JPH0360015A - Laser annealing device - Google Patents

Laser annealing device

Info

Publication number
JPH0360015A
JPH0360015A JP19581189A JP19581189A JPH0360015A JP H0360015 A JPH0360015 A JP H0360015A JP 19581189 A JP19581189 A JP 19581189A JP 19581189 A JP19581189 A JP 19581189A JP H0360015 A JPH0360015 A JP H0360015A
Authority
JP
Japan
Prior art keywords
thin film
laser
film
substrate
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19581189A
Other languages
Japanese (ja)
Inventor
Hiroyuki Kuriyama
博之 栗山
Keiichi Sano
佐野 景一
Hiroshi Iwata
岩田 浩志
Shigeru Noguchi
能口 繁
Shoichiro Nakayama
中山 正一郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP19581189A priority Critical patent/JPH0360015A/en
Publication of JPH0360015A publication Critical patent/JPH0360015A/en
Pending legal-status Critical Current

Links

Landscapes

  • Recrystallisation Techniques (AREA)

Abstract

PURPOSE:To enlarge the grain size of a film and to prevent generation of distortion of the film due to annealing by performing temperature control on the film surface by means of high temperature inert gas during annealing operation. CONSTITUTION:Using one of laser devices 51-53 as an annealing source, a film 10 on the surface of a substrate 2 is irradiated with light. On the other hand, Ar gas, which was subjected to flow and temperature control through a flow regulator 9 and a heater 12, is supplied onto the surface of the film 10 through a gas pipe 8 and an ejection port 81. And the surface temperature of the film 10 is raised slowly and then lowered slowly.

Description

【発明の詳細な説明】 (イ)産業上の利用分野 本発明はシリコン等の半導体薄膜の製造装置に係り、該
薄膜の結晶化技術に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (a) Field of Industrial Application The present invention relates to an apparatus for manufacturing a thin film of a semiconductor such as silicon, and relates to a technique for crystallizing the thin film.

(ロ)従来の技術 例えば特開昭64−28809号公報等には基板表面に
形成された非結晶な部分を多く含むP−3i(多結晶シ
リコン)薄膜にレーザ光を麗射することによってP−3
iを一旦溶融した後、再結晶化することにより、基板表
面に+iL結晶のSiを形成できることが従来から良く
知られている。
(b) Conventional technology For example, Japanese Patent Application Laid-Open No. 64-28809 discloses that P-3i (polycrystalline silicon) thin film formed on the surface of a substrate, which contains many amorphous parts, is irradiated with laser light. -3
It has been well known that +iL crystal Si can be formed on the substrate surface by once melting i and then recrystallizing it.

しかしながら、上記の例で用いられるレーザ装置はその
出力が固定されており、且つ1個の出力パルス幅は数十
nsと短いため、−旦Si薄膜が溶融してから再結晶化
する速度が4〜5m八と桟めて早く、アニール後に得ら
れる薄膜を構成する粒子径は高々1000人にしか過ぎ
ず、このような粒径の小さい薄膜を出発物質として例え
ばTPT(薄膜トランジスタ・・4hin Film 
Transistor)を形成させる場合には、係る粒
径によって電子の移動度μ、が減少するという問題点が
あった。
However, the output of the laser device used in the above example is fixed, and the width of one output pulse is as short as several tens of nanoseconds, so the recrystallization speed after the Si thin film is melted is 4. The particle size of the thin film obtained after annealing is as fast as ~5 m8, and the particle size that makes up the thin film obtained after annealing is only 1000 particles at most.
When forming transistors, there is a problem in that the electron mobility μ decreases depending on the particle size.

(ハ)発明が解決しようとする課題 本発明が解決しようとする課題はレーザアニルによって
溶融−再結晶化される薄膜の粒径を大きくし、且つ欠陥
を少なくするため、形成された薄膜を時間をかけて溶融
及び冷却することにより、大きな粒径の結晶化された薄
膜を得ることである。
(c) Problems to be Solved by the Invention The problems to be solved by the present invention are to increase the grain size of the thin film melted and recrystallized by laser annealing, and to reduce defects in the formed thin film by slowing down the formed thin film. By melting and cooling over a period of time, a crystallized thin film with a large grain size can be obtained.

(ニ)課題を解決するための手段 上記課題を解決するための一つの方法として、成膜室と
、該成膜室内に配置された基板及び該基板を支持する支
持台と、前記基板上に形成された薄膜と、この薄膜をア
ニールするためのに該薄膜表面にレーザ光を照射するレ
ーザ装置と、前記薄膜の表面温度を制御する不活性ガス
を該薄膜の表面に噴出する噴出部と、該不活性ガスの温
度或るいは流量を11119pする制御部と、前記成膜
室で消費された不活性ガスを排出する排気機構部と、よ
りレーザアニール装置を構成する。
(d) Means for solving the problem One method for solving the above problem is to provide a film formation chamber, a substrate placed in the film formation chamber, a support stand for supporting the substrate, and a a formed thin film; a laser device that irradiates the surface of the thin film with laser light to anneal the thin film; and a jetting section that jets an inert gas onto the surface of the thin film to control the surface temperature of the thin film; A laser annealing apparatus is composed of a control section that controls the temperature or flow rate of the inert gas, and an exhaust mechanism section that exhausts the inert gas consumed in the film forming chamber.

また、この方法とは異なるが成膜室と、該成膜室内に配
置された基板及び該ノ5板を支持する支持台と、前記基
板上に形成された薄膜と、この薄膜をアニールするため
のに該薄膜表面にレーザ光をj!代射する複数個のレー
ザ装置とより成り、各レーザ装置を時系列的に駆動せし
め、連続的にエネルギーが増加或るいは減少するパルス
状のレーザ光を前記薄膜表面に照射することを特徴とす
るレーザアニール装置でも良い。
Although different from this method, it also includes a film forming chamber, a substrate placed in the film forming chamber, a support stand for supporting the plate, a thin film formed on the substrate, and a method for annealing this thin film. However, a laser beam is applied to the surface of the thin film! It is characterized by comprising a plurality of laser devices that emit radiation, each of which is driven in time series to irradiate the thin film surface with pulsed laser light whose energy increases or decreases continuously. A laser annealing device may also be used.

(ホ〉作用 レーザアニール時に高温ガスによって基板上の薄膜を高
温度化することによってレーザの出力がないときの再結
晶化されつつある膜表面の温度降下を防止できる。
(e) Effect By raising the temperature of the thin film on the substrate using high-temperature gas during laser annealing, it is possible to prevent the temperature drop of the film surface being recrystallized when there is no laser output.

又、複数個の異なるレーザ出力を連続的に基板上の薄膜
に9・えることによって、上記方法と同様に再結晶化さ
れつつある膜表面の急激な温度降下を防止できる。
Further, by continuously applying a plurality of different laser outputs to the thin film on the substrate, it is possible to prevent a rapid temperature drop on the surface of the film being recrystallized, as in the above method.

(へ)実施例 以下本発明レーザアニール装置を図面の一実施例につい
て詳細に説明する。
(f) Example Hereinafter, the laser annealing apparatus of the present invention will be described in detail with reference to an example of the drawings.

第1図は本装置全体のシステム概略図を示し、(1)は
断熱材で形成された成膜室、(2)は前記成膜室(1)
内に支持台(3)を介して配設されたガラス成るいは金
属製の基板、(4)は前記基板(2)を成膜室(1)か
ら出し入れするための開閉可能な透光性の蓋体である。
Figure 1 shows a system schematic diagram of the entire apparatus, in which (1) is a film forming chamber formed of a heat insulating material, and (2) is the film forming chamber (1).
A glass or metal substrate is disposed inside via a support stand (3), and (4) is a translucent structure that can be opened and closed to allow the substrate (2) to be taken in and out of the film forming chamber (1). This is the lid body.

前記支持台(3)は成膜室(1)内で回転i′r丁能に
すると尚良い。又前記基板(2)上には多くの非結晶な
部分を含んだP−5i薄膜(10)が形成されている。
It is preferable that the support table (3) is rotated within the film forming chamber (1). Further, a P-5i thin film (10) containing many amorphous portions is formed on the substrate (2).

(51)−(53)は前記蓋体(4)を透過して前記ノ
&板(2)上に照q1する複数個の出力の異なる(エネ
ルギー密度が夫々240,200. +80mJ)エキ
シマ(XeCI )レーザ装置、(61)−(63)は
前記各レーザ装置(5])−(53)から出力されるレ
ーザ光を凹面鏡(7)に向かって反9(する反*t j
aであり、各レーザ装置(51)〜(53)からのレー
ザ光はiii記反対反射鏡])−(63)によって反射
された後、凹面鏡(7)によって前記成膜室(+)内の
ノ、(板(2)表面に1r+1かう様に構成されている
(51)-(53) are excimers (XeCI) with different outputs (energy densities of 240 and 200.+80 mJ, respectively) that pass through the lid (4) and illuminate the plate (2). ) laser devices, (61)-(63) direct the laser beams output from the respective laser devices (5])-(53) toward the concave mirror (7).
a, and the laser beams from each laser device (51) to (53) are reflected by the opposite reflecting mirror (iii)-(63), and then reflected by the concave mirror (7) into the film forming chamber (+). (1r+1) on the surface of the plate (2).

第2図に第1図を右側面方向から見たときのレーザ装置
72(51)−(53)、反射鏡(61)−(63)、
凹面鏡(7)の空間的配置を示す。このように配置する
ことにより、とのレーザ光も互いに交差することなく、
江つ凹面鏡(7)によって遮られることなく確実に前記
薄膜(10)表面に到達する。
FIG. 2 shows laser devices 72 (51)-(53), reflecting mirrors (61)-(63), when FIG. 1 is viewed from the right side.
The spatial arrangement of the concave mirror (7) is shown. By arranging them in this way, the laser beams of the two do not cross each other.
It reliably reaches the surface of the thin film (10) without being obstructed by the concave mirror (7).

(8)は一端部に噴出部(81)を有し該噴出部(81
)を前記成膜室(1)内の基板(2)表面に形成された
Si薄膜(10)の表面に臨ませて戊るガス管である。
(8) has a spouting part (81) at one end.
) is a gas pipe which is opened so as to face the surface of the Si thin film (10) formed on the surface of the substrate (2) in the film forming chamber (1).

一方、前記ガス管(8〉の他端部は流量調節器(9)を
介して不活性ガスとしてのArガスが導入されるように
なっている。
On the other hand, Ar gas as an inert gas is introduced into the other end of the gas pipe (8>) via a flow rate regulator (9).

又、前記ガス管(8)の中間部は該ガスの温度制御部(
]1〉内に位置し、該制御部(]l)内でヒータ(12
)と熱交換して、管(8)内を流れるガスの温度をh 
’t1.させると共に、ガス温度モニタ(82)によっ
て始終その温度を監視され、最適温度のArガスを前記
膜(10)表面に供給することができるように構成され
ている。
Further, the middle part of the gas pipe (8) is connected to a temperature control part (
]1>, and the heater (12
) to increase the temperature of the gas flowing in the pipe (8) to h
't1. At the same time, the temperature is constantly monitored by a gas temperature monitor (82), so that Ar gas at an optimum temperature can be supplied to the surface of the film (10).

(13)は前記成膜室(1)に後続された排気管であリ
、前記ガス管(8)の噴出部(81)より噴出された高
温のArガスが成膜室(1)でその熱を悄賀されて低温
になり、該排気管(13)を介して外1tに放出される
(13) is an exhaust pipe that follows the film forming chamber (1), and the high temperature Ar gas ejected from the spouting part (81) of the gas pipe (8) flows into the film forming chamber (1). The heat is absorbed, the temperature becomes low, and the temperature is discharged to the outside through the exhaust pipe (13).

以上のH+&を有する装置において次にその動作を説明
する。
Next, the operation of the device having the above H+& will be explained.

並上立1丑 前記レーザ装置(51)−(53)内の一つ(51)を
アニール源として用い、J%板(2)表面の薄膜(]0
)に照Q−tする。このときレーザ装;72(51)の
出力は第3図に示されるように20nsの幅を有するパ
ルス状のものである。一方、前記′R膜(10)表面に
は流量調整線(9)及びヒータ(12)によって第4図
に示す流量と第5図に示す温度のII制御を受けたAr
ガスがガス管(8)の噴出部(81)を介して供給され
る。薄膜(1(1)の表面温度は前記ガスの供給がない
とき第6図のIi!I線で示されるようにレーザ光の出
力があるときのみ高温になるが、出力がなくなると急激
に降ドして、高温に保持されないという↑、Y性になる
Using one (51) of the laser devices (51) to (53) as an annealing source, the thin film (]0 on the surface of the J% plate (2) is
). At this time, the output of the laser device 72 (51) is in the form of a pulse having a width of 20 ns, as shown in FIG. On the other hand, on the surface of the 'R film (10), Ar is subjected to II control of the flow rate shown in FIG. 4 and the temperature shown in FIG.
Gas is supplied via the spout (81) of the gas pipe (8). When the gas is not supplied, the surface temperature of the thin film (1(1) becomes high only when there is laser light output, as shown by line Ii!I in Figure 6, but when the output is no longer present, the surface temperature drops rapidly. ↑, which means that it cannot be held at high temperatures.

しかしながらアニール中、高温のArガスを薄膜(10
)表面に供給することによって第6図の実線で示される
ように該薄膜(10)の表面温度はゆっくりと−1−5
1,した後、ゆっくりと降下する特性となる。
However, during annealing, a thin film (10
), the surface temperature of the thin film (10) slowly increases to -1-5 as shown by the solid line in FIG.
1, it has a characteristic of slowly descending.

特にレーザ出力のある間は薄膜(10)の表面温度を6
00℃以上に保つことができ急激な温度降下によって膜
の粒径が小さいまま再結晶化することを阻ILできるの
で、アニール後に得られる薄膜の粒径は大きなものとな
る。更にアニール初期のゆっくりとした#IIQ(to
)表面温度の上昇は鎮護(lO)に歪みが発生すること
を防止する。
Especially when the laser output is on, the surface temperature of the thin film (10) is kept at 6.
Since the temperature can be maintained at 00° C. or higher and recrystallization of the film with a small grain size due to a rapid temperature drop can be prevented, the grain size of the thin film obtained after annealing becomes large. Furthermore, the slow #IIQ (to
) An increase in surface temperature prevents distortion from occurring in the insulation (lO).

罷生立1旦 前記高温のArガスは使用しない代わりに、3つのレー
ザ装置(51)〜(53)を全て使用する。即ち第7図
に示すように従来のレーザの1出力パルス(第8図参照
)に相当するエネルギーをn=3発の段階的に出力の異
なるパルスに分割し、連続的に薄膜(10)表面に照射
する。尚、上記分割パルスはその数が多いほど良いが、
n=5〜90発の範囲でfr:意に選択できる。
Once the crimp is formed, the high-temperature Ar gas is not used, but all three laser devices (51) to (53) are used. That is, as shown in Fig. 7, the energy equivalent to one output pulse of a conventional laser (see Fig. 8) is divided into n = 3 pulses with stepwise different outputs, and the energy is continuously applied to the thin film (10) surface. irradiate. It should be noted that the larger the number of divided pulses is, the better.
fr: can be arbitrarily selected within the range of n=5 to 90 shots.

従来、レーザ出力のパルス幅は数十nII+と短いため
溶融して再結晶(Melt&Regrowth)する時
間が4〜5m/sと速く、アニール後の膜の粒径は高々
+000λ程度にしかならないが、上記の如くエネルギ
ーの異なるレーザ光を連続的に薄膜(10)表面に照射
することにより、前記溶融して再結晶する時間を長くす
ることができ、アニール後の薄膜(10)の粒径が最大
2000人のものを得ることが可能となる。
Conventionally, the pulse width of the laser output is as short as several tens of nII+, so the time for melting and recrystallization (Melt&Regrowth) is as fast as 4 to 5 m/s, and the grain size of the film after annealing is only about +000λ. By continuously irradiating the surface of the thin film (10) with laser beams with different energies as shown in FIG. It becomes possible to obtain things that belong to other people.

表工旦太丑 前記第1の方法と第2の方法とを両方使用する。即ち、
j’+(f膜(10)の表面には第1の方法で示したよ
うに高温のArガスをOI−給し、■1つ3本のレーザ
公:?2 (51)−(53)を連続的に薄膜(10)
の表面に照q1する。
Both the first method and the second method are used. That is,
As shown in the first method, high-temperature Ar gas is supplied to the surface of the j'+(f film (10)), and ■ one three laser beams: ?2 (51)-(53) Continuously thin film (10)
Shine on the surface of q1.

こうすることにより、薄膜(10〉の表面温度の制pp
がより本「1細かくでき、Itつレーザ先出力時の1!
’I +’+己表面表面温度化をより少なく抑えること
ができる。
By doing this, the surface temperature of the thin film (10) can be controlled pp
It is more detailed than this book, and it is possible to output one laser tip at a time!
'I +' + self-surface temperature increase can be suppressed to a lower level.

(ト)5を明の効果 +、発明は以1;の611<、高温の不活汁ガスによる
薄膜表面の温度制御を行うことにより、レーザアニール
中の薄膜の表面温度の急降下を防止すると共に、アニー
ル初期の温度上外を緩やがなものにすることにより、ア
ニール後の薄膜の粒径を大型化し、Rつ、アニール時に
発生する薄膜の歪みの発生を防ぐことができる。
(G) 5 is a bright effect +, the invention is as follows in 1; 611<, by controlling the temperature of the thin film surface with a high temperature inert liquid gas, a sudden drop in the surface temperature of the thin film during laser annealing is prevented, and By making the temperature range gentle during the initial stage of annealing, it is possible to increase the grain size of the thin film after annealing and prevent the distortion of the thin film that occurs during annealing.

こうして形成された大粒の薄膜からは、結晶性にfIi
れた大面積の薄1漠を形成することが可能となる。
The large-grain thin film thus formed has crystallinity fIi
It becomes possible to form a thin desert with a large area.

又、薄膜の表面温度の急降下を防ぐには出力の異なる複
数個のレーザ装置を用いて、連続的に薄膜表面に照射す
ることにより、上記Arガスの方法と同様にアニール初
期の温度上昇を緩やがなものにすることができて、アニ
ール後の薄膜の粒径を大型化でき、且つ、アニール時に
発生する薄膜の歪みの発生を防ぐことができる。
In addition, in order to prevent a sudden drop in the surface temperature of the thin film, by using multiple laser devices with different outputs and continuously irradiating the thin film surface, the temperature rise at the initial stage of annealing can be slowed down, similar to the Ar gas method described above. The grain size of the thin film after annealing can be increased, and the distortion of the thin film that occurs during annealing can be prevented.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明レーザアニール装置のシステム概略図、
第2図は第1図のレーザ装置と反射鏡及び四面鏡との配
:7−:を示す図、第3図は第1図の−個のレーザ装置
の出力波形を示す図、第4図は不活性ガスの流量特性図
、第5図は不活性ガスの温度特性図、第6図は薄膜表面
温度特性図、第7図は複数個のレーザ装置による出力特
性図、第8図は第7図に相当する従来のレーザ装設の出
力特性図である。 (1)・・・成膜室、 (2)・・・基板、 (3)・・・支持台、 (51)−(53)・・・レーザ装設、(8)・・・ガ
ス管、 (11)・・・M押部、 (13)・・・排気管 (81)・・・噴出部。 (4J#只機構部)
FIG. 1 is a system schematic diagram of the laser annealing apparatus of the present invention;
Fig. 2 is a diagram showing the arrangement of the laser device in Fig. 1, a reflecting mirror, and a four-sided mirror: 7-:, Fig. 3 is a diagram showing the output waveform of the − laser device in Fig. 1, and Fig. 4 is a flow rate characteristic diagram of an inert gas, FIG. 5 is a temperature characteristic diagram of an inert gas, FIG. 6 is a thin film surface temperature characteristic diagram, FIG. 7 is an output characteristic diagram of multiple laser devices, and FIG. 8 is a diagram of an output characteristic diagram of multiple laser devices. FIG. 7 is an output characteristic diagram of a conventional laser installation corresponding to FIG. 7; (1)...Film forming chamber, (2)...Substrate, (3)...Support stand, (51)-(53)...Laser equipment, (8)...Gas pipe, (11)...M push part, (13)...Exhaust pipe (81)...Ejection part. (4J #Mechanical Department)

Claims (2)

【特許請求の範囲】[Claims] (1)成膜室と、該成膜室内に配置された基板及び該基
板を支持する支持台と、前記基板上に形成された薄膜と
、この薄膜をアニールするために該薄膜表面にレーザ光
を照射するレーザ装置と、前記薄膜の表面温度を制御す
る不活性ガスを該薄膜の表面に噴出する噴出部と、該不
活性ガスの温度或るいは流量を制御する制御部と、前記
成膜室で消費された不活性ガスを排出する排気機構部と
、よりなるレーザアニール装置。
(1) A film forming chamber, a substrate placed in the film forming chamber, a support stand for supporting the substrate, a thin film formed on the substrate, and a laser beam applied to the surface of the thin film to anneal the thin film. a laser device that irradiates the thin film; a jetting unit that jets an inert gas onto the surface of the thin film to control the surface temperature of the thin film; a control unit that controls the temperature or flow rate of the inert gas; Laser annealing equipment consists of an exhaust mechanism that exhausts inert gas consumed in the chamber, and a laser annealing device.
(2)成膜室と、該成膜室内に配置された基板及び該基
板を支持する支持台と、前記基板上に形成された薄膜と
、この薄膜をアニールするために該薄膜表面にレーザ光
を照射する複数個のレーザ装置とより成り、各レーザ装
置を時系列的に駆動せしめ、連続的にエネルギーが増加
或るいは減少するパルス状のレーザ光を前記薄膜表面に
照射することを特徴とするレーザアニール装置。
(2) A film forming chamber, a substrate placed in the film forming chamber, a support stand for supporting the substrate, a thin film formed on the substrate, and a laser beam applied to the surface of the thin film to anneal the thin film. The method is characterized by comprising a plurality of laser devices that irradiate the thin film surface, each laser device being driven in time series to irradiate the thin film surface with pulsed laser light whose energy increases or decreases continuously. Laser annealing equipment.
JP19581189A 1989-07-27 1989-07-27 Laser annealing device Pending JPH0360015A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19581189A JPH0360015A (en) 1989-07-27 1989-07-27 Laser annealing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19581189A JPH0360015A (en) 1989-07-27 1989-07-27 Laser annealing device

Publications (1)

Publication Number Publication Date
JPH0360015A true JPH0360015A (en) 1991-03-15

Family

ID=16347381

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19581189A Pending JPH0360015A (en) 1989-07-27 1989-07-27 Laser annealing device

Country Status (1)

Country Link
JP (1) JPH0360015A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05157226A (en) * 1991-12-03 1993-06-22 Rinnai Corp Combustion device
JPH06123424A (en) * 1991-09-30 1994-05-06 Noritz Corp Hot-water supplying equipment
JPH06288535A (en) * 1992-01-31 1994-10-11 Noritz Corp Secondary pressure regulating method in hot water supplier
WO2001027707A1 (en) * 1999-10-08 2001-04-19 Teradyne, Inc. Direct impingement temperature control structure
US7262431B2 (en) 1998-07-13 2007-08-28 Sharp Kabushiki Kaisha Semiconductor thin film forming method and semiconductor device
WO2010001727A1 (en) * 2008-06-30 2010-01-07 株式会社Ihi Laser annealing device
JP2012009603A (en) * 2010-06-24 2012-01-12 Fuji Electric Co Ltd Method for manufacturing semiconductor device
EP2703109A1 (en) * 2012-09-04 2014-03-05 Linde Aktiengesellschaft Methods of and device for providing a heated or cooled protective gas for welding, especially laser welding

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5629323A (en) * 1979-08-17 1981-03-24 Nec Corp Two-wavelength laser surface treating apparatus
JPS57104217A (en) * 1980-12-22 1982-06-29 Toshiba Corp Surface heat treatment
JPS57183023A (en) * 1981-05-02 1982-11-11 Fujitsu Ltd Laser annealing
JPS57183024A (en) * 1981-05-02 1982-11-11 Fujitsu Ltd Laser annealing
JPS6079717A (en) * 1983-10-06 1985-05-07 Nec Corp Laser processing device
JPS6197816A (en) * 1984-10-18 1986-05-16 Ishikawajima Harima Heavy Ind Co Ltd Method for irradiation with pulse laser beam
JPS6428809A (en) * 1987-07-23 1989-01-31 Fujitsu Ltd Laser annealing device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5629323A (en) * 1979-08-17 1981-03-24 Nec Corp Two-wavelength laser surface treating apparatus
JPS57104217A (en) * 1980-12-22 1982-06-29 Toshiba Corp Surface heat treatment
JPS57183023A (en) * 1981-05-02 1982-11-11 Fujitsu Ltd Laser annealing
JPS57183024A (en) * 1981-05-02 1982-11-11 Fujitsu Ltd Laser annealing
JPS6079717A (en) * 1983-10-06 1985-05-07 Nec Corp Laser processing device
JPS6197816A (en) * 1984-10-18 1986-05-16 Ishikawajima Harima Heavy Ind Co Ltd Method for irradiation with pulse laser beam
JPS6428809A (en) * 1987-07-23 1989-01-31 Fujitsu Ltd Laser annealing device

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06123424A (en) * 1991-09-30 1994-05-06 Noritz Corp Hot-water supplying equipment
JPH05157226A (en) * 1991-12-03 1993-06-22 Rinnai Corp Combustion device
JPH06288535A (en) * 1992-01-31 1994-10-11 Noritz Corp Secondary pressure regulating method in hot water supplier
US7262431B2 (en) 1998-07-13 2007-08-28 Sharp Kabushiki Kaisha Semiconductor thin film forming method and semiconductor device
WO2001027707A1 (en) * 1999-10-08 2001-04-19 Teradyne, Inc. Direct impingement temperature control structure
WO2010001727A1 (en) * 2008-06-30 2010-01-07 株式会社Ihi Laser annealing device
JP2010010526A (en) * 2008-06-30 2010-01-14 Ihi Corp Laser annealing device
US8575515B2 (en) 2008-06-30 2013-11-05 Ihi Corporation Laser annealing apparatus
JP2012009603A (en) * 2010-06-24 2012-01-12 Fuji Electric Co Ltd Method for manufacturing semiconductor device
EP2703109A1 (en) * 2012-09-04 2014-03-05 Linde Aktiengesellschaft Methods of and device for providing a heated or cooled protective gas for welding, especially laser welding

Similar Documents

Publication Publication Date Title
US6169014B1 (en) Laser crystallization of thin films
US7364952B2 (en) Systems and methods for processing thin films
TW464960B (en) Method of forming a semiconductor thin film
US6014944A (en) Apparatus for improving crystalline thin films with a contoured beam pulsed laser
US6908835B2 (en) Method and system for providing a single-scan, continuous motion sequential lateral solidification
US4234356A (en) Dual wavelength optical annealing of materials
US20020151115A1 (en) Process for production of thin film, semiconductor thin film, semiconductor device, process for production of semiconductor thin film, and apparatus for production of semiconductor thin film
US7608144B2 (en) Pulse sequencing lateral growth method
US20070032096A1 (en) System and process for providing multiple beam sequential lateral solidification
KR20040048372A (en) Process and mask projection system for laser crystallization processing of semiconductor film regions on a substrate
JPH0360015A (en) Laser annealing device
JP2002217125A (en) Surface treatment apparatus and its method
JP2004153232A (en) Method for manufacturing semiconductor element and semiconductor element manufactured by the method
JP2002158173A (en) Method for manufacturing thin film, semiconductor thin film, semiconductor device, method for manufacturing semiconductor thin film, and system for manufacturing semiconductor thin film
Wood et al. Laser processing of semiconductors: An overview
JP2001185504A (en) Laser anneal method and device
JP2000021776A (en) Method of forming semiconductor thin film, pulse laser irradiator and semiconductor device
JP4354015B2 (en) Manufacturing method of semiconductor device
JP2003347208A (en) Crystallizing method for amorphous material
KR100496251B1 (en) Method of Solidification for Amorphous Silicon layer using a Sequential Lateral Solidification Crystallization Technology
JPH0562924A (en) Laser annealing device
JP3892150B2 (en) Method and apparatus for forming polycrystalline thin film
JPH0379861B2 (en)
Brown Laser processing of semiconductors
US20020072252A1 (en) Process for production of thin film semiconductor thin film, semiconductor device, process for production of semiconductor thin film, and apparatus for production of semiconductor thin film