JPH0361318A - Method for refining dead-soft carbon steel - Google Patents

Method for refining dead-soft carbon steel

Info

Publication number
JPH0361318A
JPH0361318A JP19270389A JP19270389A JPH0361318A JP H0361318 A JPH0361318 A JP H0361318A JP 19270389 A JP19270389 A JP 19270389A JP 19270389 A JP19270389 A JP 19270389A JP H0361318 A JPH0361318 A JP H0361318A
Authority
JP
Japan
Prior art keywords
gas
molten steel
amount
generated
refining
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19270389A
Other languages
Japanese (ja)
Inventor
Yoshikatsu Furuno
好克 古野
Junichi Fukumi
純一 福味
Shigeru Inoue
茂 井上
Tsutomu Usui
碓井 務
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP19270389A priority Critical patent/JPH0361318A/en
Publication of JPH0361318A publication Critical patent/JPH0361318A/en
Pending legal-status Critical Current

Links

Landscapes

  • Treatment Of Steel In Its Molten State (AREA)

Abstract

PURPOSE:To accelerate the reaction between [C] and [O] and to produce a dead-soft carbon steel by detecting the amount of CO generated in the latter stage in a refining period, blowing specific amounts of gas into a molten steel according to the detected value, and increasing the agitation of the molten metal due to the resulting bubbles at the time of subjecting a molten steel to decarburizing refining in an RH-type degassing refining apparatus. CONSTITUTION:A molten steel 3 in a ladle 2 is sucked into a vacuum tank in an RH-type vacuum degassing refining apparatus 10, and CO gas as a decarburization product due to the reaction between [C] and [O] is discharged in a bubble state from the molten steel 3, and the CO gas is discharged while agitating the molten steel. This reaction exhaust gas is evacuated by means of an evacuation duct 30, and the amount of CO generated is measured by means of a flowmeter 34 and an analyzer 35 for the exhaust gas. At the point of time when reduction in the amount of CO generated takes place as a result of reduction in [C] content in the latter stage in a refining period, a gas of Ar, etc., is blown from a gas supply source 37 through a blowing nozzle 46 into the molten steel. At this time, the sum of the amount of CO generated and the amount of Ar blown is regulated so that it is higher than the amount of CO exhaust gas generated in the former stage in the refining period and agitation power due to gas bubbles in the molten steel is increased so that it is similar to that in the former stage in the refining period, by which the reaction between [C] and [O] is accelerated. By this method, a dead-soft carbon steel of <0.003% C can be produced.

Description

【発明の詳細な説明】 [産業上の利用分野コ この発明は、溶鋼の炭素濃度[C]が極微量のレベルに
なるように脱ガス処理する極低炭素鋼の溶製方法に関す
る。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a method for producing ultra-low carbon steel in which degassing treatment is performed so that the carbon concentration [C] of molten steel is at an extremely trace level.

[従来の技術] 近年、鋼材の高級化に伴い、炭素含有量を極微量に:J
3整した極低炭素鋼の需要が高まり、これを迅速かつ安
定に溶製する技術が要望されている。
[Conventional technology] In recent years, with the advancement of high-grade steel materials, the carbon content has been reduced to an extremely small amount: J
There is a growing demand for ultra-low carbon steel with a high degree of stability, and there is a need for technology to quickly and stably melt it.

転炉工程においては、通常、溶鋼中炭素[C]が0.0
2〜0.04重量%の範囲に入ると出鋼する。更に、出
n4溶鋼を種々の精錬設備で脱炭処理し、所望の炭素濃
度とする。極低炭素鋼は、炭素含有量が0.003重量
%以下と極微量のレベルを要求されるために、一般に、
大量の溶鋼を安定かつ効率よく溶製することが困難であ
る。このような背景から、溶鋼を効率よく脱炭する技術
として、RH脱ガス精錬が注目されている。
In the converter process, carbon [C] in molten steel is usually 0.0
When the content falls within the range of 2 to 0.04% by weight, steel is tapped. Furthermore, the N4 molten steel is decarburized using various refining equipment to obtain a desired carbon concentration. Ultra-low carbon steel is generally required to have an extremely low carbon content of 0.003% by weight or less.
It is difficult to stably and efficiently melt a large amount of molten steel. Against this background, RH degassing refining is attracting attention as a technology for efficiently decarburizing molten steel.

RH脱ガス法により極低炭素鋼を溶製する場合は、脱ガ
ス槽下部の1対の浸漬管を溶鋼中に浸漬し、溶鋼を鍋お
よび脱ガス槽の間で循環させつつ脱ガス処理する。すな
わち、RH脱ガス精錬においては、一方の浸漬管(上昇
管)に不活性ガスを吹き込み、見掛けの比重を減少させ
て溶鋼を上昇させ、鍋から脱ガス槽内に溶鋼を吸い上げ
る。槽内はガス排気されて減圧下にあるので、溶鋼中の
[C]と[O1とが反応して多量のCOガスが発生する
。脱炭反応により生じたCOガスは、上昇管に吹き込ま
れたアルゴンガスと共にスプラッシュを形成する。この
スプラッシュにより、溶鋼とガスとの接触面積が増大し
、更に脱炭反応が促進される。溶鋼は、槽内で脱ガス処
理された後に、他方の浸漬管(下降管)を介して鍋に返
戻される。
When producing ultra-low carbon steel using the RH degassing method, a pair of immersion tubes at the bottom of the degassing tank are immersed in molten steel, and the molten steel is circulated between the pot and the degassing tank while being degassed. . That is, in RH degassing refining, inert gas is blown into one immersion pipe (rising pipe) to reduce the apparent specific gravity and raise the molten steel, and the molten steel is sucked up from the ladle into the degassing tank. Since the inside of the tank is under reduced pressure due to gas exhaust, [C] and [O1] in the molten steel react to generate a large amount of CO gas. The CO gas produced by the decarburization reaction forms a splash together with the argon gas blown into the riser. This splash increases the contact area between the molten steel and the gas, further promoting the decarburization reaction. After being degassed in the tank, the molten steel is returned to the ladle via the other immersion pipe (downcomer pipe).

このような脱ガス(脱炭)処理中に、槽内に副原料およ
び合金材を投入添加し、溶鋼を所望の目標成分とする。
During such degassing (decarburization) treatment, auxiliary raw materials and alloy materials are added into the tank to make the molten steel a desired target composition.

〔発明が解決しようとする課題] しかしながら、従来の溶製方法においては、処理の後半
に至ると脱炭速度が低下し、更に[C]を低減するには
長時間を要し、極低炭素鋼を安定かつ迅速に溶製するこ
とができない。
[Problems to be solved by the invention] However, in the conventional melting method, the decarburization rate decreases in the latter half of the treatment, and it takes a long time to further reduce [C], and extremely low carbon It is not possible to melt steel stably and quickly.

第7図は、横軸にRH脱ガス法による処理時間をとり、
縦軸に処理溶鋼の炭素濃度[C]をとって、上昇管への
アルゴンガス吹き込み量を毎分3000〜500ONI
Iの範囲で種々変更し、従来゛の脱ガス処理の各時期に
おける[C]の推移について調べたグラフ図である。図
中にて、斜線領域、白丸、黒丸は、それぞれアルゴンガ
ス吹き込み量を毎分300ONj11.400ONN。
In Figure 7, the horizontal axis shows the processing time by the RH degassing method.
The carbon concentration [C] of the treated molten steel is plotted on the vertical axis, and the amount of argon gas blown into the riser pipe is set at 3000 to 500 ONI per minute.
It is a graph diagram in which various changes were made in the range of I and changes in [C] at each stage of conventional degassing treatment were investigated. In the figure, the shaded areas, white circles, and black circles indicate the argon gas blowing rate of 300 ON/min, 11.400 ONN, respectively.

500011とした場合の結果を示す。図から明らかな
ように、処理前期(領域I)では溶鋼中[C]が急激に
減少するが、処理後期(領域■)では[C]の減少率が
大幅に低下する。[C]が領域■に至ると脱炭速度が小
さくなり、10〜20 ppmより更に低l農度レベル
の極低炭素鋼の領域まで脱炭するには長時間を要する。
The results are shown when the number is 500011. As is clear from the figure, [C] in the molten steel rapidly decreases in the early stage of treatment (region I), but the reduction rate of [C] decreases significantly in the latter stage of treatment (region ■). When [C] reaches region (3), the decarburization rate decreases, and it takes a long time to decarburize to the region of ultra-low carbon steel with an agricultural level even lower than 10 to 20 ppm.

また、図から明らかなように、上昇管へのアルゴンガス
吹き込み量は毎分4000 N、Qが最適であり、これ
より少なくとも多くとも迅速な脱炭処理を行うことがで
きない。これは、ガス吹き込み量が過剰になると、ガス
の吹き抜けが生じることに起因する。
Further, as is clear from the figure, the optimal amount of argon gas to be blown into the riser is 4000 N.Q per minute, and rapid decarburization cannot be performed if the amount is at least higher than this. This is because when the amount of gas blown becomes excessive, gas blow-through occurs.

このため、上昇管へのアルゴンガス吹き込み量を増大す
ることにより、脱炭速度を向上させるには限界がある。
Therefore, there is a limit to improving the decarburization rate by increasing the amount of argon gas blown into the riser.

第8図は、横軸に脱ガス槽及び鍋の間における溶鋼のサ
イクルタイムをとり、縦軸に上記領域Iの脱炭速度定数
KCをとって、種々の処理条件下で両者の関係を調べた
グラフ図である。ここで、脱炭速度定数KCとは、下記
(1)式で規定される脱炭の一次反応における指数をい
う。
In Figure 8, the horizontal axis represents the cycle time of molten steel between the degassing tank and the ladle, and the vertical axis represents the decarburization rate constant KC in region I, and the relationship between the two was investigated under various processing conditions. FIG. Here, the decarburization rate constant KC is an index in the primary decarburization reaction defined by the following equation (1).

(d [C] /d t) =Kc   [C] −(
1)図から明らかなように、溶鋼のサイクルタイムが短
くなると、脱炭速度定数K。が向上する。従って、脱ガ
ス槽による溶鋼環流量を増大化して、サイクルタイムを
短縮すると、溶鋼の脱炭反応を促進させることができる
。しかしながら、一般に、溶鋼環流量の増大化を図るこ
とは困難であり、脱炭速度を飛躍的に向上させることが
できない。
(d [C] /d t) =Kc [C] -(
1) As is clear from the figure, as the cycle time of molten steel becomes shorter, the decarburization rate constant K. will improve. Therefore, by increasing the flow rate of molten steel circulating through the degassing tank and shortening the cycle time, the decarburization reaction of molten steel can be promoted. However, it is generally difficult to increase the flow rate of molten steel, and it is not possible to dramatically improve the decarburization rate.

第9図は、横軸にRH脱ガス槽の排気時間をとり、縦軸
にCOガス発生in (Nl /分)および脱ガス槽内
の真空度(トール)をそれぞれとって、領域Iおよび領
域■におけるそれぞれの変化を調べたグラフ図である。
In Fig. 9, the horizontal axis shows the evacuation time of the RH degassing tank, and the vertical axis shows the CO gas generation in (Nl/min) and the degree of vacuum (Torr) in the degassing tank, respectively. It is a graph diagram examining each change in (2).

図から明らかなように、領域lに比べて領域■のCOガ
ス発生量が大幅に低下することがわかる。
As is clear from the figure, the amount of CO gas generated in region (2) is significantly lower than that in region (1).

第10図は、横軸にRH脱ガス処理時間をとり、縦軸に
脱炭反応速度定数KcおよびCOガスによる真空脱ガス
槽内の攪拌力Sをそれぞれとって、両者の関係について
それぞれ調べたグラフ図である。なお、脱炭反応速度定
数Kcは、下記(2)式に基づき3分間ごとにそれぞれ
求めた。
In Figure 10, the horizontal axis shows the RH degassing treatment time, and the vertical axis shows the decarburization reaction rate constant Kc and the stirring force S in the vacuum degassing tank due to CO gas, and the relationship between the two was investigated. It is a graph diagram. Note that the decarburization reaction rate constant Kc was determined every 3 minutes based on the following equation (2).

[C] −[Cコ 0  −  e  x  p   (−Kc
     t)     −(2)また、ガス攪往力S
は、上記のCOガス発生量に基づき下記(3)式により
求めた。
[C] −[Cko 0 − e x p (−Kc
t) −(2) Also, gas stirring force S
was determined by the following formula (3) based on the amount of CO gas generated above.

S = (6,18X q X T s / Vs )
x (In (1+ρ、・g−h/P)+ (1−T、
 /Ts ) l   ・・・(3)ただし、■、は真
空槽体積、hは溶鋼の深さ、T、は溶m温度、ρ、は溶
鋼密度、Pは真空槽内圧力、gは重力加速度をそれぞれ
表す。
S = (6,18XqXTs/Vs)
x (In (1+ρ, gh/P)+ (1-T,
/Ts) l...(3) where ■, is the vacuum chamber volume, h is the depth of the molten steel, T is the molten temperature, ρ is the molten steel density, P is the pressure inside the vacuum chamber, and g is the gravitational acceleration. respectively.

図から明らかなように、脱炭反応速度定数KCおよびガ
ス攪拌力Sは、同じ傾向を示し、攪拌力Sの低下に伴っ
て速度定数Kcも低下する。従って、処理後期(領域■
)においては脱炭速度が苦しく低下し、極低炭素鋼を溶
製する場合に不利である。
As is clear from the figure, the decarburization reaction rate constant KC and the gas stirring force S show the same tendency, and as the stirring force S decreases, the rate constant Kc also decreases. Therefore, late processing (region ■
), the decarburization rate is severely reduced, which is disadvantageous when producing ultra-low carbon steel.

この発明は、かかる車情に鑑みてなされたちのてあって
、脱ガス槽内における溶鋼攪拌力の向上を図ると共に、
気液異面積を増大させることができる極低炭素鋼の溶製
方l去及びその装置を捉供することを目的とする。
This invention was made in view of such vehicle conditions, and aims to improve the stirring power of molten steel in the degassing tank, and
The purpose of this invention is to provide a method for producing ultra-low carbon steel that can increase the gas-liquid differential area, and an apparatus therefor.

[課題を解決するための手段] 発明者等は、RH脱ガス下部槽の側壁に種々のタイプの
ノズルを設け、各種のガスを気泡化して溶鋼に吹き込む
ことにより気液界面積を増大させ、脱炭反応を促進させ
ることについて種々検討した。
[Means for Solving the Problems] The inventors installed various types of nozzles on the side wall of the lower RH degassing tank to bubble various gases and blow them into the molten steel, thereby increasing the gas-liquid interface area. Various studies were conducted to promote the decarburization reaction.

その結果、ポーラスプラグの場合には、ガス吹き込み速
度がマツハ1を超えず、気泡ガスがバブリング状態とな
って脱炭速度を上昇させることができないが、単管ノズ
ル又は二重管ノズルを用いると、ガス吹き込み速度がマ
ッノ\1を超えて、気泡ガスがジェツテイング状態とな
って分散し、脱炭速度の上昇に寄与するという知見を得
た。
As a result, in the case of a porous plug, the gas blowing speed does not exceed Matsuha 1, and the bubble gas enters a bubbling state, making it impossible to increase the decarburization speed. However, when using a single or double pipe nozzle, It was found that when the gas blowing rate exceeds 1, the bubble gas becomes jetting and disperses, contributing to an increase in the decarburization rate.

また、ノズル内径がIIImを下回ると、ガス吹き込み
口に溶鋼が差し込み、凝固金属によりガス通路が塞がれ
て、ノズル詰まりが生じ、一方、ノズル内径が5mmを
上回ると、ガス供給圧力(背圧)を上昇させたとしても
、吹き込みガスの到達距離が短く、気泡ガスの分散化を
図ることができないという知見を得た。更に、吹き込み
ガスの到達距離が短くなると、ガスが側壁に沿ってl乎
上し、気泡ガスが合体成長して分散しにくくなると共に
、脱ガス槽側壁の耐火物が著しく溶損するという知見を
得た。
Additionally, if the nozzle inner diameter is less than IIIm, molten steel will be inserted into the gas injection port, and the solidified metal will block the gas passage, causing nozzle clogging.On the other hand, if the nozzle inner diameter exceeds 5mm, the gas supply pressure (back pressure ), it was found that the reach of the blown gas was short and it was not possible to disperse the bubble gas. Furthermore, we found that when the reach of the blown gas becomes shorter, the gas rises along the side wall, bubble gas coalesces and grows, making it difficult to disperse, and the refractories on the side wall of the degassing tank are significantly eroded. Ta.

第4図は、横軸にノズル内径dをとり、縦軸にノズル1
本あたりのガス吹き込み量をとって、両者の関係につい
て調べたグラフ図である。図中の斜線領域がガス吹き込
み可能範囲である。図から明らかなように、ノズル内径
dが1〜5■の範囲が最適であることかわかる。
In Figure 4, the horizontal axis represents the nozzle inner diameter d, and the vertical axis represents the nozzle 1.
It is a graph diagram in which the amount of gas blown per book was measured and the relationship between the two was investigated. The shaded area in the figure is the range in which gas can be blown. As is clear from the figure, it can be seen that the optimum nozzle inner diameter d is in the range of 1 to 5 cm.

また更に、吹き込みガスの冷却能が大きくなると、ガス
吹き込み口に多孔質の凝固金属(以下、「マツシュルー
ム」という)が付着し、気泡ガスの合体が生じてバブリ
ング状態となる。従って、ガスジェツテイング用のノズ
ルには、二重管ノズルより単管ノズルのほうが適してい
るという知見を?11た。また、純アルゴンガスを吹き
込むと、マツシュルームが形成されやすいという知見も
得た。
Furthermore, when the cooling capacity of the blown gas increases, porous solidified metal (hereinafter referred to as "pine mushroom") adheres to the gas inlet, and gas bubbles coalesce to form a bubbling state. Therefore, do you know that a single tube nozzle is more suitable for a gas jetting nozzle than a double tube nozzle? 11. We also found that pine mushrooms are more likely to form when pure argon gas is blown into them.

ところで、特公昭56−49968号公報には、RH脱
ガス下部槽にてアルゴンガスおよび酸素ガスからなる混
合ガスをサイドインジェクションするという類似の技術
が開示されている。この技術によれば、脱ガス槽内の溶
鋼に二重管ノズルを用いて酸素ガスおよび不活性ガスか
らなる混合ガスを吹き込み、クロム成分等の酸化防止を
図りつつ溶鋼を脱炭し、ステンレス鋼、ケイ*m、並び
に高張力高合金鋼を溶製する技術として所謂RH−OB
法が開示されている。RH−OB法では、減圧下の溶鋼
の溶存酸素量を積極的に高め、COガス生成速度を向上
させることにより合金鋼溶鋼の脱炭促進を図る。
By the way, Japanese Patent Publication No. 56-49968 discloses a similar technique in which a mixed gas of argon gas and oxygen gas is side-injected into a lower RH degassing tank. According to this technology, a mixed gas consisting of oxygen gas and inert gas is blown into the molten steel in the degassing tank using a double pipe nozzle, and the molten steel is decarburized while preventing the oxidation of chromium components, etc. , K*m, and the so-called RH-OB as a technology for melting high-tensile, high-alloy steel.
The law has been disclosed. In the RH-OB method, decarburization of molten alloy steel is promoted by actively increasing the amount of dissolved oxygen in molten steel under reduced pressure and improving the rate of CO gas production.

しかしながら、上記のRH−OB法においては、低P 
co (脱ガス槽内におけるCOガス分圧)領域で処理
溶鋼の溶存酸素[O1mを高める結果となり、処理開始
前の脱酸処理が生かされなくなると共に、耐火物の溶損
量が増大する傾向にある。脱ガス下部槽は、高価なマグ
ネシアクロム質の耐火レンガで内張すされている。一般
に、脱ガス下部槽においては側をレンガより敷レンガの
ほうが寿命が短く、下部槽の寿命は、敷レンガ、特に浸
漬管通路の間に設けられた敷レンガが浮きだすおそれが
ある残厚によって決定される。このため、下部槽の交換
回数が増え、耐火物コストか上昇するという欠点がある
However, in the above RH-OB method, low P
This results in an increase in dissolved oxygen [O1m] in the treated molten steel in the CO (partial pressure of CO gas in the degassing tank) region, which makes it impossible to utilize the deoxidation treatment before the start of treatment and tends to increase the amount of erosion of refractories. be. The lower degassing tank is lined with expensive magnesia chromium firebrick. In general, in the lower tank for degassing, the lifespan of bricks on the sides is shorter than that of bricks, and the lifespan of the lower tank is limited by the residual thickness of the bricks, especially those installed between the immersion pipe passages, which can cause them to bulge out. It is determined. For this reason, there is a disadvantage that the number of replacements of the lower tank increases and the cost of refractories increases.

また、上X[E RH−OB法は、合金鋼の溶製を目的
とする技術を開示するものではあるが、極低炭素鋼のよ
うな合金量が少量の普通鋼の溶製技術を開示するもので
はない。
In addition, although the above X[ER RH-OB method discloses a technology for the purpose of melting alloy steel, it also discloses a technology for melting ordinary steel with a small amount of alloy, such as ultra-low carbon steel. It's not something you do.

これに対して、この発明に係る極低炭素鋼の溶製方法は
、減圧下の溶鋼に気泡ガスを吹き込み、気泡ガスにより
溶鋼中[C]及び[O]の脱炭反応を促進させる場合に
、脱炭反応により生じるCOガス発生量を把握し、CO
ガス発生量と前記気泡ガスの吹き込み量との合計量が、
少なくとも処理前期のCOガス発生量を超えるように、
前記気泡ガスの吹き込み量を制御することを特徴とする
。吹き込みガスには、COガス生成反応を積極的に阻害
するガス種以外のものであれば、いずれの種類のガスを
採用し°(もよく、例えばアルゴンガス、ヘリウムガス
、酸素ガス、窒素ガス、水素ガス、CO2ガス、COガ
ス、エア、並びにこれらの混合ガスのうちいずれのガス
をも採用することができる。特に、気泡ガスとして、少
量の酸素ガスを含むアルゴンガスを溶鋼に吹き込むこと
が望ましい。なお、COガスを溶鋼に吹き込む場合は、
COガス生成反応が阻害されることを考慮し、COガス
単体でなく、他のガスとの混合ガスとすることが好まし
い。
On the other hand, in the method for producing ultra-low carbon steel according to the present invention, bubble gas is blown into molten steel under reduced pressure to promote the decarburization reaction of [C] and [O] in the molten steel. , grasp the amount of CO gas generated by the decarburization reaction, and
The total amount of gas generation amount and the amount of bubble gas blown is,
At least exceed the amount of CO gas generated in the first stage of treatment.
The method is characterized in that the amount of the bubble gas blown is controlled. Any type of gas can be used as the blowing gas, as long as it does not actively inhibit the CO gas production reaction (for example, argon gas, helium gas, oxygen gas, nitrogen gas, Any gas among hydrogen gas, CO2 gas, CO gas, air, and mixed gases thereof can be employed.In particular, it is desirable to blow argon gas containing a small amount of oxygen gas into the molten steel as bubble gas. .In addition, when blowing CO gas into molten steel,
Considering that the CO gas production reaction is inhibited, it is preferable to use a mixed gas with other gases instead of using CO gas alone.

[作 用] この発明に係る極低炭素鋼の溶製方法においては、脱ガ
ス処理中のCOガス発生量を把掘し、このCOガス発生
量に応じて気泡ガスの吹き込み量を制御し、COガス発
生量および気泡ガスの吹き込み量の合計量が、処理前期
のCOガス発生量を超えるようにしている。すなわち、
処理前期(領域I)における溶鋼中[C]および[O]
は高濃度領域にあるため、多量のCOガスが発生し、溶
鋼が強攪拌され、スプラッシュ発生量も多く、脱炭反応
速度が大きい。これに対して、処理後期(領域■)では
溶鋼中[C]および[O]が低濃度領域に移行するため
、COガス発生量が低下し、溶鋼攪拌力および気液界面
積が減少して、脱炭反応速度が小さくなる。そこで、処
理後期に至ると、COガス発生量の低下に応じて気泡ガ
スの吹き込み量を増量し、領域■におけるCOガス発生
量の不足分を補う。この補償ガスの吹き込みにより溶鋼
攪拌力および気液界面積を増大化させ、領域■の脱炭反
応速度を高め、溶鋼の脱炭を促進させる。
[Function] In the method for producing ultra-low carbon steel according to the present invention, the amount of CO gas generated during the degassing treatment is ascertained, and the amount of bubble gas blown is controlled according to the amount of CO gas generated. The total amount of the amount of CO gas generated and the amount of bubble gas blown is made to exceed the amount of CO gas generated in the first period of the treatment. That is,
[C] and [O] in molten steel in the early stage of treatment (area I)
Since it is in a high concentration region, a large amount of CO gas is generated, the molten steel is strongly stirred, a large amount of splash is generated, and the decarburization reaction rate is high. On the other hand, in the late stage of treatment (region ■), [C] and [O] in the molten steel shift to a low concentration region, so the amount of CO gas generated decreases, and the molten steel stirring force and gas-liquid interface area decrease. , the decarburization reaction rate becomes smaller. Therefore, in the latter stage of the process, the amount of bubble gas blown is increased in accordance with the decrease in the amount of CO gas generated to compensate for the deficiency in the amount of CO gas generated in region (3). This injection of compensation gas increases the molten steel stirring force and the gas-liquid interfacial area, increases the decarburization reaction rate in region (1), and promotes decarburization of the molten steel.

因みに、上記RH−OB法は、脱酸後の低PCO領域で
のサイドインジェクションであるのに対して、この発明
では、処理前期の高PCO領域から処理後期の低PCO
領域に至るまでの広範な領域においてサイドイジェクシ
ョンするものである。このため、槽内を高PCO領域か
ら低PCO領域に移行させる(脱炭)と共に、溶鋼を高
溶存酸素[O]領域から低溶存酸素[O]領域に移行さ
せる(脱酸)ことができ、脱酸剤の添加量が低減するこ
とにもなる。
Incidentally, the above RH-OB method involves side injection in a low PCO region after deoxidation, whereas in this invention, injection is performed from a high PCO region in the early stage of the treatment to a low PCO region in the late stage of the treatment.
Side ejection occurs in a wide range of areas. Therefore, the inside of the tank can be moved from a high PCO region to a low PCO region (decarburization), and the molten steel can be moved from a high dissolved oxygen [O] region to a low dissolved oxygen [O] region (deoxidation). This also results in a reduction in the amount of deoxidizing agent added.

[実施例] 以下、添付の図面を参照しながら、この発明の実施例に
ついて具体的に説明する。
[Embodiments] Hereinafter, embodiments of the present invention will be specifically described with reference to the accompanying drawings.

第1図はこの発明の実施例に係る極低炭素鋼の溶製方法
に使用されたRH脱ガス装置を示す模式図、第2図は脱
ガス下部槽の横断面図、第3図はガス吹き込み装置の部
分を示す縦断面図である。
Fig. 1 is a schematic diagram showing the RH degassing device used in the method for producing ultra-low carbon steel according to the embodiment of the present invention, Fig. 2 is a cross-sectional view of the lower degassing tank, and Fig. 3 is the gas FIG. 3 is a longitudinal sectional view showing a portion of the blowing device.

RH脱ガス設備の建屋−階に軌条が敷設され、取鍋2が
走行台車により転炉工場から搬送されるようになってい
る。脱ガス110が、8屋上部に設けられ、この直下に
取鍋2を昇降するためのリフティングテーブル6が設置
されている。
Rails are laid on the first floor of the building of the RH degassing facility, and the ladle 2 is transported from the converter factory by a traveling truck. A degassing unit 110 is provided on the roof 8, and a lifting table 6 for raising and lowering the ladle 2 is installed directly below this.

脱ガスt!10は、その外面が鉄皮11で覆われ、鉄皮
11に耐火レンガ12a、12bが内張すされている。
Degassing! 10 has an outer surface covered with an iron skin 11, and the iron skin 11 is lined with refractory bricks 12a and 12b.

脱ガスtfllOの上部には、排気ダクト30およびシ
ュータ32が設けられている。排気ダクト30は、図示
しないガス排気装置に連通している。シュータ32は、
副原料または合金材を貯蔵したホッパ31に連通してい
る。脱ガス槽10は、上部槽と下部槽とに分離可能にフ
ランジ継手(図示せず)により接続されている。
An exhaust duct 30 and a shooter 32 are provided at the top of the degassing tfllO. The exhaust duct 30 communicates with a gas exhaust device (not shown). The shooter 32 is
It communicates with a hopper 31 that stores auxiliary raw materials or alloy materials. The degassing tank 10 has an upper tank and a lower tank separably connected to each other by a flange joint (not shown).

脱ガス下部冶には1対の短管部が形成されており、一方
の短管部には上昇管24が、他方の短管部には下降管2
6が、それぞれフランジ継手(図示せず)により接続さ
れている。上昇管24および下降管26は、それぞれ心
材の内側(溶鋼通路25.27の側)に耐火レンガが設
けられ、心材の外側がアルミナキャスタブルで覆われて
いる。
A pair of short pipe parts are formed in the degassing lower part, one of which has an ascending pipe 24, and the other short pipe part has a down pipe 2.
6 are connected to each other by flange joints (not shown). The rising pipe 24 and the descending pipe 26 are each provided with a refractory brick on the inside of the core material (on the side of the molten steel passage 25, 27), and the outside of the core material is covered with alumina castable.

ガス吹き込み管15が、上昇管24を貫通し、そのガス
吹き込み口が通路25にて開口している。
A gas blowing pipe 15 passes through the riser pipe 24 , and its gas blowing port opens in a passage 25 .

ガス吹き込み管15の基端側は、流量調節弁を備えたア
ルゴンガス供給源(図示せず)に連通している。
The base end side of the gas blowing pipe 15 communicates with an argon gas supply source (not shown) equipped with a flow rate control valve.

下部槽の側壁に複数のガス吹き込み装置4oが設けられ
、それぞれの吹き込み口47が下部槽の敷レンガ12a
近傍にて開口している。ガス吹き込み装置40の基端側
は、ガス供給源37に連通している。ガス供給源37は
、アルゴンガスタンク、酸素ガスタンク、並びに流量調
節弁を有し、アルゴンガスに所定の割合で酸素ガスをK
 6 した混合ガスをガス吹き込み装置40に供給する
ようになっている。
A plurality of gas blowing devices 4o are provided on the side wall of the lower tank, and each blowing port 47 is connected to the paving brick 12a of the lower tank.
It is open nearby. The proximal end side of the gas blowing device 40 communicates with the gas supply source 37 . The gas supply source 37 has an argon gas tank, an oxygen gas tank, and a flow control valve, and supplies oxygen gas to argon gas at a predetermined ratio.
6 of the mixed gas is supplied to the gas blowing device 40.

プロセスコンピュータ36の出力側かガス供給源37の
流星調節弁に接続され、一方、コンピュータ36の入力
側は、排気ダクト30のガス流量計34および分析=f
35に接続されている。すなわち、流量計34および分
析計35の検出結果に基づきコンピュータ36ではCO
ガス発生量を算出し、これに基づきコンピュータ36か
らガス吹き込み装置40へ所定の指令信号が出され、所
定量のガスが槽内の溶鋼3に吹き込まれるようになって
いる。
The output side of the process computer 36 is connected to the meteor control valve of the gas supply source 37, while the input side of the computer 36 is connected to the gas flow meter 34 of the exhaust duct 30 and the analysis=f
It is connected to 35. That is, based on the detection results of the flowmeter 34 and analyzer 35, the computer 36 detects CO.
The amount of gas generated is calculated, and based on this, a predetermined command signal is issued from the computer 36 to the gas blowing device 40, so that a predetermined amount of gas is blown into the molten steel 3 in the tank.

第3図に示すように、ガス吹き込み装置40は、上昇管
の通路25および下降管の通路27を避けるように、中
心角25″の間隔をもって放射状に4本2組の合計8本
が設けられている。なお、ガス吹き込み口47の数は多
ければ多いほどよいが、吹き込み口47が相互に接近し
すぎるとインジェクションガス同士が干渉しあい、ガス
気泡が大径化するので、これらは適度に離隔させる。こ
の場合に、ガス吹き込みロ47相互のピッチ間隔は、1
40ma+以上とすることが望ましく、200〜500
mgの範囲とすることがより好ましい。
As shown in FIG. 3, the gas blowing device 40 is provided with two sets of four gas blowing devices radially arranged at a center angle of 25'' to avoid the passage 25 of the rising pipe and the passage 27 of the downcomer pipe, for a total of eight gas blowing devices. The larger the number of gas inlet ports 47, the better, but if the inlet ports 47 are too close to each other, the injected gas will interfere with each other and the gas bubbles will become larger in diameter, so they should be separated appropriately. In this case, the pitch interval between the gas blowing holes 47 is 1.
It is desirable to set it to 40ma+ or more, and 200 to 500
It is more preferable to set it in the range of mg.

第4図に示すように、ガス吹き込み装置4oの細管ノズ
ル46は、耐火レンガ12cに埋め込まれ、その先端吹
き込み口47が側壁耐火レンガ12bより内方に約50
mm突出している。一方、細管ノズル46の基端部は、
鉄皮11より突出し、保護カバー44で保護されている
。保護カバー44は、鉄皮11に溶接され、その外側に
ユニオンエルボ43が接続されている。更に、エルボ4
3はカップリング42によりホース41に着脱可能に接
続されている。なお、この場合に、細管ノズル46はス
テンレス鋼でつくられており、その内径が2■、その外
径が31Imである。耐溶損性の観点から、細管ノズル
46の受熱面積は少ないほうが好ましく、細管ノズル4
6は薄肉厚であることが望ましい。
As shown in FIG. 4, the thin tube nozzle 46 of the gas blowing device 4o is embedded in the refractory brick 12c, and its tip inlet 47 is located approximately 50 mm inward from the side wall refractory brick 12b.
It protrudes by mm. On the other hand, the base end of the thin tube nozzle 46 is
It protrudes from the iron skin 11 and is protected by a protective cover 44. The protective cover 44 is welded to the iron skin 11, and a union elbow 43 is connected to the outside thereof. Furthermore, elbow 4
3 is detachably connected to the hose 41 by a coupling 42. In this case, the capillary nozzle 46 is made of stainless steel, and has an inner diameter of 2 mm and an outer diameter of 31 Im. From the viewpoint of erosion resistance, it is preferable that the heat receiving area of the capillary nozzle 46 is small.
6 is desirably thin.

次に、上記脱ガス槽を用いて、炭素な有量が10ppm
以下の極低炭素鋼を溶製する場合について説明する。
Next, using the above degassing tank, the amount of carbon was reduced to 10 ppm.
The case of producing the following ultra-low carbon steel will be explained.

炭素濃度[C]が約200〜300 ppmの転炉溶鋼
を取鍋2に受鋼し、これを脱ガス処理設備に搬送する。
Converter molten steel having a carbon concentration [C] of approximately 200 to 300 ppm is received in a ladle 2, and is transported to a degassing treatment facility.

溶fI4Bの量は約250トンであり、スラグ4で覆わ
れている。取鍋2をリフトし、取鍋山の溶M3に浸漬管
24.26を浸漬し、脱ガス槽10の内部を減圧する。
The amount of molten fI4B is approximately 250 tons and is covered with slag 4. The ladle 2 is lifted, the dip tubes 24 and 26 are immersed in the molten M3 on the ladle pile, and the pressure inside the degassing tank 10 is reduced.

約200トールまで減圧すると、溶鋼3が下部槽の敷レ
ンガ12aの上面に到達する。更に、槽内を減圧すると
、溶鋼3が脱ガス槽10内に取鍋湯面から約1.5mの
高さまで吸い上げられる。ガス吹き込み管15に毎分1
00ONIlのアルゴンガスを供給し、約5分間後に毎
分260ONNにアルゴンガス供給量を増加させる。こ
れにより、溶m3の見掛けの比重が低下し、溶M3がガ
ス気泡と共に通路25内を上昇する。上昇管24の上方
湯面が盛上がり、スプラッシュが発生し、溶鋼中[C]
が[O]と反応してガス化し、このCOガスがυr気さ
れる。溶鋼3は、上昇管24から下降管26に向かつて
流れ、w42および脱ガス槽1oの間を循環する。この
とき、溶鋼環流量は毎分17Nm31i度に達する。
When the pressure is reduced to about 200 torr, the molten steel 3 reaches the upper surface of the paving bricks 12a in the lower tank. Furthermore, when the pressure inside the tank is reduced, the molten steel 3 is sucked up into the degassing tank 10 to a height of about 1.5 m from the ladle surface. 1 per minute to the gas blowing pipe 15
00 ONIl of argon gas is supplied, and after about 5 minutes, the argon gas supply rate is increased to 260 ONN/min. As a result, the apparent specific gravity of the melt M3 decreases, and the melt M3 rises in the passage 25 together with gas bubbles. The upper molten metal surface of the riser pipe 24 rises and splash occurs, causing the molten steel to melt [C]
reacts with [O] and gasifies, and this CO gas is emitted. The molten steel 3 flows from the rising pipe 24 toward the descending pipe 26, and circulates between w42 and the degassing tank 1o. At this time, the molten steel circulation flow rate reaches 17 Nm31i degrees per minute.

上昇管24へのアルゴンガス吹き込みを開始すると、溶
鋼が攪拌されてCOガスを主成分とする多量のガスが発
生する。発生したガスは、排気ダクト30を通過して排
気装置(図示せず)にD1気されるが、このとき流量計
34及び分析計35によりガス流量およびCOガス濃度
が検出される。
When argon gas is started to be blown into the riser pipe 24, the molten steel is stirred and a large amount of gas containing CO gas as a main component is generated. The generated gas passes through the exhaust duct 30 and is exhausted to an exhaust device (not shown). At this time, the gas flow rate and CO gas concentration are detected by the flowmeter 34 and analyzer 35.

これらの検出信号は、コンピュータ36の人力部に送ら
れる。コンピュータ36に検出信号が人力されると、こ
れに基づきcoガス発生量が算出される。処理前期にお
けるCOガス発生量は、毎分3000〜6000 Nf
f程度である。コンピュータ36の演算部では、予め設
定された基準ガス量(所定レベル以上のガス攪拌力を得
るに心変なトータル攪拌ガス量)からCOガス発生量(
排気ガス検出値に基づき算出したガス量)を引いて差を
求め、この差に見合うだけのガス量がガス吹き込み装置
40に供給されるように指令信号がガス供給源37に送
る。これにより、ガス吹き込み装置40の細管ノズル4
6に混合ガスが供給され、ガスが細かな気泡となって吹
き込み口47から勢いよく溶ff43に噴射される。こ
のとき、ガス気泡の到達距離は約400Illalであ
る。
These detection signals are sent to the human power section of computer 36. When the detection signal is input manually to the computer 36, the amount of co gas generated is calculated based on the detection signal. The amount of CO gas generated in the first stage of treatment is 3000 to 6000 Nf per minute.
It is about f. The calculation section of the computer 36 calculates the CO gas generation amount (
A command signal is sent to the gas supply source 37 so that a gas amount corresponding to this difference is supplied to the gas blowing device 40. As a result, the thin tube nozzle 4 of the gas blowing device 40
A mixed gas is supplied to 6, and the gas becomes fine bubbles and is vigorously injected from the blowing port 47 to the melt ff43. At this time, the travel distance of the gas bubbles is about 400 Illal.

インジェクションガスの気泡が核となり、溶鋼中[C]
と[O〕とのガス生成反応が促進され、多量のCOガス
が発生する。これにより、溶鋼3の脱炭が急激に進行す
る。また、インジェクションガスには酸素が含まれてい
るので、吹き込みロ47近傍にマツシュルームが形成さ
れない。すなわち、吹き込みガスが断熱膨張して生じる
吸熱量が、溶鋼の酸化発熱量により補償され、吹き込み
口47への溶鋼の凝固付着が阻止される。
The bubbles of the injection gas become the nucleus, and the molten steel [C]
The gas production reaction between [O] and [O] is promoted, and a large amount of CO gas is generated. As a result, decarburization of the molten steel 3 rapidly progresses. Further, since the injection gas contains oxygen, no pine mushroom is formed near the blowing hole 47. That is, the amount of heat absorbed by the adiabatic expansion of the blown gas is compensated by the amount of heat generated by oxidation of the molten steel, and solidification and adhesion of the molten steel to the blowing port 47 is prevented.

やがて、処理後期(領域■)に至ると、溶鋼中[C]、
[O1が小さくなり、COガス発生量が毎分1ooo〜
200 ON1以下に低下するが、排気ガス検出信号に
基づくコンピュータ演算により攪拌ガスの不足分を求め
、これに基づきガス吹き込み装置40から気泡ガスを吹
き込み、不足分を補う。これにより、処理後期(領域■
)においても処理前期(領域l)と同様のガス攪拌力及
び気液界面積を得ることができ、脱炭反応が促進され、
所定の目標成分の極低炭素鋼が溶製される。
Eventually, in the late stage of processing (area ■), during the molten steel [C],
[O1 becomes smaller and the amount of CO gas generated is 1ooo per minute.
However, the shortage of stirring gas is determined by computer calculation based on the exhaust gas detection signal, and based on this, bubble gas is blown from the gas blowing device 40 to compensate for the shortage. This allows the late processing (area ■
), it is possible to obtain the same gas stirring force and gas-liquid interface area as in the first stage of treatment (region l), and the decarburization reaction is promoted.
Ultra-low carbon steel with a predetermined target composition is produced.

第5図は、横軸にRH脱脱ガス処理量間とり、縦軸に溶
鋼の炭素濃度[C]をとって、本発明と従来技術とを比
較説明するためのグラフ図である。
FIG. 5 is a graph diagram for comparatively explaining the present invention and the prior art, with the horizontal axis representing the amount of RH degassing and the vertical axis representing the carbon concentration [C] of molten steel.

図中、斜線領域はサイドインジェクションしない従来の
脱ガス処理の結果を、白丸はサイドインジェクションを
有する本発明の結果をそれぞれ示す。
In the figure, the shaded area shows the results of conventional degassing treatment without side injection, and the open circles show the results of the present invention with side injection.

第6図は、横軸に溶鋼の炭素濃度[C]をとり、縦軸に
脱炭反応速度定数Kcをとって、本発明と従来技術とを
比較説明するためのグラフ図である。
FIG. 6 is a graph for comparing and explaining the present invention and the prior art, with the horizontal axis representing the carbon concentration [C] of molten steel and the vertical axis representing the decarburization reaction rate constant Kc.

図中、斜線領域はサイドインジェクションしない従来の
脱ガス処理の結果を、白丸はサイドインジェクションを
有する本発明の結果をそれぞれ示す。
In the figure, the shaded area shows the results of conventional degassing treatment without side injection, and the open circles show the results of the present invention with side injection.

両図から明らかなように、本発明の実施例によれば脱ガ
ス処理の全ての期間において脱炭速度を向上させること
ができ、特に処理後期(領域■)の脱炭速度を向上させ
ることができた。このため、従来の方法では達成困難な
レベルであった10pp11以下のレベルまで短時間で
[C]を低減することができ、極低炭素鋼を安定かつ迅
速に溶製することができた。
As is clear from both figures, according to the embodiment of the present invention, the decarburization rate can be improved during the entire period of degassing treatment, and the decarburization rate can be particularly improved in the latter stage of the treatment (region ■). did it. Therefore, it was possible to reduce [C] in a short time to a level of 10 pp11 or less, which was a level that was difficult to achieve with conventional methods, and it was possible to stably and quickly produce ultra-low carbon steel.

なお、上記実施例では、RHHガス法の場合について説
明したが、本発明はこれのみに限られることなく、DH
脱ガス法に本発明を採用してもよい。
In addition, in the above embodiment, the case of RHH gas method was explained, but the present invention is not limited to this only, and the DH gas method is used.
The present invention may be employed in a degassing method.

また、上記実施例では、アルゴンガスに対して酸素ガス
が1〜20容積%の割合の混合ガスをサイドインジェク
ションした場合について説明したが、ガス種はこれのみ
に限られることなく、COガス生成反応を積極的に阻害
するガス種以外のものであれば、いずれの種類のガスを
採用してもよく、例えばアルゴンガス、ヘリウムガス、
酸素ガス、窒素ガス、水素ガス、CO2ガス、COガス
In addition, in the above embodiment, a case was explained in which a mixed gas containing 1 to 20% by volume of oxygen gas to argon gas was side-injected, but the gas type is not limited to this, and CO gas production reaction Any type of gas may be used as long as it does not actively inhibit gases, such as argon gas, helium gas,
Oxygen gas, nitrogen gas, hydrogen gas, CO2 gas, CO gas.

エア、並びにこれらの混合ガスのうちいずれのガスをも
採用することができる。
Either air or a mixture of these gases can be used.

また、上記実施例では、ガス吹き込み用の細管ノズルに
ステンレス鋼管を用いたが、これに限られることなく、
他の種類の金属管やセラミック管を用いることもできる
In addition, in the above embodiment, a stainless steel tube was used for the thin tube nozzle for blowing gas, but the invention is not limited to this.
Other types of metal or ceramic tubes can also be used.

[発明の効果] この発明によれば、COガス発生量の不足分に見合うだ
けの補償ガスを溶鋼に吹き込むので、処理後期において
も処理前期と同様のガス攪拌力及び気液界面積を得るこ
とができ、処理後期のCOガス生成反応を大幅に促進さ
せることができる。
[Effects of the Invention] According to the present invention, since compensation gas is injected into the molten steel in an amount corresponding to the deficiency in the amount of CO gas generated, it is possible to obtain the same gas stirring force and gas-liquid interfacial area in the latter half of the treatment as in the first half of the treatment. This allows the CO gas production reaction in the latter stage of the treatment to be significantly accelerated.

このため、[C]が101)I)−以下のレベルの極低
炭素鋼を安定かつ迅速に溶製することができる。
Therefore, ultra-low carbon steel having a [C] of 101)I)- or less can be stably and rapidly produced.

また更に、槽内で発生するスプラッシュ量も増大化し、
脱炭反応と共に、脱窒素等の他の反応も促進され、極低
炭素鋼のみならず極低窒素鋼を溶製する場合にも有効で
ある。
Furthermore, the amount of splash generated in the tank also increases,
Along with the decarburization reaction, other reactions such as denitrification are promoted, and it is effective not only for producing ultra-low carbon steel but also for producing ultra-low nitrogen steel.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の実施例に係る極低炭素鋼の溶製方法
に使用された脱ガス槽を示す模式図、第2図は脱ガス下
部槽の横断面図、第3図はガス吹き込み装置の部分を示
す拡大縦断面図、第4図乃至第6図はそれぞれ本発明の
作用効果を説明するためのグラフ図、第7図乃至第10
図はそれぞれ従来技術を説明するためのグラフ図である
Fig. 1 is a schematic diagram showing a degassing tank used in the method for producing ultra-low carbon steel according to an embodiment of the present invention, Fig. 2 is a cross-sectional view of the lower degassing tank, and Fig. 3 is a gas blowing tank. FIGS. 4 to 6 are enlarged vertical cross-sectional views showing parts of the device, and FIGS. 7 to 10 are graphs and graphs for explaining the effects of the present invention, respectively.
Each figure is a graph diagram for explaining the prior art.

Claims (1)

【特許請求の範囲】[Claims] 減圧下の溶鋼に気泡ガスを吹き込み、気泡ガスにより溶
鋼中[C]及び[O]の脱炭反応を促進させる場合に、
脱炭反応により生じるCOガス発生量を把握し、COガ
ス発生量と前記気泡ガスの吹き込み量との合計量が、少
なくとも処理前期のCOガス発生量を超えるように、前
記気泡ガスの吹き込み量を制御することを特徴とする極
低炭素鋼の溶製方法。
When blowing bubble gas into molten steel under reduced pressure to promote the decarburization reaction of [C] and [O] in the molten steel,
The amount of CO gas generated by the decarburization reaction is ascertained, and the amount of bubble gas blown is adjusted so that the total amount of CO gas generated and the amount of bubble gas blown exceeds at least the amount of CO gas generated in the first half of the treatment. A method for producing ultra-low carbon steel characterized by control.
JP19270389A 1989-07-27 1989-07-27 Method for refining dead-soft carbon steel Pending JPH0361318A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19270389A JPH0361318A (en) 1989-07-27 1989-07-27 Method for refining dead-soft carbon steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19270389A JPH0361318A (en) 1989-07-27 1989-07-27 Method for refining dead-soft carbon steel

Publications (1)

Publication Number Publication Date
JPH0361318A true JPH0361318A (en) 1991-03-18

Family

ID=16295646

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19270389A Pending JPH0361318A (en) 1989-07-27 1989-07-27 Method for refining dead-soft carbon steel

Country Status (1)

Country Link
JP (1) JPH0361318A (en)

Similar Documents

Publication Publication Date Title
EP0785284B1 (en) Process for vacuum refining of molten steel
KR20180102179A (en) Refining method of molten steel in vacuum degassing facility
JPH0277518A (en) Method for vacuum-degasifying and decarburizing molten steel
EP0328677B1 (en) PROCESS FOR MELT REDUCTION OF Cr STARTING MATERIAL AND MELT REDUCTION FURNACE
JP2004156083A (en) Oxygen-containing gas blower in rh degasser and method for refining low-carbon steel high-manganese steel
EP0355163B1 (en) Process for producing molten stainless steel
CN86103345A (en) The method of control secondary top-blown oxygen in the subsurface pneumatic steel refining
JPH0361318A (en) Method for refining dead-soft carbon steel
GB2057509A (en) Steel making in top-blown converter
JP3777630B2 (en) Method for heat refining of molten steel
JPH05239534A (en) Method for melting non-oriented electric steel sheet
JP2582316B2 (en) Melting method of low carbon steel using vacuum refining furnace
JPH0361315A (en) Method for refining dead-soft carbon steel
JP2808197B2 (en) Vacuum refining of molten steel using large diameter immersion tube
JP2767674B2 (en) Refining method of high purity stainless steel
JPH0361317A (en) Method for refining dead-soft carbon steel
JPH0361319A (en) Method and device for smelting extra-low-carbon steel
JP6813144B1 (en) How to remove molten iron
JPH0987730A (en) Method for heat-raising and refining molten steel
JP3124416B2 (en) Vacuum refining method of molten steel by gas injection
WO2021014918A1 (en) Molten iron dephosphorization method
JPH0665625A (en) Desulphurization method for molten steel
JPH09287016A (en) Method for melting stainless steel
JPH0499119A (en) Method and apparatus for producing dead soft steel
JP4035904B2 (en) Method for producing ultra-low carbon steel with excellent cleanability