2012-03-20 2017-01-31 Wegmann Automotive Gmbh & Co. Kg Apparatus and method for dispensing vehicle balancing weights

Similar Documents

Publication Publication Date Title
JPS6113661A (en) Semiconductor device and manufacture thereof
JPH0364931A (en) Mos type semiconductor device
US4656055A (en) Double level metal edge seal for a semiconductor device
JPH06163906A (en) Insulated gate semiconductor device and fabrication thereof
JPH01238174A (en) Vertical mosfet
JPS61170068A (en) Mos transistor
JPH0255953B2 (en)
KR100611743B1 (en) TFT with Multiple Gate
JPS57192069A (en) Insulated gate field effect semiconductor device
JP2642000B2 (en) MOS integrated circuit device
JPH04239137A (en) Vertical type field effect transistor
JPH01220865A (en) Compound semiconductor device
JP2892673B2 (en) Semiconductor device
JPH03238867A (en) Insulated gate type field effect transistor
JPH02272760A (en) Mos transistor
JPS6146042A (en) Semiconductor device
JPH03255673A (en) Semiconductor integrated circuit
JPS6036110B2 (en) semiconductor equipment
JPS6437058A (en) Insulated-gate field-effect transistor
JPS61220354A (en) Semiconductor device
KR940009351B1 (en) Edge seal and manufacturing method of a semiconductor chip
JPH065751B2 (en) Insulated gate field effect transistor
JPH04186674A (en) Semiconductor device
JPS63204628A (en) Semiconductor integrated circuit device
JPH0427157A (en) Semiconductor device