JPH0362421A - Manufacture of oxide superconductor laminated on substrate - Google Patents

Manufacture of oxide superconductor laminated on substrate

Info

Publication number
JPH0362421A
JPH0362421A JP1196770A JP19677089A JPH0362421A JP H0362421 A JPH0362421 A JP H0362421A JP 1196770 A JP1196770 A JP 1196770A JP 19677089 A JP19677089 A JP 19677089A JP H0362421 A JPH0362421 A JP H0362421A
Authority
JP
Japan
Prior art keywords
oxide superconductor
substrate
oxide
copper
firing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1196770A
Other languages
Japanese (ja)
Inventor
Mitsuru Suzuki
満 鈴木
Takeshi Morimoto
剛 森本
Eiji Yanagisawa
栄治 柳沢
Shinji Kondo
新二 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP1196770A priority Critical patent/JPH0362421A/en
Publication of JPH0362421A publication Critical patent/JPH0362421A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Abstract

PURPOSE:To manufacture the lamination body of oxide superconductors while the oxide superconductors being strongly bonded to a substrate by keeping and baking a material turning into an oxide superconductor via a baking process in contact with the substrate having a copper or copper oxide layer on the surface thereof. CONSTITUTION:A suitable binder is added to the powder of a material turning into an oxide superconductor when subjected to a baking process, and slurry is thereby obtained. This slurry is formed into a sheet or tape shape and baked on a metal deposited with copper or copper oxide, thereby obtaining an oxide superconducting thick film strongly bonded on the metal. In order to obtain the aforesaid thick film, the slurry is molded by the doctor blade method. As a substrate laminated with the material turning into an oxide superconductor upon baking, it is possible to use a metal element, alloy, ceramic or the like without any specific limitation, if the material is not oxidized or deteriorated in the baking atmosphere, or does not lose superconducting characteristics due to reaction with an oxide superconductor. More concretely, silver or gold is used.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は酸化物超電導体と他の材料との積層体の製造方
法に関するものであり、特に厚膜の酸化物超電導体と金
属箔を積層して、加工性と変形性を付与した積層体を製
造する方法に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for manufacturing a laminate of an oxide superconductor and other materials, and particularly relates to a method for manufacturing a laminate of a thick film oxide superconductor and metal foil. The present invention relates to a method of manufacturing a laminate having workability and deformability.

[従来の技術] 酸化物超電導体はそのままでは変形しに(く、加工性に
乏しいので、他の材料と複合化することが提案されてい
る。例えば、SinghらはYzOa、 Cub、 B
aCO5を混合粉砕したものを950℃で24時間焼成
してYBaiCumOt−yの粉末をつくり、次にこれ
に13%の銀粉末を混合し適当なバインダーを加えてド
クターブレード法によりテープ状に成形した後、このテ
ープを銀の板の上に載せて930〜960℃の酸素雰囲
気中で焼成してこれを接着させることを報告している。
[Prior art] Since oxide superconductors are difficult to deform and have poor workability as they are, it has been proposed to combine them with other materials. For example, Singh et al.
Mixed and pulverized aCO5 was baked at 950°C for 24 hours to produce YBaiCumOt-y powder, which was then mixed with 13% silver powder, an appropriate binder was added, and formed into a tape using the doctor blade method. It is reported that this tape was then placed on a silver plate and baked in an oxygen atmosphere at 930 to 960°C to adhere it.

<Appl’。<Appl'.

Phys、Lett、、53 (3)、18 July
(198&))しかしながら、Singhらの方法によ
るとYBaiCumOt−yを銀板と密着させるために
銀の粉末を多量に混入しているので、超電導特性な劣化
させるという問題点があった。また、この超電導体は、
約400μmと比較的厚いもので、あまり大きな曲率に
曲げることは困難であった。
Phys, Lett, 53 (3), 18 July
(198&)) However, according to the method of Singh et al., a large amount of silver powder is mixed in to bring YBaiCumOt-y into close contact with the silver plate, which has the problem of deteriorating the superconducting properties. In addition, this superconductor
It was relatively thick, about 400 μm, and it was difficult to bend it to a very large curvature.

[発明が解決しようとする課題] 本発明の目的は、上述の銀粉末のように超電導の特性を
劣化させる相を含まない酸化物超電導体を、基体に強固
に接着して酸化物超電導体の積層体を得ることにある。
[Problems to be Solved by the Invention] An object of the present invention is to firmly adhere to a substrate an oxide superconductor that does not contain a phase that deteriorates superconducting properties, such as the above-mentioned silver powder. The purpose is to obtain a laminate.

特に、金属上に薄い酸化物超電導体を形成して、可撓性
のある超電導体を得ることを目的としている。
In particular, the aim is to form a thin oxide superconductor on a metal to obtain a flexible superconductor.

[課題を解決するための手段] 本発明は前述の目的を達成するためになされたものであ
り、焼成することにより酸化物超電導体になる物質を、
銅または酸化銅の層を表面に設けた基体に接触させて焼
成することを特徴とする基体に積層した酸化物超電導体
の製造方法を提供するものである。
[Means for Solving the Problems] The present invention has been made to achieve the above-mentioned object, and includes a material that becomes an oxide superconductor by firing.
The present invention provides a method for producing an oxide superconductor laminated on a substrate, characterized in that the layer of copper or copper oxide is brought into contact with a substrate provided on the surface and fired.

本発明においては、焼成することにより酸化物超電導体
になる物質と基体との間に銅または酸化銅の層を設けて
いるため、酸化物超電導体と基体との接着強度の高い積
層体が得られる。
In the present invention, since a layer of copper or copper oxide is provided between the substrate and the substance that becomes an oxide superconductor by firing, a laminate with high adhesive strength between the oxide superconductor and the substrate can be obtained. It will be done.

焼成する温度が、基体の融点以下でかつ焼成することに
より酸化物超電導体になる物質と銅または酸化銅が反応
して液相を形成する温度以上である場合は、銅または酸
化銅が酸化物超電導体が基体と接着する際に酸化物超電
導体の融点を下げる融剤の役割を有し、接合する基体の
融点以下の温度で酸化物超電導体の結晶が溶解し析出成
長することが可能になるので好ましい。
If the firing temperature is below the melting point of the substrate and above the temperature at which copper or copper oxide reacts with a substance that becomes an oxide superconductor by firing to form a liquid phase, copper or copper oxide becomes an oxide superconductor. It acts as a flux that lowers the melting point of the oxide superconductor when the superconductor is bonded to the substrate, allowing crystals of the oxide superconductor to melt and grow by precipitation at a temperature below the melting point of the substrate to be bonded. Therefore, it is preferable.

このとき、基体表面上に結晶C面が基体表面と平行にな
るように配向するので、接合強度が向上するだけでなく
超電導体の特性も向上する。
At this time, since the crystal C-plane is oriented on the substrate surface so as to be parallel to the substrate surface, not only the bonding strength is improved but also the characteristics of the superconductor are improved.

結晶が配向する理由は必ずしも明らかではないが、生成
した液相の表面張力あるいは溶解再析出による結晶成長
などの影響が考えられる。
The reason why crystals are oriented is not necessarily clear, but it is thought to be influenced by the surface tension of the generated liquid phase or crystal growth due to dissolution and reprecipitation.

銅または酸化銅の層を設ける方法としては、メツキ、蒸
着、スパッタ、CVD、塗布法など種々の方法を用いる
ことができる。あらかじめ設けた銅の層を酸化雰囲気中
で加熱することにより、これを酸化銅の層とすることも
できる。
Various methods can be used to provide the copper or copper oxide layer, such as plating, vapor deposition, sputtering, CVD, and coating. By heating a previously provided copper layer in an oxidizing atmosphere, this can also be made into a copper oxide layer.

銅または酸化銅の層の厚さは1〜50μmが好ましい。The thickness of the copper or copper oxide layer is preferably 1 to 50 μm.

銅または酸化銅は、共に同様な働きを有するが、銅を用
いる場合には、焼成の際に銅自体が酸化されて周囲から
酸素を奪い酸化物超電導体の特性を低下させるおそれが
あるので、より酸化性の強い雰囲気で焼成することが好
ましい。
Copper and copper oxide both have similar functions, but when copper is used, there is a risk that the copper itself will be oxidized during firing, depriving the surrounding area of oxygen and reducing the properties of the oxide superconductor. It is preferable to perform firing in a more strongly oxidizing atmosphere.

本発明において、焼成することにより酸化物超電導体に
なる物質とは、加熱焼成することにより実質的に酸化物
超電導体に転換し得る物質で、酸化物超電導体そのもの
、あるいは加熱焼成時に反応して酸化物超電導体相を生
成する未反応の前駆物質(以下前駆物質という)または
これらの混合物である。酸化物超電導体以外の成分を含
み、焼成した後、少量の非超電導相が内部に分散した酸
化物超電導体になるようなものであっても良い。前駆物
質を含む物質を用いる場合は、前駆物質が反応して酸化
物超電導体になる際に、金属と強固な結合を作り積層体
の接着強度が向上するので好ましい。
In the present invention, a substance that becomes an oxide superconductor by firing is a substance that can be substantially converted into an oxide superconductor by heating and firing, and is either an oxide superconductor itself or a substance that reacts during heating and firing. It is an unreacted precursor (hereinafter referred to as precursor) that produces an oxide superconductor phase, or a mixture thereof. It may contain components other than the oxide superconductor, and after firing, it may become an oxide superconductor with a small amount of non-superconducting phase dispersed inside. When using a substance containing a precursor, it is preferable because when the precursor reacts and becomes an oxide superconductor, it forms a strong bond with the metal and improves the adhesive strength of the laminate.

焼成することにより酸化物超電導体になる物質としては
、酸化物超電導体自体以外には、例えば酸化物超電導体
に含まれる金属元素の酸化物あるいは炭酸塩等を、所望
の原子比になるように混合した混合物を用いることがで
きる。複数の金属成分を含む複合酸化物あるいは複合塩
を用いることもできる。また、上記のような酸化物、炭
酸塩等の混合物を超電導体が生成する温度より少し低い
温度で焼成するか、あるいは超電導体が生成する温度で
あっても完全に反応する時間より短い時間焼成して部分
的に酸化物超電導体相を生成させたものを用いても良い
In addition to the oxide superconductor itself, substances that become an oxide superconductor by firing include, for example, oxides or carbonates of metal elements contained in the oxide superconductor in a desired atomic ratio. Mixed mixtures can be used. A complex oxide or complex salt containing multiple metal components can also be used. In addition, it is also possible to sinter the mixture of oxides, carbonates, etc. mentioned above at a temperature slightly lower than the temperature at which superconductors are formed, or for a time shorter than the time required for complete reaction even at the temperature at which superconductors are formed. A material in which an oxide superconductor phase is partially formed may also be used.

さらに、酸化物超電導体に上記のような前駆物質を混合
したものも同様に用いることができる。
Furthermore, an oxide superconductor mixed with the above precursors can also be used.

本発明において、酸化物超電導体の積層体を製造するに
は、以下のような方法を採用することができる。例えば
、焼成して酸化物超電導体になる物質の粉末を、あらか
じめ成形しておき、この成形体を銅または酸化銅の表面
層を有する基体に載せて焼成する方法は、焼成後の超電
導体が緻密で強度の高いものになるので好ましい。具体
的には、焼成して酸化物超電導体になる物質の粉末に適
当なバインダーを加えてスラリーとし、シート状あるい
はテープ状に成形したものを、銅または酸化銅を付着さ
せた金属に載せて焼成することにより、金属上に強固に
接着した酸化物超電導体厚膜が得られる。このような厚
膜を得るには、上記スラリーをドクターブレード法で成
形するのが好ましい。上記の粉末に適当なバインダーや
溶剤を加えて、銅または酸化銅を付着させた基体に塗布
した後で焼成しても酸化物超電導体の厚膜が得られる。
In the present invention, the following method can be adopted to manufacture a laminate of oxide superconductors. For example, a method in which a powder of a substance that becomes an oxide superconductor when fired is shaped in advance, this molded body is placed on a substrate having a surface layer of copper or copper oxide, and then fired is a method in which the superconductor after firing is This is preferable because it becomes dense and strong. Specifically, a suitable binder is added to the powder of a substance that becomes an oxide superconductor when fired to form a slurry, which is then formed into a sheet or tape and placed on a metal coated with copper or copper oxide. By firing, a thick oxide superconductor film firmly adhered to the metal can be obtained. In order to obtain such a thick film, it is preferable to mold the slurry using a doctor blade method. A thick film of oxide superconductor can also be obtained by adding a suitable binder or solvent to the above powder, applying it to a substrate to which copper or copper oxide is attached, and then firing it.

酸化物超電導体をCVDのような気相法により、銅また
は酸化銅を付着させた基体上に形成した後焼成する方法
も同様に採用できる。
A method in which an oxide superconductor is formed on a substrate to which copper or copper oxide is attached by a vapor phase method such as CVD and then fired can be similarly adopted.

本発明において、焼成して酸化物超電導体になる物質と
積層する基体としては、焼成雰囲気で酸化するなどして
変質せず、また酸化物超電導体と反応して超電導特性を
損なうものでなければ、単体金属や合金あるいはセラミ
ックス等を特に限定されず用いることができる。具体的
には銀あるいは金を用いるのが酸化物超電導体との接触
抵抗を微小にし、安定化材としての役割を付与するうえ
からも好ましい。基体として金属の薄板を用いて、厚膜
の酸化物超電導体を積層する場合は、焼成後これを曲げ
ることができる点で好ましい。このとき厚膜は、薄いも
のであるほど小さな曲率半径で曲げることができる。厚
膜の厚さは300μm以下、より好ましくは100μm
以下が好ましい。酸化物超電導体を薄膜で形成しても同
様に可撓性のある積層体が得られる。
In the present invention, the substrate to be laminated with the substance that becomes an oxide superconductor by firing must not change in quality by oxidation in the firing atmosphere, and must not react with the oxide superconductor and impair its superconducting properties. , single metals, alloys, ceramics, etc. can be used without particular limitation. Specifically, it is preferable to use silver or gold because it minimizes the contact resistance with the oxide superconductor and serves as a stabilizing material. It is preferable to use a thin metal plate as the base to laminate a thick film of oxide superconductor because it can be bent after firing. At this time, the thinner the thick film is, the smaller the radius of curvature can be bent. The thickness of the thick film is 300 μm or less, more preferably 100 μm
The following are preferred. Even if the oxide superconductor is formed into a thin film, a similarly flexible laminate can be obtained.

超電導体の厚膜を、銅または酸化銅を付着した薄い金属
板に積層した積層体を適当な細さに切断して一定の曲率
で巻回すことによってコイル等も容易に得ることができ
る。銅または酸化銅を付着した金属線あるいは無機繊維
に、焼成して酸化物超電導体になる物質の粉末を、塗布
した後焼成すれば超電導線材が得られる。
A coil or the like can be easily obtained by laminating a thick film of a superconductor on a thin metal plate coated with copper or copper oxide, cutting the laminated body into appropriate pieces, and winding the laminated body with a certain curvature. A superconducting wire can be obtained by coating a metal wire or inorganic fiber coated with copper or copper oxide with a powder of a substance that becomes an oxide superconductor when fired, and then firing.

本発明において、焼成雰囲気は酸素を含む雰囲気である
ことが好ましく、未反応の前駆物質を用いる場合焼成の
温度および時間は未反応部分が十分反応して酸化物超電
導体を生成し得る条件である必要がある。さらには、基
体上に付着した銅あるいは酸化銅を介し酸化物超電導体
が、基体の表面にその0面を基体の表面と平行に成長す
る温度条件であることが好ましい。すなわち1等温面が
基体表面に平行で、基体の方が温度が低くなるように温
度勾配を付けて、冷却の際、焼成時に生成した液相を基
体の方から凝固させるのが好ましい。帯域溶融の手法を
用いて、基体の表面に平行に温度勾配を付けた加熱装置
を用いて、基体を移動させながら焼成を行なう場合は、
結晶の配向性がさらに向上するので好ましい。
In the present invention, the firing atmosphere is preferably an atmosphere containing oxygen, and when an unreacted precursor is used, the firing temperature and time are such that the unreacted portion can sufficiently react to produce an oxide superconductor. There is a need. Furthermore, it is preferable that the temperature conditions are such that the oxide superconductor grows on the surface of the substrate with its zero plane parallel to the surface of the substrate via the copper or copper oxide deposited on the substrate. That is, it is preferable that one isothermal surface is parallel to the substrate surface, a temperature gradient is provided so that the temperature is lower on the substrate, and during cooling, the liquid phase generated during firing is solidified from the substrate. When firing while moving the substrate using a heating device with a temperature gradient parallel to the surface of the substrate using the zone melting method,
This is preferable because the crystal orientation is further improved.

本発明の製造方法は、酸化物超電導体の組成によらずY
−Ba−Cu−0系、Bi (Pb) −Ca−3r−
Cu−0系、Tl−Ba−Ca−Cu−0系等いずれに
も適用できる。
The manufacturing method of the present invention is applicable to Y regardless of the composition of the oxide superconductor.
-Ba-Cu-0 system, Bi (Pb) -Ca-3r-
It can be applied to any of the Cu-0 system, Tl-Ba-Ca-Cu-0 system, etc.

[実施例〕 実施例I Y : Ba : Cuのモル比が1 :2:3になる
ように混合したY*Oi、 BaCO5,CuO粉末を
、850℃で5時間焼成して仮焼成粉末を得た。この粉
末にアクリル系のバインダーを加えて、ドクターブレー
ド法により厚さ50μmのグリーンシートを成形した。
[Example] Example I Y*Oi, BaCO5, and CuO powders mixed so that the molar ratio of Y: Ba: Cu was 1:2:3 were fired at 850°C for 5 hours to obtain a pre-fired powder. Ta. An acrylic binder was added to this powder, and a green sheet with a thickness of 50 μm was formed using a doctor blade method.

これを厚さ8μmの銅を電気メツキした厚さ120μm
の銀箔に載せて、950℃の酸素気流中で5時間焼成し
た。
This is electroplated with 8 μm thick copper to a thickness of 120 μm.
It was placed on silver foil and baked in an oxygen stream at 950°C for 5 hours.

この結果得られた積層体は直径3mmの円筒に巻きつけ
ても亀裂が発生せず、また液体窒素中に出し入れしても
剥離などの外観の変化はおこらなかった。直流4端子法
により測定したところ、液体窒素温度における臨界電流
密度は4000A/cm”であった。走査型電子顕微鏡
による断面および表面の観察によると、この酸化物超電
導体は、銀板の上に0面が板面に平行に並んだ配向性を
有する組織を有していた。
The resulting laminate did not crack even when it was wound around a cylinder with a diameter of 3 mm, and no change in appearance such as peeling occurred even when it was put in and taken out of liquid nitrogen. When measured using the DC four terminal method, the critical current density at liquid nitrogen temperature was 4000 A/cm.According to the observation of the cross section and surface using a scanning electron microscope, this oxide superconductor was formed on a silver plate. It had an oriented structure in which the 0 plane was aligned parallel to the plate surface.

比較例1 銅をメツキしていない銀箔を用いた以外は実施例1と同
様にして、積層体を得た。この積層体においては、酸化
物超電導体の結晶は無配向であり、液体窒素温度におけ
る臨界電流密度は1200A/cm”であった。
Comparative Example 1 A laminate was obtained in the same manner as in Example 1 except that silver foil without copper plating was used. In this laminate, the crystals of the oxide superconductor were unoriented, and the critical current density at liquid nitrogen temperature was 1200 A/cm''.

実施例2 厚さ12μmの銅を電気メツキした厚さ 120μmの
金箔に、実施例1のグリーンシートを載せて、焼成を行
なった。最高温度が965℃、温度勾配が100℃/c
mの温度勾配炉を用いて、基体側から一方向に凝固が起
こるようにした。
Example 2 The green sheet of Example 1 was placed on a 120 μm thick gold foil prepared by electroplating copper with a thickness of 12 μm and fired. Maximum temperature is 965℃, temperature gradient is 100℃/c
Solidification occurred in one direction from the substrate side using a temperature gradient furnace.

この結果得られた積層体は、実施例1の積層体にくらべ
て0面の配向性が高く結晶粒径の大きい単結晶的な組織
を有していた。液体窒素温度における臨界電流密度は、
13000A/c−であった。
The resulting laminate had a single-crystalline structure with higher zero-plane orientation and larger crystal grain size than the laminate of Example 1. The critical current density at liquid nitrogen temperature is
It was 13000A/c-.

実施例3 Bi:Pb:Ca:Sr:Cuのモル比が2 :0.3
5: 2 : 2:3になるように、BIJx、 Pt
)0. CaCO3,5rCO3CuO粉末を混合し、
アクリル系のバインダーを加えてドクターブレード法に
より厚さ200μmのグリーンシートを成形した。別に
厚さ10μmの銅を電気メツキした厚さ120μmの銀
箔を、大気中500℃で3時間焼成して表面に酸化銅の
層を有する銀箔を作成した。この銀箔に上記のグリーン
シートを載せて、845℃、空気中で2時間焼成して積
層体を得た。
Example 3 Bi:Pb:Ca:Sr:Cu molar ratio is 2:0.3
BIJx, Pt so that the ratio is 5: 2: 2: 3
)0. Mix CaCO3,5rCO3CuO powder,
An acrylic binder was added and a green sheet with a thickness of 200 μm was formed by a doctor blade method. Separately, a 120 μm thick silver foil prepared by electroplating 10 μm thick copper was fired in the atmosphere at 500° C. for 3 hours to produce a silver foil having a copper oxide layer on the surface. The above green sheet was placed on this silver foil and baked at 845° C. in air for 2 hours to obtain a laminate.

この結果得られた積層体は直径5mmの円筒に巻きつけ
ても亀裂が発生せず、また液体窒素中に出し入れしても
剥離などの外観の変化はおこらなかった。直流4端子法
により測定したところ、液体窒素温度における臨界電流
密度は3000A/cm”であった。
The resulting laminate did not crack even when it was wound around a cylinder with a diameter of 5 mm, and no change in appearance such as peeling occurred even when it was put in and taken out of liquid nitrogen. The critical current density at liquid nitrogen temperature was 3000 A/cm'' when measured by a DC 4-probe method.

[効果] 本発明によれば、基体の上に酸化物超電導体が強固に接
着した積層体が得られる。また、この積層体において酸
化物超電導体の結晶は、配向性が向上しているため臨界
電流密度等の特性が向上する。
[Effects] According to the present invention, a laminate in which an oxide superconductor is firmly adhered to a substrate can be obtained. Further, in this laminate, the crystals of the oxide superconductor have improved orientation, so properties such as critical current density are improved.

温度勾配下で焼成を行なった場合は、酸化物超電導体が
単結晶に近い組織を有するようになるので特性がより向
上する。
If firing is performed under a temperature gradient, the oxide superconductor will have a structure close to that of a single crystal, and its properties will be further improved.

薄い金属上に、薄い酸化物超電導体を焼き付けた場合は
、これを簡単に切断したり曲げることができるので、テ
ープ、コイル、線材などを容易に得ることができる。ま
た、磁気シールド用の大面積の薄板も製作可能である。
When a thin oxide superconductor is baked onto a thin metal, it can be easily cut or bent, so tapes, coils, wires, etc. can be easily obtained. It is also possible to manufacture large-area thin plates for magnetic shielding.

Claims (11)

【特許請求の範囲】[Claims] (1)焼成することにより酸化物超電導体になる物質を
、銅または酸化銅の層を表面に設けた基体に接触させて
焼成することを特徴とする基体に積層した酸化物超電導
体の製造方法。
(1) A method for manufacturing an oxide superconductor laminated on a substrate, characterized in that a substance that becomes an oxide superconductor upon firing is brought into contact with a substrate on which a layer of copper or copper oxide is provided and fired. .
(2)焼成することにより酸化物超電導体になる粉末を
成形したものを基体に接触させる請求項1の製造方法。
(2) The manufacturing method according to claim 1, wherein a molded powder that becomes an oxide superconductor by firing is brought into contact with the substrate.
(3)焼成することにより酸化物超電導体になる粉末を
厚膜に成形する請求項2の製造方法。
(3) The manufacturing method according to claim 2, wherein the powder that becomes an oxide superconductor by firing is formed into a thick film.
(4)ドクターブレード法により成形を行なう請求項3
の製造方法。
(4) Claim 3, in which the molding is performed by a doctor blade method.
manufacturing method.
(5)焼成することにより酸化物超電導体になる粉末に
バインダーを加えて得られた混合物 を、塗布することにより基体に接触させる請求項1の製
造方法。
(5) The manufacturing method according to claim 1, wherein a mixture obtained by adding a binder to a powder that becomes an oxide superconductor by firing is brought into contact with the substrate by coating.
(6)焼成することにより酸化物超電導体になる物質が
、酸化物超電導体の前駆物質を含むものであるである請
求項1〜5いずれか1の製造方法。
(6) The manufacturing method according to any one of claims 1 to 5, wherein the substance that becomes an oxide superconductor upon firing contains a precursor of an oxide superconductor.
(7)基体が銀または金である請求項1〜6いずれか1
の製造方法。
(7) Any one of claims 1 to 6, wherein the substrate is silver or gold.
manufacturing method.
(8)基体が薄板である請求項1〜7いずれか1の製造
方法。
(8) The manufacturing method according to any one of claims 1 to 7, wherein the substrate is a thin plate.
(9)焼成する温度が、基体の融点以下でかつ焼成する
ことにより酸化物超電導体になる物質と銅または酸化銅
が反応して液相を形成する温度以上である請求項1〜8
いずれか1の製造方法。
(9) The firing temperature is below the melting point of the substrate and above the temperature at which copper or copper oxide reacts with a substance that becomes an oxide superconductor upon firing to form a liquid phase.
Any one of the manufacturing methods.
(10)冷却時、液相が凝固する際に基体表面に垂直に
温度勾配をつけて基体側から凝固を進行させる請求項9
の製造方法。
(10) Claim 9: During cooling, when the liquid phase solidifies, a temperature gradient is created perpendicular to the surface of the substrate so that solidification proceeds from the substrate side.
manufacturing method.
(11)請求項1〜10いずれか1の製造方法により得
られた積層体を加工してなるコイル部材。
(11) A coil member obtained by processing a laminate obtained by the manufacturing method according to any one of claims 1 to 10.
JP1196770A 1989-07-31 1989-07-31 Manufacture of oxide superconductor laminated on substrate Pending JPH0362421A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1196770A JPH0362421A (en) 1989-07-31 1989-07-31 Manufacture of oxide superconductor laminated on substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1196770A JPH0362421A (en) 1989-07-31 1989-07-31 Manufacture of oxide superconductor laminated on substrate

Publications (1)

Publication Number Publication Date
JPH0362421A true JPH0362421A (en) 1991-03-18

Family

ID=16363338

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1196770A Pending JPH0362421A (en) 1989-07-31 1989-07-31 Manufacture of oxide superconductor laminated on substrate

Country Status (1)

Country Link
JP (1) JPH0362421A (en)

Similar Documents

Publication Publication Date Title
KR940009871B1 (en) Preparation of superconducting oxides and oxide-metal compositions
US5240903A (en) Oxide superconductor comprising babo3 dispersions (where b is zr, sn, ce or ti)
US6743533B1 (en) Oxide superconductor, manufacturing method thereof, and base substrate therefor
JP4470008B2 (en) Target material, manufacturing method thereof, and oxide superconductor thin film
JPH04500061A (en) Epitaxial Ba-Y-Cu-O superconductor film on perovski structure support
JPH0362421A (en) Manufacture of oxide superconductor laminated on substrate
JP2592692B2 (en) Method for producing oxide superconductor tape material
JPH01252533A (en) Laminate of superconducting ceramics and production thereof
US20090215630A1 (en) Oxide target for laser vapor deposition and method of manufacturing the same
JPH02212139A (en) Method of manufacturing laminate of oxide super conductor and metal
JPH0620535A (en) Oxide superconductive laminate
JP2501281B2 (en) Method for producing superconductor with high critical current density
JPH09259664A (en) Manufacture of oxide superconducting thick film compound tape and device therefor
JPH01198462A (en) Manufacture of formed body of oxide superconductor
JPH02162616A (en) Manufacture of oxide high-temperature superconducting film
JPH0798706B2 (en) Surface treatment method for non-oxide ceramics
JP2555089B2 (en) Method for manufacturing superconducting conductor
JPH0450103A (en) Oxide superconducting material and production thereof
WO1992000611A1 (en) SYNTHESIS OF HIGH Tc SUPERCONDUCTING COATINGS AND PATTERNS BY MELT WRITING AND OXIDATION OF METALLIC PRECURSOR ALLOYS
JPS63237314A (en) Manufacture of superconductive compound material
JP2517055B2 (en) Superconductor
JPH0789770A (en) Method for bonding ceramics to silver and ceramics-silver combined body
JPH02217352A (en) Production of oxide superconductor
JPH01292871A (en) Manufacture of oxide superconductive molding with electrode layer
JPH03192615A (en) Oxide superconducting structural body and manufacture thereof