JPH0361315A - Method for refining dead-soft carbon steel - Google Patents

Method for refining dead-soft carbon steel

Info

Publication number
JPH0361315A
JPH0361315A JP19270089A JP19270089A JPH0361315A JP H0361315 A JPH0361315 A JP H0361315A JP 19270089 A JP19270089 A JP 19270089A JP 19270089 A JP19270089 A JP 19270089A JP H0361315 A JPH0361315 A JP H0361315A
Authority
JP
Japan
Prior art keywords
gas
molten steel
blowing
reaction
refining
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19270089A
Other languages
Japanese (ja)
Inventor
Yoshikatsu Furuno
好克 古野
Junichi Fukumi
純一 福味
Shigeru Inoue
茂 井上
Tsutomu Usui
碓井 務
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP19270089A priority Critical patent/JPH0361315A/en
Publication of JPH0361315A publication Critical patent/JPH0361315A/en
Pending legal-status Critical Current

Links

Landscapes

  • Treatment Of Steel In Its Molten State (AREA)

Abstract

PURPOSE:To stably carry out the decarburizing refining of a molten steel to a dead-soft carbon region without forming a mushroom at a blowing opening by blowing an O2-containing inert gas into a molten low carbon steel in a vacuum tank in the latter stage in a refining period at the time of subjecting a molten steel to decarburizing refining by means of an RH-type vacuum degassing refining apparatus. CONSTITUTION:A molten steel 3 in a ladle 2 in an RH-type vacuum degassing apparatus 10 is sucked into a vacuum tank and decarburized by the reaction between [C] and [O] in the molten steel, and the resulting gas composed principally of CO is discharged by means of a duct 30. At this time, the flow rate of exhaust gas and CO content are measured by means of a flowmeter 34 and an analyzer 35, and the resulting values are inputted to a process computer 36 to calculate the amount of CO generated. When C content in the molten steel 3 is reduced in the latter stage in a decarburizing refining period and the amount of CO formed by the reaction between [C] and [O], O2 gas to be allowed to react with [C] is supplied by blowing an Ar gas containing O2 gas by 2-20vol.% from a gas supply source 37 through a nozzle tip 46 in a gas-blowing pipe 40 in a state of fine bubbles into the molten steel to accelerate decarburizing reaction, by which decarburization is carried out until a dead-soft carbon grade of <0.003% C is reached and also a mushroom formed at the nozzle tip 46 is melted by the quantity of heat of oxidation reaction by O2 and removed.

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は、溶鋼の炭素濃度[C]が極重量のレベルに
なるように脱ガス処理する極低炭素鋼の溶製方法に係り
、特に、多孔質凝固金属(マツシュルーム)がガス吹き
込み口に付着することを防止する方法に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for producing ultra-low carbon steel, in which a degassing treatment is carried out so that the carbon concentration [C] of molten steel becomes an extremely heavy level. , relates to a method for preventing porous solidified metal (pine mushroom) from adhering to a gas inlet.

[従来の技術] 近年、鋼材の高級化に伴い、炭素含有量を極微量に凋整
した極低炭素鋼の需要が高まり、これを迅速かつ安定に
溶製する技術が要望されている。
[Prior Art] In recent years, as steel materials have become more sophisticated, there has been an increasing demand for ultra-low carbon steels whose carbon content has been reduced to an extremely small amount, and there is a need for technology for rapidly and stably melting these steels.

転炉工程においては、通常、溶鋼中炭素[C]が0.0
2〜0.04重量%の範囲に入ると出鋼する。更に、出
w4溶鋼を種々の精錬設備で脱炭処理し、所望の炭、a
濃度とする。極低炭素鋼は、炭素含有量が0.003重
量%以下と極微量のレベルを要求されるために、一般に
、大量の溶鋼を安定かつ効率よく溶製することが困難で
ある。このような背景から、溶鋼を効率よく脱炭する技
術として、RH脱ガス精錬が注目されている。
In the converter process, carbon [C] in molten steel is usually 0.0
When the content falls within the range of 2 to 0.04% by weight, steel is tapped. Furthermore, the drawn W4 molten steel is decarburized using various refining equipment to obtain the desired charcoal, a
Let it be the concentration. Ultra-low carbon steel is required to have a carbon content as low as 0.003% by weight or less, so it is generally difficult to stably and efficiently produce a large amount of molten steel. Against this background, RH degassing refining is attracting attention as a technology for efficiently decarburizing molten steel.

RH脱ガス法により極低炭素鋼を溶製する場合は、脱ガ
ス槽下部の1対の浸漬管を溶鋼中に浸漬し、溶鋼を鍋お
よび脱ガス槽の間で循環させつつ脱ガス処理する。すな
わち、RH脱ガス精錬においては、一方の浸漬管(上昇
管)に不活性ガスを吹き込み、見掛けの比重を減少させ
て溶鋼を上昇させ、鍋から脱ガス槽内に溶鋼を吸い上げ
る。槽内はガス排気されて減圧下にあるので、溶鋼中の
[C]と[0]とが反応して多量のCOガスが発生する
。脱炭反応により生じたCOガスは、上昇管に吹き込ま
れたアルゴンガスと共にスプラッシュを形成する。この
スプラッシュにより、溶鋼とガスとの接触面積が増大し
、更に脱炭反応が促進される。溶鋼は、槽内で脱ガス処
理された後に、他方の浸漬管(下降管)を介して鍋に返
戻される。
When producing ultra-low carbon steel using the RH degassing method, a pair of immersion tubes at the bottom of the degassing tank are immersed in molten steel, and the molten steel is circulated between the pot and the degassing tank while being degassed. . That is, in RH degassing refining, inert gas is blown into one immersion pipe (rising pipe) to reduce the apparent specific gravity and raise the molten steel, and the molten steel is sucked up from the ladle into the degassing tank. Since the inside of the tank is under reduced pressure due to gas exhaust, [C] and [0] in the molten steel react to generate a large amount of CO gas. The CO gas produced by the decarburization reaction forms a splash together with the argon gas blown into the riser. This splash increases the contact area between the molten steel and the gas, further promoting the decarburization reaction. After being degassed in the tank, the molten steel is returned to the ladle via the other immersion pipe (downcomer pipe).

このような脱ガス(脱炭)処理中に、槽内に副原料およ
び合金材を投入添加し、溶鋼を所望の目標成分とする。
During such degassing (decarburization) treatment, auxiliary raw materials and alloy materials are added into the tank to make the molten steel a desired target composition.

[発明が解決しようとする課題] しかしながら、従来の溶製方法においては、処理の後半
に至ると脱炭速度が低下し、更に[C]を低減するには
長時間を要し、極低炭素鋼を安定かつ迅速に溶製するこ
とができない。
[Problems to be Solved by the Invention] However, in the conventional melting method, the decarburization rate decreases in the latter half of the process, and it takes a long time to further reduce [C]. It is not possible to melt steel stably and quickly.

第7図は、横軸にRH脱ガス法による処理時間をとり、
縦軸に処理溶鋼の炭素濃度[C]をとって、上昇管への
アルゴンガス吹き込み量を毎分3000〜500ONf
iの範囲で種々変更し、従来の脱ガス処理の各時期にお
ける[C]の推移について調べたグラフ図である。図中
にて、斜線領域、白丸、黒丸は、それぞれアルゴンガス
吹き込み量を毎分300ONN、4000rl。
In Figure 7, the horizontal axis shows the processing time by the RH degassing method.
The carbon concentration [C] of the treated molten steel is plotted on the vertical axis, and the amount of argon gas blown into the riser pipe is set at 3000 to 500 ONf per minute.
FIG. 2 is a graph showing changes in [C] at various stages of conventional degassing treatment with various changes made within the range of i. In the figure, the shaded area, white circles, and black circles indicate the argon gas blowing amount of 300 ONN and 4000 rl per minute, respectively.

500ONNとした場合の結果を示す。図から明らかな
ように、処理前期(領域I)では溶鋼中[C]が急激に
減少するが、処理後期(領域■)では[C]の減少率が
大幅に低下する。[C]が領域■に至ると脱炭速度が小
さくなり、10〜20 ppmより更に低濃度レベルの
極低炭素鋼の領域まで脱炭するには長時間を要する。ま
た、図から明らかなように、上昇管へのアルゴンガス吹
き込み量は毎分400ONfiが最適であり、これより
少なくとも多くとも迅速な脱炭処理を行うことができな
い。これは、ガス吹き込み量が過剰になると、ガスの吹
き抜けが生じることに起因する。
The results are shown when the number of ONNs is 500ONN. As is clear from the figure, [C] in the molten steel rapidly decreases in the early stage of treatment (region I), but the reduction rate of [C] decreases significantly in the latter stage of treatment (region ■). When [C] reaches region (3), the decarburization rate decreases, and it takes a long time to decarburize to the region of ultra-low carbon steel with a concentration level even lower than 10 to 20 ppm. Further, as is clear from the figure, the optimal amount of argon gas to be blown into the riser is 400 ONfi per minute, and rapid decarburization cannot be performed even if the amount is at least higher than this. This is because when the amount of gas blown becomes excessive, gas blow-through occurs.

このため、上昇管へのアルゴンガス吹き込み量を増大す
ることにより、脱炭速度を向上させるには眼界がある。
For this reason, there is a limit to improving the decarburization rate by increasing the amount of argon gas blown into the riser.

第8図は、横軸に脱ガス槽及び鍋の間における溶鋼のサ
イクルタイムをとり、縦軸に上記領域Iの脱炭速度定数
Kcをとって、種々の処理条件下で両者の関係を調べた
グラフ図である。二こで、脱炭速度定数Kcとは、下記
(1)式で規定される脱炭の一次反応における指数をい
う。
In Figure 8, the horizontal axis represents the cycle time of molten steel between the degassing tank and the ladle, and the vertical axis represents the decarburization rate constant Kc in region I, and the relationship between the two was investigated under various processing conditions. FIG. Here, the decarburization rate constant Kc refers to an index in the primary reaction of decarburization defined by the following equation (1).

(d [C] / d t ) ”Kc   [C] 
”(1)図から明らかなように、溶鋼のサイクルタイム
が短くなると、脱炭速度定数に、が向上する。従って、
脱ガス槽による溶鋼環流量を増大化して、サイクルタイ
ムを短縮すると、溶鋼の脱炭反応を促進させることがで
きる。しかしながら、一般に、溶鋼環流量の増大化を図
ることは困難であり、脱炭速度を飛μ的に向上させるこ
とができない。
(d [C] / d t) "Kc [C]
(1) As is clear from the figure, when the cycle time of molten steel becomes shorter, the decarburization rate constant improves. Therefore,
By increasing the flow rate of molten steel through the degassing tank and shortening the cycle time, the decarburization reaction of molten steel can be promoted. However, it is generally difficult to increase the flow rate of molten steel, and it is not possible to significantly improve the decarburization rate.

第9図は、横軸にRH脱ガス槽の排気時間をとり、縦軸
にCOガス発生ffi CNI /分)および脱ガス槽
内の真空度(トール)をそれぞれとって、領域Iおよび
領域■におけるそれぞれの変化を調べたグラフ図である
。図から明らかなように、領域Iに比べて領域■のCO
ガス発生量が大幅に低下することがわかる。
In Fig. 9, the horizontal axis shows the evacuation time of the RH degassing tank, and the vertical axis shows the CO gas generation (ffi CNI /min) and the degree of vacuum (torr) in the degassing tank, respectively. It is a graph diagram examining each change in. As is clear from the figure, the CO of region ■ is higher than that of region I.
It can be seen that the amount of gas generated is significantly reduced.

第10図は、横軸にRH脱ガス処理時間をとり、縦軸に
脱炭反応速度定数KcおよびCOガスによる真空脱ガス
槽内の攪拌力Sをそれぞれとって、両者の関係について
それぞれ調べたグラフ図である。なお、脱炭反応速度定
数Kcは、下記(2)式に基づき3分間ごとにそれぞれ
求めた。
In Figure 10, the horizontal axis shows the RH degassing treatment time, and the vertical axis shows the decarburization reaction rate constant Kc and the stirring force S in the vacuum degassing tank due to CO gas, and the relationship between the two was investigated. It is a graph diagram. Note that the decarburization reaction rate constant Kc was determined every 3 minutes based on the following equation (2).

[C] −CCE o−e x p (−Kc−t)  =12
)また、ガス攪拌力Sは、上記のCOガス発生量に基づ
き下記(3)式により求めた。
[C] -CCE o-e x p (-Kc-t) = 12
) Furthermore, the gas stirring force S was determined by the following formula (3) based on the amount of CO gas generated.

S −(8,18x q x Tt /V、)x (i
n (1+ρ、・g −h/P)+(1−T、 /TJ
 ) l   ・・・(3)ただし、V、は真空槽体積
、hは溶鋼の深さ、T、は溶鋼温度、ρ、は溶鋼密度、
Pは真空槽内圧力、gは重力加速度をそれぞれ表す。
S − (8,18x q x Tt /V,) x (i
n (1+ρ, ・g −h/P)+(1−T, /TJ
) l...(3) Where, V is the vacuum chamber volume, h is the depth of the molten steel, T is the molten steel temperature, ρ is the molten steel density,
P represents the pressure inside the vacuum chamber, and g represents the gravitational acceleration.

図から明らかなように、脱炭反応速度定数Kcおよびガ
ス攪拌力Sは、同じ傾向を示し、攪拌力Sの低下に伴っ
て速度定数Kcも低下する。従って、処理後期(領域■
)においては脱炭速度が著しく低下し、極低炭素鋼を溶
製する場合に不利である。
As is clear from the figure, the decarburization reaction rate constant Kc and the gas stirring force S show the same tendency, and as the stirring force S decreases, the rate constant Kc also decreases. Therefore, late processing (region ■
), the decarburization rate decreases significantly, which is disadvantageous when producing ultra-low carbon steel.

ところで、減圧下の槽内に高圧のガスを吹き込むと、ガ
スが断PA膨張して周囲の熱を奪い、ガス吹き込み口に
溶鋼の一部が凝固付G Lやすくなる。
By the way, when high-pressure gas is blown into a tank under reduced pressure, the gas expands at a predetermined rate and absorbs heat from the surrounding area, causing a portion of molten steel to solidify at the gas injection port.

特に、ノズル内径が小さく、ガスの冷却能が大きい場合
に、多孔質の凝固金属(以下、「マツシュルーム」とい
う)がガス吹き込み口に形成される。
In particular, when the nozzle inner diameter is small and the gas cooling capacity is large, porous solidified metal (hereinafter referred to as "pine mushroom") is formed at the gas injection port.

このようなマツシュルームは、例えば、純度98容積%
以上の純アルゴンガスを音速以上の速度で吹き込むと、
短時間で形成される。
Such pine mushrooms, for example, have a purity of 98% by volume.
When pure argon gas is blown at a speed higher than the speed of sound,
Formed in a short time.

マツシュルームがガス吹き込み口に形成されると、ガス
噴射速度が減殺され、吹き込みガスの到達距離が短くな
る。また、ガス供給圧力(背圧)を高めても吹き込みガ
スがジェツテイング状態とならず、バブリング状態とな
り、所望の攪拌力及び気液界面積の増大化を図ることが
できない。
When pine mushrooms form at the gas inlet, the gas injection speed is reduced and the distance that the injected gas travels is shortened. Further, even if the gas supply pressure (back pressure) is increased, the blown gas does not enter a jetting state but becomes a bubbling state, making it impossible to increase the desired stirring force and gas-liquid interfacial area.

この発明は、かかる事情に鑑みてなされたものであって
、ガス吹き込み口におけるマツシュルムの生成を防止す
ることができる極低炭素鋼の溶製方法を提供することを
目的とする。
The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a method for producing ultra-low carbon steel that can prevent the formation of pine dust at the gas injection port.

[課題を解決するための手段] 発明者等は、RH脱ガス下部槽の側壁に種々のタイプの
ノズルを設け、各種のガスを気泡化して溶鋼に吹き込む
ことにより気液界面積を増大させ、脱炭反応を促進させ
ることについて種々検討した。
[Means for Solving the Problems] The inventors installed various types of nozzles on the side wall of the lower RH degassing tank to bubble various gases and blow them into the molten steel, thereby increasing the gas-liquid interface area. Various studies were conducted to promote the decarburization reaction.

その結果、ポーラスプラグ又はマルチホールプラグ(M
HP)の場合には、ガス吹き込み速度が音速(マツハ1
)を超えず、気泡ガスがバブリング状態となって脱炭速
度を上昇させることができないが、単管ノズル又は二重
管ノズルを用いると、ガス吹き込み速度がマツハ1を超
えて、気泡ガスがジェツテイング状態となって分散し、
脱炭速度の上昇に寄与するという知見をiqた。
As a result, porous plugs or multi-hole plugs (M
HP), the gas blowing speed is the sonic speed (Matsuha 1
), the bubble gas becomes bubbling and the decarburization rate cannot be increased.However, if a single pipe nozzle or double pipe nozzle is used, the gas blowing speed exceeds Matsuha 1 and the bubble gas becomes jetting. dispersed into a state,
We found that it contributes to increasing the decarburization rate.

また、ノズル内径がll11mを下回ると、ガス吹き込
み口に溶鋼が差し込み、凝固金属によりガス通路が塞が
れて、ノズル詰まりが生じ、一方、ノズル内径が5■を
上回ると、ガス供給圧力(背圧)を上昇させたとしても
、吹き込みガスの到達距離が短く、気泡ガスの分散化を
図ることができないという知見を得た。更に、吹き込み
ガスの到達距離が短くなると、ガスが側壁に沿って浮上
し、気泡ガスが合体成長して分散しにくくなると共に、
脱ガス槽側壁の耐火物が著しく溶損するという知見を得
た。
In addition, when the nozzle inner diameter is less than 111 m, molten steel is inserted into the gas injection port, and the gas passage is blocked by solidified metal, causing nozzle clogging. On the other hand, when the nozzle inner diameter exceeds 5 mm, the gas supply pressure (back It was discovered that even if the pressure was increased, the distance the blown gas could reach was short and it was not possible to disperse the bubble gas. Furthermore, when the reach of the blown gas becomes shorter, the gas floats along the side walls, and the gas bubbles coalesce and grow, making it difficult to disperse.
It was discovered that the refractories on the side walls of the degassing tank were significantly eroded and damaged.

下記(4)式にノズル詰まりを生じない条件を示す。Equation (4) below shows the conditions under which nozzle clogging will not occur.

Q/N≧3.3 XIO2fρ、ハρ、−ρ、 )l−”X (1+H/
1.48) X d”  ・・・(4)−ド記(5)式
にガスが湯面に吹き抜けない条件を示す。
Q/N≧3.3 XIO2fρ, ρ, −ρ, )l−”X (1+H/
1.48)

Q/N≦13×(ρ、/ρ ) −12×)l 32 
X d        ・・・(5)但し、Q/Nはノ
ズル1本あたりのガス流量、ρ、は溶鋼の密度、Hは溶
鋼深さ、dはノズル内径、ρ、は溶鋼静圧補正後のガス
密度をそれぞれ表す。
Q/N≦13×(ρ, /ρ ) −12×)l 32
X d ... (5) However, Q/N is the gas flow rate per nozzle, ρ is the density of molten steel, H is the molten steel depth, d is the nozzle inner diameter, and ρ is the gas after correcting the molten steel static pressure. Each represents the density.

第4図は、横軸にノズル内径dをとり、縦軸にノズル1
本あたりのガス吹き込み量をとって、両者の関係につい
て調べたグラフ図である。図中の斜線領域がガス吹き込
み可能範囲である。図から明らかなように、ノズル内径
dが1〜5IIIlの範囲が最適であることがわかる。
In Figure 4, the horizontal axis represents the nozzle inner diameter d, and the vertical axis represents the nozzle 1.
It is a graph diagram in which the amount of gas blown per book was measured and the relationship between the two was investigated. The shaded area in the figure is the range in which gas can be blown. As is clear from the figure, it is found that the optimum nozzle inner diameter d is in the range of 1 to 5IIIl.

因みに、溶鋼侵入が生じない条件は、ノズル内径1間の
場合に吹き込みガスの最小速度Vが毎秒321.7 m
、最小容量Qが毎分15.2Nff 、ノズル内径2I
Ila+の場合に吹き込みガスの最小速度Vか毎秒45
4.9 m 、最小容QQが毎分85.7NN 、ノズ
ル内径5■の場合に吹き込みガスの最小速度Vが毎秒7
19.3 m 、最小容量Qが毎分847.4 rlと
ムる。
Incidentally, the conditions under which molten steel does not enter are when the nozzle inner diameter is 1 and the minimum velocity V of the blown gas is 321.7 m/s.
, minimum capacity Q is 15.2Nff per minute, nozzle inner diameter 2I
In the case of Ila+, the minimum velocity of the blowing gas is V or 45 per second.
4.9 m, the minimum volume QQ is 85.7 NN per minute, and the minimum velocity V of the blown gas is 7 per second when the nozzle inner diameter is 5 mm.
19.3 m, and the minimum capacity Q is 847.4 rl per minute.

この発明に係る極低炭素鋼の溶製方法は、減圧下の溶鋼
に気泡ガスを吹き込み、気泡ガスにより溶鋼中[C]及
び[0]の脱炭反応を促進させる場合に、非酸化性のガ
スに酸素ガスを2〜20容積96の割合で混合し、これ
を前記気泡ガスとして単管ノズルを介して溶鋼に吹き込
むことを特徴とする。
The method for producing ultra-low carbon steel according to the present invention involves blowing bubble gas into molten steel under reduced pressure to promote the decarburization reaction of [C] and [0] in the molten steel. It is characterized in that oxygen gas is mixed with the gas at a ratio of 2 to 20 volumes 96, and this is blown into the molten steel through a single tube nozzle as the bubble gas.

非酸化性のガスには、COガス生成反応を積極的に肌害
するガス種以外のものであれば、いずれの種類のガスを
採用してもよく、例えばアルゴンガス、ヘリウムガス、
窒素ガス、水素ガス。
Any type of gas may be used as the non-oxidizing gas, as long as it is not a type of gas that actively harms the skin due to the CO gas production reaction. For example, argon gas, helium gas,
Nitrogen gas, hydrogen gas.

CO2ガス、COガス、エア、並びにこれらの混合ガス
のうちいずれのガスをも採用することができる。
Any of CO2 gas, CO gas, air, and a mixed gas thereof can be used.

ところで、特開昭64−79317号公報には、溶鋼環
流量を増大することを目的として、高圧及び低圧の二系
統のノズルから上昇管内にそれぞれ環流ガスを吹き込む
場合に、高圧系の吹き込みガスに酸素ガスを混合し、ガ
ス吹き込み口への凝固金属の付着防止を図るという類似
の技術が開示されている。しかしながら、上記公報に記
載された技術は、上昇管への環流ガスの吹き込みを開示
するものではあるが、脱ガス槽内へのガス吹き込みを開
示するものではない。また、上記技術は溶鋼環流量の増
大化を図ることを目的としているが、脱ガス槽内の脱炭
速度を積極的に増大化させて極低炭素鋼を溶製すること
を目的とするものではないO [作 用] この発明に係る極低炭素鋼の溶製方法においては、非酸
化性のガスに酸素ガスを2〜20容積%の割合で混合し
、これを気泡ガスとして単管ノズルを介して脱ガス槽内
の溶鋼に吹き込む。減圧下でガスが断熱膨張し、周囲の
溶鋼から熱が奪われ、凝固金属がガス吹き込み口に付着
しようとするが、吹き込みガス成分中に酸素ガスが含ま
れているので、酸化発熱反応により凝固金属が直ちに溶
解する。このため、マツシュルームの形成が阻止され、
脱ガス処理中の全期間にわたりジェツテイングガスが溶
鋼に安定に吹き込まれ、攪拌力および気液界面積が増大
し、脱炭反応が促進される。
By the way, Japanese Patent Application Laid-Open No. 64-79317 discloses that when reflux gas is blown into the riser pipe from two systems of high-pressure and low-pressure nozzles for the purpose of increasing the molten steel recirculation flow rate, A similar technique has been disclosed in which oxygen gas is mixed to prevent solidified metal from adhering to the gas inlet. However, although the technique described in the above-mentioned publication discloses blowing reflux gas into the riser, it does not disclose blowing gas into the degassing tank. Furthermore, although the above technology aims to increase the flow rate of molten steel, the technology aims to proactively increase the decarburization rate in the degassing tank to produce ultra-low carbon steel. [Function] In the method for producing ultra-low carbon steel according to the present invention, oxygen gas is mixed with non-oxidizing gas at a ratio of 2 to 20% by volume, and this is used as bubble gas through a single tube nozzle. into the molten steel in the degassing tank. The gas expands adiabatically under reduced pressure, taking heat away from the surrounding molten steel, and the solidified metal tries to adhere to the gas injection port, but since the blown gas contains oxygen gas, it solidifies due to an oxidative exothermic reaction. Metal melts immediately. This prevents the formation of pine mushrooms and
Jetting gas is stably blown into the molten steel throughout the degassing process, increasing the stirring force and gas-liquid interfacial area, and promoting the decarburization reaction.

因みに、非酸化性ガスにアルゴンガスを用いた場合に、
アルゴンガス流量が毎分INm’  (常圧)のときに
断熱膨張による吸熱量が毎分61.8kcalとなる。
By the way, when argon gas is used as the non-oxidizing gas,
When the argon gas flow rate is INm' per minute (normal pressure), the amount of heat absorbed due to adiabatic expansion is 61.8 kcal per minute.

これを凝固金属の酸化発熱量で補償するが、酸素ガス含
有量を増量しても必ずしも発熱量が高まるわけではない
。酸素ガス含有量が2.5容積%のときは着熱効率η(
酸素ガスのうち発熱反応に寄与しうる量の割合)が約1
00%であるが、酸素ガス含有量が4.8容積%のとき
は着熱効率ηが約50%に、酸素ガス含有量が19.8
容積%のときは着熱効率ηが約10%に低下する。従っ
て、インジェクションガス中の酸素ガス含有量としては
2〜20容積%が適量となる。
This is compensated for by the oxidation calorific value of the solidified metal, but increasing the oxygen gas content does not necessarily increase the calorific value. When the oxygen gas content is 2.5% by volume, the heat transfer efficiency η(
The proportion of oxygen gas that can contribute to exothermic reactions is approximately 1
00%, but when the oxygen gas content is 4.8% by volume, the heat transfer efficiency η is about 50%, and the oxygen gas content is 19.8%.
When it is % by volume, the heat transfer efficiency η decreases to about 10%. Therefore, the appropriate oxygen gas content in the injection gas is 2 to 20% by volume.

[実施例] 以下、添付の図面を参照しながら、この発明の実施例に
ついて具体的に説明する。
[Embodiments] Hereinafter, embodiments of the present invention will be specifically described with reference to the accompanying drawings.

第1図はこの発明の実施例に係る極低炭素鋼の溶製方法
に使用されたRH脱ガス装置を示す模式図、第2図は脱
ガス下部槽の横断面図、第3図はガス吹き込み装置の部
分を示す縦断面図である。
Fig. 1 is a schematic diagram showing the RH degassing device used in the method for producing ultra-low carbon steel according to the embodiment of the present invention, Fig. 2 is a cross-sectional view of the lower degassing tank, and Fig. 3 is the gas FIG. 3 is a longitudinal sectional view showing a portion of the blowing device.

RH脱ガス設備の建屋−階に軌条が敷設され、取鍋2が
走行台車により転炉工場から搬送されるようになってい
る。脱ガス$610が、建屋上部に設けられ、この直下
に取鍋2を昇降するためのリフティングテーブル6が設
置されている。
Rails are laid on the first floor of the building of the RH degassing facility, and the ladle 2 is transported from the converter factory by a traveling truck. A degassing chamber 610 is provided in the upper part of the building, and a lifting table 6 for raising and lowering the ladle 2 is installed directly below this.

脱ガス槽10は、その外面が鉄皮11で覆われ、鉄皮1
1に耐火レンガ12a、12bが内張すされている。脱
ガス槽10の上部には、排気ダクト30およびシュータ
32が設けられている。排気ダクト30は、図示しない
ガス排気装置に連通している。シュータ32は、副原料
または合金材を貯蔵したホッパ31に連通している。脱
ガス槽10は、上部槽と下部槽とに分離可能にフランジ
継手(図示せず)により接続されている。
The outer surface of the degassing tank 10 is covered with an iron skin 11.
1 is lined with refractory bricks 12a and 12b. At the top of the degassing tank 10, an exhaust duct 30 and a chute 32 are provided. The exhaust duct 30 communicates with a gas exhaust device (not shown). The shooter 32 communicates with a hopper 31 that stores auxiliary raw materials or alloy materials. The degassing tank 10 has an upper tank and a lower tank separably connected to each other by a flange joint (not shown).

脱ガス下部槽には1対の短管部が形成されており、一方
の短管部には上昇管24が、他方の短管部には下降管2
6が、それぞれフランジ継手(図示せず)により接続さ
れている。上昇管24および下降管26は、それぞれ心
材の内側(溶鋼通路25.27の側)に耐火レンガが設
けられ、心材の外側がアルミナキトスタブルで覆われて
いる。
A pair of short pipe sections are formed in the lower degassing tank, one of which has an ascending pipe 24, and the other short pipe section has a descending pipe 2.
6 are connected to each other by flange joints (not shown). In each of the rising pipe 24 and the descending pipe 26, a refractory brick is provided inside the core material (on the side of the molten steel passage 25, 27), and the outside of the core material is covered with alumina chitostable.

ガス吹き込み管15が、上昇管24を貫通し、そのガス
吹き込み口が通路25にて開口している。
A gas blowing pipe 15 passes through the riser pipe 24 , and its gas blowing port opens in a passage 25 .

ガス吹き込み管15の基端側は、流量調節弁を備・えた
アルゴンガス供給源(図示せず)に連通している。
The base end side of the gas blowing pipe 15 communicates with an argon gas supply source (not shown) equipped with a flow rate control valve.

下部槽の側壁に複数のガス吹き込み装置40が設けられ
、それぞれの吹き込み口47が下部槽の敷レンガ12a
近傍にて開口している。ガス吹き込み装置40の基端側
は、ガス供給源37に連通している。ガス供給源37は
、アルゴンガスタンり、酸素ガスタンク、並びに流量調
節弁を有し、アルゴンガスに所定の割合で酸素ガスを混
合した混合ガスをガス吹き込み装置40に供給するよう
になっている。
A plurality of gas blowing devices 40 are provided on the side wall of the lower tank, and each blowing port 47 is connected to the paving brick 12a of the lower tank.
It is open nearby. The proximal end side of the gas blowing device 40 communicates with the gas supply source 37 . The gas supply source 37 includes an argon gas tank, an oxygen gas tank, and a flow control valve, and supplies a mixed gas of argon gas and oxygen gas at a predetermined ratio to the gas blowing device 40.

プロセスコンピュータ36の出力側がガス供給源37の
流量調節弁に接続され、一方、コンピュータ36の入力
端は、排気ダクト30のガス流量計34および分析計3
5に接続されている。すなわち、流量計34および分析
計35の検出結果に基づきコンピュータ36ではCOガ
ス発生量を算出し、これに基づきコンピュータ36から
ガス吹き込み装置40へ所定の指令信号が出され、所定
量のガスが槽内の溶fl143に吹き込まれるようにな
っている。
The output side of the process computer 36 is connected to the flow control valve of the gas supply source 37, while the input side of the computer 36 is connected to the gas flow meter 34 of the exhaust duct 30 and the analyzer 3.
5. That is, the computer 36 calculates the amount of CO gas generated based on the detection results of the flowmeter 34 and the analyzer 35, and based on this, the computer 36 issues a predetermined command signal to the gas blowing device 40, and a predetermined amount of gas is injected into the tank. It is designed to be blown into the melt fl143 inside.

第2図に示すように、ガス吹き込み装置40は、上昇管
の通路25および下降管の通路27を避けるように、中
心角25°の間隔をもって放射状に4本2組の合計8本
が設けられている。なお、ガス吹き込み口47の数は多
ければ多いほどよいが、吹き込み口47が相互に接近し
すぎるとインジェクションガス同士が干渉しあい、ガス
気泡が大径化するので、これらは適度に離隔させる。こ
の場合に、ガス吹き込みロ47相互のピッチ間隔は、1
.40mm以上とすることが望ましく、200〜500
mmの範囲とすることがより好ましい。
As shown in FIG. 2, the gas blowing device 40 has a total of eight gas blowing devices, two sets of four gas blowing devices radially arranged at a center angle of 25 degrees, so as to avoid the rising pipe passage 25 and the downcomer pipe passage 27. ing. Note that the greater the number of gas inlet ports 47, the better; however, if the inlet ports 47 are too close to each other, the injected gases will interfere with each other and the gas bubbles will become larger in diameter, so these should be appropriately spaced apart. In this case, the pitch interval between the gas blowing holes 47 is 1
.. It is desirable to set it to 40mm or more, and 200 to 500
It is more preferable to set it in the range of mm.

第3図に示すように、ガス吹き込み装置40の細管ノズ
ル46は、耐火レンガ12cに埋め込まれ、その先端吹
き込み口47が側壁耐火レンガ12bより内方に約50
11IIIl突出している。一方、細管ノズル46の基
端部は、鉄皮11より突出し、保護カバー44で保護さ
れている。保護カバー44は、鉄皮11に溶接され、そ
の外側にユニオンエルボ43が接続されている。更に、
エルボ43はカップリング42によりホース41に着脱
可能に接続されている。なお、この場合に、細管ノズル
46はステンレス鋼でつくられており、その内径が2履
禦、その外径が31111である。耐溶損性の観点から
、細管ノズル46の受熱面積は少ないほうが好ましく、
細管ノズル46は薄肉厚であることが望ましい。
As shown in FIG. 3, the thin tube nozzle 46 of the gas blowing device 40 is embedded in the refractory brick 12c, and its tip inlet 47 is located approximately 50 mm inward from the side wall refractory brick 12b.
11IIIl stands out. On the other hand, the base end of the thin tube nozzle 46 protrudes from the iron shell 11 and is protected by a protective cover 44. The protective cover 44 is welded to the iron skin 11, and a union elbow 43 is connected to the outside thereof. Furthermore,
The elbow 43 is detachably connected to the hose 41 by a coupling 42. In this case, the thin tube nozzle 46 is made of stainless steel, and has an inner diameter of 2 mm and an outer diameter of 3111 mm. From the viewpoint of erosion resistance, it is preferable that the heat receiving area of the capillary nozzle 46 is small.
It is desirable that the thin tube nozzle 46 has a thin wall thickness.

次に、上記脱ガス槽を用いて、炭素含有量か10ppm
以下の極低炭素鋼を溶製する場合について説明する。
Next, using the above degassing tank, the carbon content was reduced to 10 ppm.
The case of producing the following ultra-low carbon steel will be explained.

炭素濃度[C]が約200〜300 ppmの転炉溶鋼
を取鍋2に受鋼し、これを脱ガス処理設63に搬送する
。溶鋼3の量は約250トンであり、スラグ4で覆われ
ている。取鍋2をリフトし、取鍋内の溶m3に浸漬管2
4.26を浸漬し、脱ガス槽10の内部を減圧する。約
200トルまで減圧すると、溶鋼3が下部冶の敷レンガ
12aの上面に到達する。更に、槽内を減圧すると、溶
鋼3が脱ガス漕10内に取鍋湯面から約1.5mの高さ
まで吸い上げられる。ガス吹き込み管15に毎分100
ONJI!のアルゴンガスを供給し、約5分間後に毎分
2600ilにアルゴンガス供給量を増加させる。これ
により、溶j$43の見掛けの比重が低下し、溶鋼3が
ガス気泡と共に通路25内を上昇する。上昇管24の上
方湯面が盛上がり、スプラッシュが発生し、溶鋼中[C
]がEOEと反応してガス化し、このCOガスが排気さ
れる。溶鋼3は、上昇管24から下降管26に向かって
流れ、m2および脱ガス槽10の間を循環する。このと
き、溶鋼環流量は毎分17Nm3程度に達する。
Converter molten steel having a carbon concentration [C] of approximately 200 to 300 ppm is received in the ladle 2, and is conveyed to the degassing treatment facility 63. The amount of molten steel 3 is about 250 tons and is covered with slag 4. Lift the ladle 2 and insert the dip tube 2 into the melt m3 in the ladle.
4.26 is immersed, and the inside of the degassing tank 10 is depressurized. When the pressure is reduced to about 200 torr, the molten steel 3 reaches the upper surface of the paving bricks 12a of the lower part. Further, when the pressure inside the tank is reduced, the molten steel 3 is sucked up into the degassing tank 10 to a height of about 1.5 m from the ladle surface. 100 per minute to the gas blowing pipe 15
ONJI! of argon gas is supplied, and after about 5 minutes, the argon gas supply rate is increased to 2600 il/min. As a result, the apparent specific gravity of the molten steel 43 decreases, and the molten steel 3 rises in the passage 25 together with gas bubbles. The upper molten metal surface of the riser pipe 24 rises, splash occurs, and the molten steel [C
] reacts with EOE and gasifies, and this CO gas is exhausted. The molten steel 3 flows from the riser pipe 24 toward the downcomer pipe 26 and circulates between m2 and the degassing tank 10. At this time, the molten steel circulation flow rate reaches about 17 Nm3 per minute.

上昇管24へのアルゴンガス吹き込みを開始すると、溶
鋼が攪r]!されてCOガスを主成分とする多量のガス
が発生する。発生したガスは、排気ダクト30を通過し
て排気装置(図示せず)に排気されるが、このとき流量
計34及び分析計35によりガス流量およびCOガス濃
度が検出される。
When argon gas is started to be blown into the riser pipe 24, the molten steel is stirred]! A large amount of gas containing CO gas as a main component is generated. The generated gas passes through the exhaust duct 30 and is exhausted to an exhaust device (not shown), and at this time, the gas flow rate and CO gas concentration are detected by the flowmeter 34 and analyzer 35.

これらの検出信号は、コンピュータ36の入力部に送ら
れる。コンピュータ36に検出信号が人力されると、こ
れに基づきCOガス発生量が算出される。処理前期にお
けるCOガス発生瓜は、毎分3000〜600ONj;
!程度である。コンピュタ36の演算部では、予め設定
されたJ!準ガス量(所定レベル以上のガス攪拌力をi
′7るに必要なトータル攪拌ガス量)からCOガス発生
量(排気ガス検出値に基づき算出したガス量)を引いて
差を求め、この差に見合うだけのガス量がガス吹き込み
装置40に供給されるように指令信号がガス供給源37
に送る。これにより、ガス吹き込み装置40の細管ノズ
ル46に混合ガスが供給され、ガスが細かな気泡となっ
て吹き込み口47から勢いよく溶fI43に噴射される
。インジェクションガスは、酸素ガスを約2.5容積%
の割合でアルゴンガスに混合したものである。
These detection signals are sent to an input of computer 36. When the detection signal is input manually to the computer 36, the amount of CO gas generated is calculated based on the detection signal. CO gas generation in the first stage of treatment is 3000 to 600 ONj per minute;
! That's about it. In the calculation section of the computer 36, a preset J! Semi-gas amount (gas agitation force above a predetermined level i)
The difference is obtained by subtracting the amount of CO gas generated (the amount of gas calculated based on the detected exhaust gas value) from the total amount of stirring gas required to produce the gas, and the amount of gas corresponding to this difference is supplied to the gas blowing device 40. A command signal is sent to the gas supply source 37 so that
send to As a result, the mixed gas is supplied to the capillary nozzle 46 of the gas blowing device 40, and the gas forms fine bubbles and is vigorously injected from the blowing port 47 into the melt fI 43. The injection gas contains approximately 2.5% oxygen gas by volume.
It is mixed with argon gas at a ratio of .

減圧下にガスを吹き込むと、これが断熱膨張してガス吹
き込み口47が局部的に温度降下し、溶鋼が凝固付着す
るが、少量の凝固金属が形成されたところで酸素と反応
して酸化発熱し、再び溶解する。このため、マツシュル
ームが形成されない。
When gas is blown under reduced pressure, the gas expands adiabatically and causes a local temperature drop at the gas injection port 47, causing molten steel to solidify and adhere, but when a small amount of solidified metal is formed, it reacts with oxygen and generates heat due to oxidation. Dissolve again. For this reason, pine mushrooms are not formed.

これにより、脱ガス処理中において安定にガスがインジ
ェクションされる。インジェクションガスの気泡が核と
なり、溶鋼中[C]と[0]とのガス生成反応が促進さ
れ、溶鋼3の脱炭が急激に進行する。
Thereby, gas is stably injected during the degassing process. The bubbles of the injection gas serve as nuclei, promoting the gas production reaction between [C] and [0] in the molten steel, and the decarburization of the molten steel 3 rapidly progresses.

やがて、処理後期(領域■)に至ると、溶鋼中[C]、
[0]が小さくなり、COガス発生量が毎分1000〜
200ON1以下に低下するが、排気ガス検出信号に基
づくコンピュータ演算により攪拌ガスの不足分を求め、
これに基づきガス吹き込み装置40から気泡ガスを吹き
込み、不足分を補う。これにより、処理後期(領域■)
においても処理前期(領域l)と同様のガス攪拌力及び
気液界面積を得ることができ、脱炭反応が促進され、所
定の目標成分の極低炭素鋼が溶製される。
Eventually, in the late stage of processing (area ■), during the molten steel [C],
[0] becomes smaller, and the amount of CO gas generated is 1000~ per minute.
Although the amount of stirring gas decreases to 200ON1 or less, the amount of stirring gas shortage is determined by computer calculation based on the exhaust gas detection signal.
Based on this, bubble gas is blown from the gas blowing device 40 to make up for the shortage. This allows late processing (region ■)
Also in the first stage of the treatment (region 1), the same gas stirring force and gas-liquid interfacial area can be obtained, the decarburization reaction is promoted, and ultra-low carbon steel with a predetermined target composition is produced.

第5図は、横軸にRH脱ガス処理時間をとり、縦軸に溶
鋼の炭素濃度[C]をとって、本発明と従来技術とを比
較説明するためのグラフ図である。
FIG. 5 is a graph for comparing and explaining the present invention and the prior art, with the horizontal axis representing the RH degassing treatment time and the vertical axis representing the carbon concentration [C] of molten steel.

図中、斜線領域はサイドインジェクションしない従来の
脱ガス処理の結果を、白丸はサイドインジェクションを
有する本発明の結果をそれぞれ示す。
In the figure, the shaded area shows the results of conventional degassing treatment without side injection, and the open circles show the results of the present invention with side injection.

第6図は、横軸に溶鋼の炭素濃度[C]をとり、縦軸に
脱炭反応速度定数Kcをとって、本発明と従来技術とを
比較説明するためのグラフ図である。
FIG. 6 is a graph for comparing and explaining the present invention and the prior art, with the horizontal axis representing the carbon concentration [C] of molten steel and the vertical axis representing the decarburization reaction rate constant Kc.

図中、斜線領域はサイドインジェクションしない従来の
脱ガス処理の結果を、白丸はサイドインジェクションを
有する本発明の結果をそれぞれ示す。
In the figure, the shaded area shows the results of conventional degassing treatment without side injection, and the open circles show the results of the present invention with side injection.

両図から明らかなように、本発明の実施例によれば脱ガ
ス処理の全ての期間において脱炭速度を向上させること
ができ、特に処理後期(iii!i域■)の脱炭速度を
向上させることができた。このため、従来の方法では達
成困難なレベルであった10pp11以下のレベルまで
短時間で[C]を低減することができ、極低炭素鋼を安
定かつ迅速に溶製することができた。
As is clear from both figures, according to the embodiment of the present invention, the decarburization rate can be improved during the entire period of degassing treatment, and the decarburization rate can be particularly improved in the latter stage of the treatment (region iii!i region ■). I was able to do it. Therefore, it was possible to reduce [C] in a short time to a level of 10 pp11 or less, which was a level that was difficult to achieve with conventional methods, and it was possible to stably and quickly produce ultra-low carbon steel.

なお、上記実施例では、RH脱ガス法の場合について説
明したが、本発明はこれのみに限られることなく、DH
脱ガス法に本発明を採用してもよい。
In addition, although the above-mentioned example explained the case of RH degassing method, the present invention is not limited to this only, and the DH degassing method is described.
The present invention may be employed in a degassing method.

また、上記実施例では、アルゴンガスに対して酸素ガス
が1〜20容積%の割合の混合ガスをサイドインジェク
ションした場合について説明したが、ガス種はこれのみ
に限られることなく、COガス生成反応を積極的に阻害
するガス種以外のものであれば、いずれの種類のガスを
採用してもよく、例えばアルゴンガス、ヘリウムガス、
酸素ガス、窒素ガス、水素ガス、CO2ガス、COガス
In addition, in the above embodiment, a case was explained in which a mixed gas containing 1 to 20% by volume of oxygen gas to argon gas was side-injected, but the gas type is not limited to this, and CO gas production reaction Any type of gas may be used as long as it does not actively inhibit gases, such as argon gas, helium gas,
Oxygen gas, nitrogen gas, hydrogen gas, CO2 gas, CO gas.

エア、並びにこれらの混合ガスのうちいずれのガスをも
採用することができる。
Either air or a mixture of these gases can be used.

また、上記実施例では、ガス吹き込み用の細管ノズルに
ステンレス鋼管を用いたが、これに限られることなく、
他の種類の金属管やセラミック管を用いることもできる
In addition, in the above embodiment, a stainless steel tube was used for the thin tube nozzle for blowing gas, but the invention is not limited to this.
Other types of metal or ceramic tubes can also be used.

[発明の効果] この発明によれば、断熱膨張したガスの吸熱量を、吹き
込みガス中の酸素と凝固金属との酸化反応による発熱量
で補償するので、凝固金属が成長せず、ガス吹き込み口
にマツシュルームが形成されない。このため、脱ガス処
理の全期間にわたり音速以上の速度でガスを溶鋼に吹き
込むことができ、気泡ガスにより脱炭反応を大幅に促進
させることができる。この結果、脱ガス後期においても
処理前期と同様のガス攪拌力及び気液界面積を?11る
ことができ、[C]が10ppm以下のレベルの極低炭
素鋼を安定かつ迅速に溶製することができる。
[Effects of the Invention] According to the present invention, the amount of heat absorbed by the adiabatically expanded gas is compensated by the amount of heat generated by the oxidation reaction between the oxygen in the blown gas and the solidified metal, so that the solidified metal does not grow and the gas injection port pine mushrooms do not form. Therefore, gas can be blown into the molten steel at a speed higher than the speed of sound over the entire period of degassing treatment, and the decarburization reaction can be significantly promoted by the bubble gas. As a result, the gas agitation force and gas-liquid interface area are the same in the late stage of degassing as in the early stage of treatment. 11, and ultra-low carbon steel with a [C] level of 10 ppm or less can be stably and rapidly produced.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の実施例に係る極低炭素鋼の溶製方法
に使用された脱ガス槽を示す模式図、第2図は脱ガス下
部槽の横断面図、第3図はガス吹き込み装置の部分を示
す拡大縦断面図、第4図乃至第6図はそれぞれ本発明の
作用効果を説明するためのグラフ図、第7図乃至第10
図はそれぞれ従来技術を説明するためのグラフ図である
Fig. 1 is a schematic diagram showing a degassing tank used in the method for producing ultra-low carbon steel according to an embodiment of the present invention, Fig. 2 is a cross-sectional view of the lower degassing tank, and Fig. 3 is a gas blowing tank. FIGS. 4 to 6 are enlarged vertical cross-sectional views showing parts of the device, and FIGS. 7 to 10 are graphs and graphs for explaining the effects of the present invention, respectively.
Each figure is a graph diagram for explaining the prior art.

Claims (1)

【特許請求の範囲】[Claims] 減圧下の溶鋼に気泡ガスを吹き込み、気泡ガスにより溶
鋼中[C]及び[O]の脱炭反応を促進させる場合に、
非酸化性のガスに酸素ガスを2〜20容積%の割合で混
合し、これを前記気泡ガスとして単管ノズルを介して溶
鋼に吹き込むことを特徴とする極低炭素鋼の溶製方法。
When blowing bubble gas into molten steel under reduced pressure to promote the decarburization reaction of [C] and [O] in the molten steel,
A method for producing ultra-low carbon steel, comprising mixing non-oxidizing gas with oxygen gas at a ratio of 2 to 20% by volume, and blowing this as the bubble gas into molten steel through a single tube nozzle.
JP19270089A 1989-07-27 1989-07-27 Method for refining dead-soft carbon steel Pending JPH0361315A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19270089A JPH0361315A (en) 1989-07-27 1989-07-27 Method for refining dead-soft carbon steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19270089A JPH0361315A (en) 1989-07-27 1989-07-27 Method for refining dead-soft carbon steel

Publications (1)

Publication Number Publication Date
JPH0361315A true JPH0361315A (en) 1991-03-18

Family

ID=16295596

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19270089A Pending JPH0361315A (en) 1989-07-27 1989-07-27 Method for refining dead-soft carbon steel

Country Status (1)

Country Link
JP (1) JPH0361315A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105821179A (en) * 2015-01-07 2016-08-03 宝山钢铁股份有限公司 Sealed equipment of refining RH alloy for removing residual gas and application thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51151212A (en) * 1975-06-21 1976-12-25 Nippon Steel Corp Rh degassing apparatus blowing oxidizing gas directly into circulating molten steel at reduced pressure
JPS5562117A (en) * 1978-10-30 1980-05-10 Nippon Steel Corp Dh vacuum degassing method for molten steel
JPS6137913A (en) * 1984-07-30 1986-02-22 Kawasaki Steel Corp Manufacture of dead soft steel by vacuum treatment

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51151212A (en) * 1975-06-21 1976-12-25 Nippon Steel Corp Rh degassing apparatus blowing oxidizing gas directly into circulating molten steel at reduced pressure
JPS5562117A (en) * 1978-10-30 1980-05-10 Nippon Steel Corp Dh vacuum degassing method for molten steel
JPS6137913A (en) * 1984-07-30 1986-02-22 Kawasaki Steel Corp Manufacture of dead soft steel by vacuum treatment

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105821179A (en) * 2015-01-07 2016-08-03 宝山钢铁股份有限公司 Sealed equipment of refining RH alloy for removing residual gas and application thereof

Similar Documents

Publication Publication Date Title
EP1059501A2 (en) Direct smelting vessel
EP0785284B1 (en) Process for vacuum refining of molten steel
JP2017057469A (en) Top blown lance of converter and operation method of converter
JP2007031820A (en) Vacuum-degassing treating method for molten steel
JPH0361315A (en) Method for refining dead-soft carbon steel
JP6421731B2 (en) Converter operation method
JP2582316B2 (en) Melting method of low carbon steel using vacuum refining furnace
JP2767674B2 (en) Refining method of high purity stainless steel
GB2057509A (en) Steel making in top-blown converter
JP3777630B2 (en) Method for heat refining of molten steel
JPH0361317A (en) Method for refining dead-soft carbon steel
JP2808197B2 (en) Vacuum refining of molten steel using large diameter immersion tube
JP4686880B2 (en) Hot phosphorus dephosphorization method
JPH0361318A (en) Method for refining dead-soft carbon steel
JPH0361319A (en) Method and device for smelting extra-low-carbon steel
JPH05171253A (en) Method for desulfurizing molten steel
JP3124416B2 (en) Vacuum refining method of molten steel by gas injection
JP6939828B2 (en) Acid feeding refining method for molten iron
JPH0987730A (en) Method for heat-raising and refining molten steel
JP2002363636A (en) Method for smelting molten steel in rh vacuum degassing apparatus
JP3733013B2 (en) Hot metal dephosphorization method
JPH0499119A (en) Method and apparatus for producing dead soft steel
JP2940358B2 (en) Melting method for clean steel
JP3225747B2 (en) Vacuum degassing of molten steel
CA2371652A1 (en) Method of decarburisation and dephosphorisation of a molten metal