JP4354015B2 - Manufacturing method of semiconductor device - Google Patents

Manufacturing method of semiconductor device Download PDF

Info

Publication number
JP4354015B2
JP4354015B2 JP31788395A JP31788395A JP4354015B2 JP 4354015 B2 JP4354015 B2 JP 4354015B2 JP 31788395 A JP31788395 A JP 31788395A JP 31788395 A JP31788395 A JP 31788395A JP 4354015 B2 JP4354015 B2 JP 4354015B2
Authority
JP
Japan
Prior art keywords
substrate
light
laser
lamp
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP31788395A
Other languages
Japanese (ja)
Other versions
JPH09162121A (en
Inventor
邦紀 北原
明人 原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP31788395A priority Critical patent/JP4354015B2/en
Publication of JPH09162121A publication Critical patent/JPH09162121A/en
Application granted granted Critical
Publication of JP4354015B2 publication Critical patent/JP4354015B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Recrystallisation Techniques (AREA)
  • Thin Film Transistor (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は半導体装置の製造方法に係り, 特に多結晶薄膜トランジスタ(TFT) の素子形成層となる半導体薄膜の結晶化方法に関する。
【0002】
TFT は液晶ディスプレイ(LCD) パネルに組み込まれる駆動回路や表示部マトリクス回路に使用されている。TFT はキャリアの移動度が高いこと,オフ状態でリーク電流が小さいことが要求されるが,多結晶シリコン(p-Si)の結晶内, あるいは結晶粒界における欠陥を十分に低減することが困難であって, 永らく実用化が阻害されていた。
【0003】
【従来の技術】
液晶ディスプレイ用のTFT は透明基板上に形成され,その結晶材料としては従来はアモルファスシリコン(a-Si)が用いられていたが, これを多結晶シリコン (p-Si)に置き換えることにより,キャリア移動度を数桁向上させることかでき,その結果, TFT の動作速度が上がり,素子サイズを縮小することができる。
【0004】
透明基板上のp-Si膜は, a-Si膜を高温で加熱し, 結晶化して作製される場合が多い。従来は透明基板には融点の高い高価な石英板が用いられていたが,今後は安価なガラス板が用いられるようになってきた。ところが,ガラス基板は 600℃以上に加熱すると大きく歪むため,結晶化温度の低下が求められる。
【0005】
基板温度を 600℃以下に保ったまま結晶化を行うための従来技術の例を図6を用いて説明する。
図6(a) 〜(d) は結晶化方法の従来例の説明図である。
【0006】
一般に図6(a) に示されるような,パルスレーザ照射が最も有効な方法である。これによれば,ガラス基板 1上のSi膜 3だけをレーザ光 4により選択的に加熱できる。ここで,ガラス基板 1とSi膜 3との間には不純物拡散と熱伝導を抑制するため二酸化シリコン(SiO2)膜 2を挟んでいる。
【0007】
レーザ光 4は,光吸収効率がSi膜 3に対しては高く基板に対しては低い紫外線領域の光で,パルス出力の大きいエキシマレーザが適している。エキシマレーザは半値幅が10〜20nsの短いパルス光であり,基板 1に熱が伝わる前に消灯するため, 基板温度は上がりにくい。レーザ点灯時にはSi膜 3の一部または全部が溶融し,消灯後の冷却時に結晶化する。
【0008】
この際, 冷却速度が大きすぎると, Si膜 3はアモルファス化したり,微結晶となり,結晶化しても多くの転移や積層欠陥等が発生する。従って, 冷却速度を制御することが必要となる。原理的には冷却速度小さい方が欠陥の発生は起こりにくく,また, 多結晶の粒径を大きくしやすい。
【0009】
冷却速度を下げるために従来用いられている方法として,図6(b) のようにヒータ 6により基板温度を上げているものがある H.Kuriyama et al.,Jan.J.Appl.Phys.Vol.30 (1991) 3700. 。基板温度を 400℃に上げると, Si膜 3の冷却速度は室温のときの約 1/3になるという計算例があるが,これ以上冷却速度を落とすことは困難である。
【0010】
他の方法として, ダブルパルス・デュアルビームエキシマレーザ法がある(石原 他,95年春季応用物理学会29p-Q-4)。この方法は図6(c) に示されるように,強度の異なる2つのレーザビームを時間をずらせて照射する。一方のレーザ 4を消灯後,Si膜 3の温度が下がるタイミングを見て,これより弱いレーザパルス 7を照射すると, 冷却速度を実効的に落とすことができる。この方法では,2つのレーザ装置が要ること,レーザの点灯,消灯のタイミング合わせが困難なこと,また冷却速度を下げるのにも限度があること等の問題がある。
【0011】
また,図6(d) のように, レーザ照射と同時にランプ光 8で加熱する方法もある (石丸 他, 特開平06-29212) 。この方法は結晶核形成をレーザ照射により, 核成長を行うためのアニールをランプ光 8による加熱でそれぞれ行う。ヒータ加熱に比べて, この場合は遮光マスクを使用して選択的に加熱できる利点がある。しかし,ランプ照射は連続的に行っており,冷却速度を小さくするための方法, あるいは欠陥の発生を低減できる方法は提示されておらず, 局所加熱が可能であるという利点を除けば, その効果はヒータ加熱と同様である。
【0012】
また,TFT 用のp-Siをランプアニールだけで結晶化した例も報告されている (I.Yudasaka and H.Ohshima, Extended Abstracts of the 1993 Int. Conf. on Solid State Dev.and Mater,1993,pp.1005.)。この方法は,50秒間で 600〜700 ℃まで温度を上げ, その後パワーを切って冷却している。しかし,ランプ加熱で基板に熱歪みを与えることなく結晶化温度まで上げることは至難である。これは,ランプ加熱はレーザ加熱に比し照射時間が3桁以上長く,Si層から基板に伝わる熱量が大きくなるからである。
【0013】
【発明が解決しようとする課題】
本発明は,装置や工程を複雑化することなく,レーザ消灯後の結晶の冷却速度を大きく低下させて結晶粒径を大きくし,且つ欠陥の発生を抑制することを目的とする。
【0014】
【課題を解決するための手段】
上記課題の解決は,基板上に形成されたアモルファス半導体層からなる堆積層にエキシマレーザ光からなるパルスレーザ光を照射する工程と,前記基板よりも前記堆積層の方が光の吸収係数が大きいランプ光を前記レーザ光の照射に同期させてスリットを通して前記堆積層の少なくとも前記レーザ光の照射位置に照射し且つ前記ランプ光の強度を前記レーザ光の点灯前より漸増させ,前記レーザ光の点灯の直前、同時、又は直後から、漸増の時より緩い傾斜で漸減させる工程とを有し,前記堆積層を前記基板より高い温度で加熱して前記堆積層を結晶化することを特徴とする半導体装置の製造方法により達成される。また,前記ランプ光を,前記基板と同じ材質の板を1枚以上重ねたフィルタを通して前記堆積層に照射することを特徴とする。さらに,前記基板は可視光に対して透明基板であり,前記ランプ光はアークランプ光またはハロゲンランプ光であることを特徴とする。
【0015】
本発明では,パルスレーザによる結晶膜の加熱と合わせて,ランプ光の強度の増加と減少を所定時間内に行いながら加熱する。
図1(a) 〜(c) は本発明の原理説明図である。
【0016】
ランプの加熱は図1に示されるように(a) はレーザ照射, (b) はレーザ照射と同時, (c) はレーザ照射前の3通りある。(a) レーザ照射後に発生した欠陥の低減,(b) はレーザ照射後の冷却速度の低下,(c) はa-Siの微結晶化に対してそれぞれ効果がある。
【0017】
図1(b) のレーザ照射と同時にランプ加熱をすることは前記従来例の図6(d)と同じであるが,ランプ光照射に強度変化をつけて冷却速度を制御する点が異なる。図(b) のランプ光強度に示されるように,ランプ光強度はレーザ光点灯前より漸増し,レーザ光照射時に最大となり,レーザ消灯後は漸増の時より緩い傾斜で漸減する。
【0018】
これにより,レーザ照射後の結晶膜の冷却速度を大幅に且つ制御性良く低下させることができるため,結晶のアモルファス化,微結晶化,欠陥の発生等TFT の動作の妨げとなる障害の発生を抑制できる。また,レーザ照射後残留した欠陥の密度を低減させる作用もある。
【0019】
【発明の実施の形態】
実施の形態1:
図2(a) 〜(c) は本発明の実施の形態1の説明図である。
【0020】
図2(a) において, 基板 1は厚さ約 1 mm のガラス板 (Corning 7059) を用い, この上にスパッタ法により厚さ 200nmのSiO2膜 2を堆積し,下地膜とする。次いで,この上にプラズマ気相成長(CVD) 法により, 厚さ80nmのa-Si膜11を堆積する。
【0021】
図2(b) において, a-Si膜11にレーザ光 4を照射して結晶化する。レーザ光源としてKrF エキシマレーザを用いる。これは発振波長 248nm, 半値幅約20nsのパルス光源である。レーザビームは光学系を用いて矩形に成形して照射する。レーザの照射条件は, 例えば, エネルギー 350 mJ/cm2 で1箇所あたり10パルスずつ照射する。このレーザ照射によりa-Si膜11はp-Si膜12に変化する。
【0022】
図2(c) において, 結晶化後の基板をランプアニール装置に移す。この装置は図3に示されにように複数の線状のハロゲンランプ21を等間隔に並ぺ, 各ランプの背面には反射ミラー22を配置している。装置内には窒素ガスを流し,照射はSi層12の側から行う。ガラス基板 1上のSi層12の温度を直接測定するのは困難であるので,基板の横に置いたSiチップに熱電対を埋め込んだもの23でモニタする。
【0023】
ランプ21のピーク波長は, 通電する電流の大きさにより変化するが 1μm近辺であり,幅の広いスペクトルを持つ。Si層12は波長が 1μm以下の光を吸収して加熱される。ガラス基板 1は 2μm以下の波長領域では加熱されにくいが,それ以上の波長領域の光を吸収して温度が上がる。これを防ぐために, 光源22と基板 1との間に, 光学フィルタ24を挿入する。
【0024】
一般に 2μm以上の光は真空蒸着で作製した干渉フィルタでカットできるが,大面積の干渉フィルタの作製は困難であるので,ここでは基板と同材質のガラス板を用い, 表面には反射防止用のコーティングを施す。ガラスフィルタの厚みを基板と同じにすると, フィルタ自体が熱で歪んだり, 破壊する恐れがある。そこで,厚みを基板より小さく, 例えば0.3mm とすると熱吸収量が減少し, また厚み方向の温度差が小さくなるので, 歪みや破損を防ぐことができる。このようなガラス板を複数枚置いて配置することにより赤外光の吸収量を増す。また,光源から離れるに従ってガラス板の厚みを増すようにすると紫外光カットの効果はさらに増す。これらのガラス板に沿って窒素を流して冷却するようにしてもよい。このように,基板と同材質のガラス板をフィルタとして用いることにより,基板の温度上昇を抑え, 結果としてランプ光を強くできる効果が得られる。
【0025】
ランプの加熱条件は, 装置によって異なるので最適化が必要であるが,例えば以下の手順で行う。
50℃/秒で昇温,900 ℃で10秒保持, 50℃/秒で 600℃まで降温, 20℃/秒で 100℃まで降温。以上の過程を1回または複数回繰り返して,基板を取り出す。温度のシーケンスはランプ加熱電源25の制御装置26のプログラミングによって設定する。ランプの昇温, 降温の最も速い制御は勿論階段状の電流の増減である。
【0026】
本発明の特徴は, ランプ光強度の時間変化を制御することと, これにより結晶膜の温度を基板の歪み点 (ガラス基板の場合は 600℃) 以上に上昇させることにある。図6(d) の従来例でも,温度上昇, 一定温度での保持, 降温と温度制御がなされているが,本発明は温度変化の速さと最高温度の高さがこの従来例と異なる。
【0027】
この実施の形態により,得られた効果を図5に示す。
この図は,得られた結晶被膜の結晶品質をラマン散乱を測定して評価した結晶を示す。横軸の設定温度は熱電対を埋め込んだSiチップにより測定したランプ加熱の温度を示し, 縦軸はラマンピーク波数 図5(a) 及び半値幅 図5(b) を示す。1つの試料当たり5点測定し,実際の結晶膜の温度測定はできないが,光吸収率が小さいことからこれより低い温度であると考えられる。ラマンピーク波数及び半値幅は加熱前はばらつきが大きいが,加熱後は値の小さい方に揃い,結晶の均一性が向上したこと及び欠陥密度が低減したことを示す。
【0028】
実施の形態2:
この例はランプを補助的に照射することにより,レーザ照射後の冷却速度の低減を図るもので,図1(b) に相当する。これに用いた装置の構成を図4に示す。
【0029】
実施の形態1と同様に,ガラス基板 1上にa-Si層 3を堆積し,これにレーザ光4をa-Si層 3側から,ランプ光 5をガラス基板 1側から照射する。レーザ装置はエキシマレーザ光源31とビーム整形用光学系32とミラー33とからなる。ランプ光 5はフィルタ42, レンズ系43, スリット44を通してガラス基板 1側から照射する。a-Si層 3上のランプ光の形状はレーザビームと同じか,これよりひとまわり大きくする。ランプには電源25と強度制御装置26が接続されている。
【0030】
次に, 過程のシーケンスを説明する。
まず, ランプ加熱を行う。 200℃/秒で昇温, 800℃に達したら降温段階に移る。降温に移ると同時にパルスレーザを点灯する。エネルギーは実施の形態1より小さく, 例えば, エネルギー 280 mJ/cm2 とする。ランプの降温速度は 200℃/秒で, 100 ℃まで下げる。温度変化の速いステップがあり,また光学系を挿入している関係上温度モニタが困難であるので制御装置26で電源25の出力をプログラミングしておくとよい。この工程を1回,あるいは数回繰り返す。
【0031】
ここで,ランプ強度の増減とパルスレーザの点灯のタイミングは,電気的に同期をとるようにする。ランプ強度を減少させるタイミングはパルスレーザの点灯直前,点灯と同時,点灯直後の3種類があるが,通常は同時とする。
【0032】
上記の工程を繰り返す際には,ランプ出力とレーザ出力をサイクルごとに最適化する必要がある。特に,最初のサイクルではa-Siからp-Siへ結晶の相が大きく変化するので, 最適条件が以降のサイクルと大きく異なる。このような場合には,レーザビームを小刻みに移動しながら繰り返しパルスを照射するステップスキャンと呼ばれる方法 I.Asai et al.,Jpn.J.Appl.Phys.Vol.32 (1993) 474. で,スキャンを2回以上行うようにし,最初のスキャンと次のスキャンで強度を変えるようにすればよい。
【0033】
実施の形態2では,レーザとランプの配置は,▲1▼別々に基板の両側から,▲2▼両方とも結晶膜側から,▲3▼両方とも基板側からの3通りある。▲1▼は光学設計が容易であり,▲2▼は基板裏面にスペースがない場合あるいは基板をヒータ等で加熱する場合に有効であり,この場合はレーザ装置は成るべく長波長のXeF エキシマレーザ(351nm) を用いる。
【0034】
実施の形態3:
ランプ加熱をパルスレーザの照射前に行うとa-Siの結晶化がおこり,レーザによる結晶化の補助の作用がある。この方法は図1(c) に相当する。
【0035】
ガラス基板上にa-Siを堆積後,実施の形態1と同様なランプ加熱装置に基板を置き,結晶層を加熱する。
加熱は,例えば, 200℃/秒で1000℃まで昇温, 1秒間はそのままにして, 200℃/秒で 100℃まで降温する。この工程を1回あるいは複数回行う。
【0036】
類似の公知の工程では,小さな強度のパルスレーザでa-Siを結晶化後,レーザ光の強度を上げて再結晶化する方法がある。この場合は冷却速度が大きいので,堆積膜の全部または一部がa-Siに戻る可能性がある。これに対して,ランプ加熱は冷却速度が小さいので,このようなことは起こりにくい。
【0037】
実施の形態4:
上記の種々の実施の形態は単独ではなく図1(a) から(c) までの加熱方法を組み合わせることにより,一層効果が増す。
【0038】
例えば,図1(b) により,レーザによる結晶化の冷却速度を制御した後,図1(a) によりランプ照射だけで欠陥の低減が図れる。この場合のランプ照射は,▲1▼図3の装置を用いる,▲2▼図4の装置を用いる,▲3▼図4のランプ装置を図3の装置で置き換える等の方法で行う。
【0039】
結晶化する半導体層はSiの他に, Ge, SiGe等のIV族半導体, II-VI 族, III-V 族半導体等にも適用できる。また,基板はガラスの他に石英, サファイヤ, 表面に絶縁膜を被着したシリコンでもよい。また今後高分子体基板が用いられるようになっても, 加熱状件や赤外カットフィルタを偏光することで本発明は適用可能である。
【0040】
【発明の効果】
本発明によれば,結晶化の制御と装置の安定性維持の困難なパルスレーザ加熱に, 所定時間内に強度を増減させたランプ加熱を加えることにより, 次のような効果がえられる。
【0041】
▲1▼レーザ消灯後の冷却速度を制御して落とすことにより,結晶化された膜のアモルファス化, 微結晶化, 積層欠陥や転移等の欠陥発生を抑制できる。
▲2▼レーザ加熱工程の後に, 基板温度を歪み点以上に上げることなく結晶膜をアニールできるため, 欠陥の低減が図れる。
【0042】
▲3▼レーザ加熱前に, 基板温度を歪み点以上に上げることなく a-Siの予備的な結晶化が行えるため,レーザによる結晶化の効率が向上する。
この結果, キャリアの移動度が高く, リーク電流の小さいTFT が得られる。
【図面の簡単な説明】
【図1】 本発明の原理説明図
【図2】 本発明の実施の形態1の説明図
【図3】 本発明の実施の形態1の装置の説明図
【図4】 本発明の実施の形態2の装置の説明図
【図5】 本発明の効果の説明図
【図6】 従来例の説明図
【符号の説明】
1 ガラス基板
2 SiO2
3 Si膜
4 レーザ光
11 a-Si膜
12 結晶化されたp-Si膜
21 ランプ光源 (大面積照射用)
24 赤外光カットフィルタ(光学フィルタ)
26 ランプ強度の時間変化制御装置
41 ランプ光源 (小面積照射用)
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for manufacturing a semiconductor device, and more particularly, to a method for crystallizing a semiconductor thin film to be an element forming layer of a polycrystalline thin film transistor (TFT).
[0002]
TFTs are used in drive circuits and display matrix circuits built into liquid crystal display (LCD) panels. TFTs require high carrier mobility and low leakage current in the off state, but it is difficult to sufficiently reduce defects in polycrystalline silicon (p-Si) crystals or at grain boundaries. However, practical use has been hindered for a long time.
[0003]
[Prior art]
A TFT for a liquid crystal display is formed on a transparent substrate, and amorphous silicon (a-Si) was conventionally used as the crystal material. By replacing this with polycrystalline silicon (p-Si), carrier Mobility can be improved by several orders of magnitude, resulting in faster TFT operation and reduced device size.
[0004]
A p-Si film on a transparent substrate is often produced by heating an a-Si film at high temperature and crystallizing it. Conventionally, an expensive quartz plate having a high melting point has been used for the transparent substrate. However, an inexpensive glass plate has been used in the future. However, since glass substrates are greatly distorted when heated to 600 ° C or higher, lowering the crystallization temperature is required.
[0005]
An example of the prior art for performing crystallization while maintaining the substrate temperature at 600 ° C. or lower will be described with reference to FIG.
FIGS. 6A to 6D are explanatory views of a conventional example of the crystallization method.
[0006]
In general, pulse laser irradiation as shown in FIG. 6 (a) is the most effective method. According to this, only the Si film 3 on the glass substrate 1 can be selectively heated by the laser beam 4. Here, a silicon dioxide (SiO 2 ) film 2 is sandwiched between the glass substrate 1 and the Si film 3 in order to suppress impurity diffusion and heat conduction.
[0007]
The laser light 4 is light in the ultraviolet region, which has high light absorption efficiency for the Si film 3 and low for the substrate, and an excimer laser having a large pulse output is suitable. The excimer laser is a short pulse light with a half-width of 10 to 20 ns, and is turned off before heat is transmitted to the substrate 1, so that the substrate temperature is difficult to rise. When the laser is turned on, part or all of the Si film 3 is melted and crystallized upon cooling after the light is turned off.
[0008]
At this time, if the cooling rate is too high, the Si film 3 becomes amorphous or becomes microcrystalline, and even if crystallized, many transitions and stacking faults occur. Therefore, it is necessary to control the cooling rate. In principle, defects are less likely to occur when the cooling rate is low, and the grain size of the polycrystal is likely to increase.
[0009]
As a conventional method for reducing the cooling rate, there is a method in which the substrate temperature is raised by the heater 6 as shown in Fig. 6 (b). H. Kuriyama et al., Jan. J. Appl. Phys. Vol. .30 (1991) 3700. There is a calculation example that when the substrate temperature is raised to 400 ° C, the cooling rate of the Si film 3 is about 1/3 that at room temperature, but it is difficult to lower the cooling rate any more.
[0010]
Another method is the double pulse dual beam excimer laser method (Ishihara et al., 1995 Spring Applied Physics Society 29p-Q-4). In this method, as shown in FIG. 6 (c), two laser beams having different intensities are irradiated while being shifted in time. If one of the lasers 4 is extinguished and the temperature of the Si film 3 decreases, and the laser pulse 7 that is weaker than this is irradiated, the cooling rate can be effectively reduced. This method has problems such as requiring two laser devices, difficulty in matching the timing of turning on and off the laser, and limiting the cooling rate.
[0011]
In addition, as shown in FIG. 6 (d), there is a method of heating with lamp light 8 simultaneously with laser irradiation (Ishimaru et al., JP 06-29212). In this method, crystal nucleation is performed by laser irradiation, and annealing for nucleation is performed by heating with lamp light 8. Compared to heater heating, this case has the advantage that it can be selectively heated using a shading mask. However, lamp irradiation is performed continuously, and no method has been proposed to reduce the cooling rate or to reduce the occurrence of defects. Except for the advantage that local heating is possible, its effect can be reduced. Is similar to heater heating.
[0012]
In addition, an example of crystallizing p-Si for TFT by lamp annealing alone has been reported (I. Yudasaka and H. Ohshima, Extended Abstracts of the 1993 Int. Conf. On Solid State Dev. And Mater, 1993, pp.1005.). In this method, the temperature is raised to 600 to 700 ° C in 50 seconds, and then the power is turned off to cool down. However, it is extremely difficult to raise the temperature to the crystallization temperature without giving thermal distortion to the substrate by lamp heating. This is because lamp heating takes 3 orders of magnitude longer than laser heating, and the amount of heat transferred from the Si layer to the substrate increases.
[0013]
[Problems to be solved by the invention]
An object of the present invention is to greatly reduce the cooling rate of a crystal after laser extinction, increase the crystal grain size, and suppress the occurrence of defects without complicating the apparatus and the process.
[0014]
[Means for Solving the Problems]
The solution to the above problem is to irradiate a deposition layer made of an amorphous semiconductor layer formed on a substrate with a pulsed laser beam made of excimer laser light, and the deposition layer has a larger light absorption coefficient than the substrate. The lamp light is irradiated to at least the laser light irradiation position of the deposited layer through the slit in synchronization with the laser light irradiation, and the intensity of the lamp light is gradually increased from before the laser light is turned on. A step of gradually decreasing at a gentler slope than immediately before, simultaneously with, or immediately after, and heating the deposited layer at a temperature higher than that of the substrate to crystallize the deposited layer This is achieved by a device manufacturing method. Further, the lamp light is irradiated to the deposited layer through a filter in which one or more plates made of the same material as the substrate are stacked. Further, the substrate is a substrate transparent to visible light, and the lamp light is arc lamp light or halogen lamp light.
[0015]
In the present invention, heating is performed while the intensity of the lamp light is increased and decreased within a predetermined time, together with the heating of the crystal film by the pulse laser.
1A to 1C are explanatory views of the principle of the present invention.
[0016]
As shown in FIG. 1, there are three types of lamp heating: (a) after laser irradiation, (b) simultaneously with laser irradiation, and (c) before laser irradiation. (a) the reduction of defects that occurred after the laser irradiation, (b) a decrease in the cooling rate after the laser irradiation, there is a respective effect on micro-crystallization of (c) is a-Si.
[0017]
The lamp heating at the same time as the laser irradiation in FIG. 1B is the same as that in FIG. 6D in the conventional example, except that the cooling rate is controlled by changing the intensity of the lamp light irradiation. As shown in the lamp light intensity in Fig. 1 (b), the lamp light intensity gradually increases before the laser light is turned on, reaches a maximum when the laser light is irradiated, and gradually decreases after the laser is turned off with a gentler slope than when the laser light is turned on.
[0018]
As a result, the cooling rate of the crystal film after laser irradiation can be greatly reduced with good controllability, so that problems that hinder the operation of the TFT, such as crystal amorphization, microcrystallization, and generation of defects, are prevented. Can be suppressed. It also has the effect of reducing the density of defects remaining after laser irradiation.
[0019]
DETAILED DESCRIPTION OF THE INVENTION
Embodiment 1:
2 (a) to 2 (c) are explanatory diagrams of Embodiment 1 of the present invention.
[0020]
In Fig. 2 (a), the substrate 1 is a glass plate (Corning 7059) with a thickness of about 1 mm, and a 200 nm thick SiO 2 film 2 is deposited on it by sputtering to form the underlying film. Next, an 80 nm thick a-Si film 11 is deposited thereon by plasma vapor deposition (CVD).
[0021]
In FIG. 2B, the a-Si film 11 is crystallized by irradiating it with laser light 4. A KrF excimer laser is used as the laser light source. This is a pulsed light source with an oscillation wavelength of 248 nm and a half width of about 20 ns. The laser beam is irradiated after being shaped into a rectangle using an optical system. As the laser irradiation condition, for example, irradiation is performed with 10 pulses per spot at an energy of 350 mJ / cm 2 . By this laser irradiation, the a-Si film 11 is changed to the p-Si film 12.
[0022]
In FIG. 2 (c), the crystallized substrate is transferred to a lamp annealing apparatus. In this apparatus, as shown in FIG. 3, a plurality of linear halogen lamps 21 are arranged at equal intervals, and a reflecting mirror 22 is arranged on the back of each lamp. Nitrogen gas is allowed to flow into the apparatus, and irradiation is performed from the Si layer 12 side. Since it is difficult to directly measure the temperature of the Si layer 12 on the glass substrate 1, the temperature is monitored with a thermochip embedded in a Si chip placed beside the substrate23.
[0023]
The peak wavelength of the lamp 21 varies depending on the magnitude of the energized current, but is around 1 μm and has a wide spectrum. The Si layer 12 is heated by absorbing light having a wavelength of 1 μm or less. The glass substrate 1 is difficult to be heated in the wavelength region below 2 μm, but the temperature rises by absorbing light in the wavelength region longer than that. In order to prevent this, an optical filter 24 is inserted between the light source 22 and the substrate 1.
[0024]
In general, light of 2 μm or more can be cut with an interference filter manufactured by vacuum evaporation, but since it is difficult to manufacture a large-area interference filter, a glass plate made of the same material as the substrate is used here, and the surface is used for antireflection. Apply coating. If the thickness of the glass filter is the same as that of the substrate, the filter itself may be distorted or destroyed by heat. Therefore, if the thickness is smaller than the substrate, for example 0.3 mm, the amount of heat absorption decreases, and the temperature difference in the thickness direction decreases, so that distortion and breakage can be prevented. The amount of infrared light absorbed is increased by placing a plurality of such glass plates. Further, if the thickness of the glass plate is increased as the distance from the light source is increased, the effect of ultraviolet light cut is further increased. You may make it cool by flowing nitrogen along these glass plates. Thus, by using a glass plate made of the same material as the substrate as a filter, the temperature rise of the substrate can be suppressed, and as a result, the lamp light can be strengthened.
[0025]
The lamp heating conditions vary depending on the equipment and need to be optimized. For example, the following procedure is used.
Temperature increased at 50 ° C / second, held at 900 ° C for 10 seconds, temperature decreased to 600 ° C at 50 ° C / second, temperature decreased to 100 ° C at 20 ° C / second. The above process is repeated once or a plurality of times to take out the substrate. The temperature sequence is set by programming the controller 26 of the lamp heating power supply 25. Of course, the fastest control of the temperature rise and fall of the lamp is to increase and decrease the stepped current.
[0026]
The feature of the present invention is to control the temporal change of the lamp light intensity and thereby raise the temperature of the crystal film to a temperature higher than the strain point of the substrate (600 ° C. in the case of a glass substrate). In the conventional example of FIG. 6 (d), the temperature rise, the holding at a constant temperature, the temperature drop and the temperature control are performed, but the present invention differs from this conventional example in the speed of temperature change and the maximum temperature.
[0027]
The effect obtained by this embodiment is shown in FIG.
This figure shows a crystal whose crystal quality was evaluated by measuring Raman scattering. The set temperature on the horizontal axis shows the temperature of lamp heating measured by a Si chip embedded with a thermocouple, and the vertical axis shows the Raman peak wavenumber Fig. 5 (a) and the half-value width Fig. 5 (b). Although it is not possible to measure the temperature of the actual crystal film by measuring 5 points per sample, it is considered that the temperature is lower than this because the light absorption rate is small. The Raman peak wavenumber and half-value width vary widely before heating, but after heating, they are aligned with the smaller values, indicating that the crystal uniformity has been improved and the defect density has been reduced.
[0028]
Embodiment 2:
In this example, the lamp is supplementarily irradiated to reduce the cooling rate after laser irradiation, which corresponds to FIG. 1 (b). The configuration of the apparatus used for this is shown in FIG.
[0029]
As in the first embodiment, an a-Si layer 3 is deposited on a glass substrate 1, and laser light 4 is irradiated from the a-Si layer 3 side and lamp light 5 is irradiated from the glass substrate 1 side. The laser device consists of d excimer lasers light source 31 and the beam shaping optical system 32 and the mirror 33. The lamp light 5 is irradiated from the glass substrate 1 side through the filter 42, the lens system 43, and the slit 44. The shape of the lamp light on the a-Si layer 3 is the same as or larger than the laser beam. A power source 25 and an intensity controller 26 are connected to the lamp.
[0030]
Next, the process sequence is explained.
First, the lamp is heated. The temperature rises at 200 ° C / second, and when it reaches 800 ° C, the temperature goes down. At the same time as the temperature drops, the pulse laser is turned on. The energy is smaller than that of the first embodiment, for example, the energy is 280 mJ / cm 2 . The ramp cooling rate is 200 ° C / s, and is lowered to 100 ° C. Since there is a step with a fast temperature change and it is difficult to monitor the temperature because of the optical system inserted, the output of the power supply 25 should be programmed by the control device 26. This process is repeated once or several times.
[0031]
Here, the increase / decrease of the lamp intensity and the timing of lighting of the pulse laser are electrically synchronized. There are three types of timing to decrease the lamp intensity: immediately before the pulse laser is lit, simultaneously with the lighting, and immediately after it is lit.
[0032]
When the above steps are repeated, it is necessary to optimize the lamp output and laser output for each cycle. In particular, in the first cycle, the crystal phase changes significantly from a-Si to p-Si, so the optimum conditions are significantly different from the following cycles. In such a case, I.Asai et al., Jpn.J.Appl.Phys.Vol.32 (1993) 474. A method called step scan in which the laser beam is moved in small increments and repeatedly irradiated with pulses. The scan may be performed twice or more, and the intensity may be changed between the first scan and the next scan.
[0033]
In the second embodiment, the laser and the lamp are arranged in three ways: (1) separately from both sides of the substrate, (2) both from the crystal film side, and (3) both from the substrate side. (1) is easy for optical design, and (2) is effective when there is no space on the backside of the substrate or when the substrate is heated with a heater or the like. In this case, the laser device is preferably a long wavelength XeF excimer laser. (351 nm) is used.
[0034]
Embodiment 3:
If lamp heating is performed before pulsed laser irradiation, crystallization of a-Si occurs, which has the effect of assisting crystallization by the laser. This method corresponds to FIG.
[0035]
After a-Si is deposited on the glass substrate, the substrate is placed in a lamp heating apparatus similar to that in Embodiment 1 to heat the crystal layer.
For heating, for example, the temperature is raised to 1000 ° C at 200 ° C / second, and left for 1 second, and lowered to 100 ° C at 200 ° C / second. This step is performed once or a plurality of times.
[0036]
In a similar known process, there is a method in which a-Si is crystallized with a low intensity pulse laser and then recrystallized by increasing the intensity of the laser beam. In this case, since the cooling rate is high, all or part of the deposited film may return to a-Si. On the other hand, this is unlikely to occur because lamp cooling has a low cooling rate.
[0037]
Embodiment 4:
The various embodiments described above are not alone, but are more effective by combining the heating methods shown in FIGS. 1 (a) to 1 (c).
[0038]
For example, after controlling the cooling rate of crystallization by laser according to FIG. 1 (b), defects can be reduced only by lamp irradiation according to FIG. 1 (a). In this case, the lamp irradiation is carried out by (1) using the apparatus of FIG. 3, (2) using the apparatus of FIG. 4, (3) replacing the lamp apparatus of FIG. 4 with the apparatus of FIG.
[0039]
The semiconductor layer to be crystallized can be applied to group IV semiconductors such as Ge and SiGe, group II-VI and group III-V semiconductors in addition to Si. In addition to glass, the substrate may be quartz, sapphire, or silicon with an insulating film deposited on the surface. Even if a polymer substrate is used in the future, the present invention can be applied by polarizing a heating condition or an infrared cut filter.
[0040]
【The invention's effect】
According to the present invention, the following effects can be obtained by adding lamp heating whose intensity is increased or decreased within a predetermined time to pulse laser heating, which is difficult to control the crystallization and maintain the stability of the apparatus.
[0041]
(1) By controlling the cooling rate after the laser is extinguished, the generation of defects such as amorphization, microcrystallization, stacking faults and transitions of the crystallized film can be suppressed.
(2) Since the crystal film can be annealed without raising the substrate temperature above the strain point after the laser heating process, defects can be reduced.
[0042]
(3) Since the a-Si can be preliminarily crystallized without raising the substrate temperature above the strain point before laser heating, the efficiency of laser crystallization is improved.
As a result, a TFT with high carrier mobility and low leakage current can be obtained.
[Brief description of the drawings]
FIG. 1 is a diagram illustrating the principle of the present invention. FIG. 2 is a diagram illustrating a first embodiment of the present invention. FIG. 3 is a diagram illustrating an apparatus according to a first embodiment of the present invention. FIG. 5 is an explanatory diagram of the effect of the present invention. FIG. 6 is an explanatory diagram of a conventional example.
1 Glass substrate
2 SiO 2 film
3 Si film
4 Laser light
11 a-Si film
12 Crystallized p-Si film
21 Lamp light source (for large area irradiation)
24 Infrared filter (optical filter)
26 Lamp intensity time change control device
41 Lamp light source (for small area irradiation)

Claims (3)

基板上に形成されたアモルファス半導体層からなる堆積層にエキシマレーザ光からなるパルスレーザ光を照射する工程と、前記基板よりも前記堆積層の方が光の吸収係数が大きいランプ光を前記レーザ光照射に同期させてスリットを通して前記堆積層の少なくとも前記レーザ光の照射位置に照射し且つ前記ランプ光の強度を前記レーザ光の点灯前より漸増させ、前記レーザ光の点灯の直前、同時、又は直後から、漸増の時より緩い傾斜で漸減させる工程とを有し、前記堆積層を前記基板より高い温度で加熱して前記堆積層を結晶化することを特徴とする半導体装置の製造方法。Irradiating the pulsed laser light comprising an excimer laser beam to the deposition layer formed of an amorphous semiconductor layer formed on the substrate, lamp light towards said deposited layer is the absorption coefficient of light is larger than the substrate the laser beam The at least the laser light irradiation position of the deposited layer is irradiated through the slit in synchronization with the irradiation of the laser light, and the intensity of the lamp light is gradually increased from before the laser light is turned on, immediately before the laser light is turned on, simultaneously, or immediately after, and a step of gradually decreasing loose than when increasing slope, a method of manufacturing a semiconductor device characterized by crystallizing the deposited layer by heating the deposited layer at a temperature higher than the substrate. 前記ランプ光を、前記基板と同じ材質の板を1枚以上重ねたフィルタを通して前記堆積層に照射することを特徴とする請求項1記載の半導体装置の製造方法。The process according to claim 1, semiconductor device, wherein the illuminating the lamp light, the deposited layer plates of the same material through one or more stacked filter and the substrate. 前記基板は可視光に対して透明基板であり、前ランプ光はアークランプ光またはハロゲンランプ光であることを特徴とする請求項1記載の半導体装置の製造方法。The substrate is a transparent substrate to visible light, before Symbol lamp light method of manufacturing a semiconductor device according to claim 1, characterized in that the arc lamp light or a halogen lamp light.
JP31788395A 1995-12-06 1995-12-06 Manufacturing method of semiconductor device Expired - Fee Related JP4354015B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31788395A JP4354015B2 (en) 1995-12-06 1995-12-06 Manufacturing method of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31788395A JP4354015B2 (en) 1995-12-06 1995-12-06 Manufacturing method of semiconductor device

Publications (2)

Publication Number Publication Date
JPH09162121A JPH09162121A (en) 1997-06-20
JP4354015B2 true JP4354015B2 (en) 2009-10-28

Family

ID=18093123

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31788395A Expired - Fee Related JP4354015B2 (en) 1995-12-06 1995-12-06 Manufacturing method of semiconductor device

Country Status (1)

Country Link
JP (1) JP4354015B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6528397B1 (en) 1997-12-17 2003-03-04 Matsushita Electric Industrial Co., Ltd. Semiconductor thin film, method of producing the same, apparatus for producing the same, semiconductor device and method of producing the same
WO2001059823A1 (en) * 2000-02-08 2001-08-16 Matsushita Electric Industrial Co., Ltd. Lamp anneal device and substrate of display device
US6770518B2 (en) 2001-01-29 2004-08-03 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing a semiconductor device
US6809801B2 (en) * 2002-03-11 2004-10-26 Sharp Laboratories Of America, Inc. 1:1 projection system and method for laser irradiating semiconductor films
JP5742119B2 (en) * 2010-06-15 2015-07-01 株式会社Ihi Magnetic semiconductor substrate, magnetic semiconductor substrate manufacturing method, and magnetic semiconductor substrate manufacturing apparatus
JP2014239182A (en) * 2013-06-10 2014-12-18 東京エレクトロン株式会社 Microstructure formation method, method for manufacturing semiconductor device and method for forming cmos
JP2018022712A (en) * 2014-12-10 2018-02-08 東京エレクトロン株式会社 Method for forming fine structure, method for fabricating semiconductor device, and method for forming cmos
CN116426780A (en) * 2021-12-29 2023-07-14 中国科学院沈阳自动化研究所 Mechanical property improving and optimizing method for laser deposited Al-Mg-Sc-Zr alloy

Also Published As

Publication number Publication date
JPH09162121A (en) 1997-06-20

Similar Documents

Publication Publication Date Title
US6528397B1 (en) Semiconductor thin film, method of producing the same, apparatus for producing the same, semiconductor device and method of producing the same
JP2000068520A (en) Semiconductor thin film, manufacture thereof and manufacturing device, and semiconductor element and manufacture thereof
JP4748836B2 (en) Laser irradiation device
US6187616B1 (en) Method for fabricating semiconductor device and heat treatment apparatus
US20050272185A1 (en) Method of fabricating a semiconductor thin film and semiconductor thin film fabrication apparatus
US20050282364A1 (en) Method of fabricating a semiconductor thin film and semiconductor thin film fabrication apparatus
US5840118A (en) Laser process system and method of using the same
KR20020032551A (en) Method of manufacturing thin-film semiconductor device
JP2002261015A (en) Semiconductor thin film, method of manufacturing it, manufacturing device, semiconductor element and method of manufacturing it
JP4354015B2 (en) Manufacturing method of semiconductor device
JPH118205A (en) Manufacture of semiconductor device and laser beam irradiation device
JP2603418B2 (en) Method for manufacturing polycrystalline semiconductor thin film
JP2001126987A (en) Method of manufacturing crystalline semiconductor film, crystallizing apparatus and method of manufacturing tft
JP3289681B2 (en) Method for forming semiconductor thin film, pulsed laser irradiation device, and semiconductor device
KR100569118B1 (en) Apparatus of crystalization of large-area amorphos silicon film and method thereof
JP4032553B2 (en) Semiconductor manufacturing equipment
JPH10172919A (en) Laser annealing method and apparatus
WO2006075569A1 (en) Semiconductor thin film manufacturing method and semiconductor thin film manufacturing apparatus
JPH0955509A (en) Manufacture of semiconductor device
JP5236929B2 (en) Laser annealing method
JP2001057432A (en) Method for transferring thin film element
JP2007208044A (en) Method for manufacturing semiconductor thin film, and manufacturing apparatus of semiconductor thin film
KR101493600B1 (en) Crystallization method of polycrystalline for Amorphous silicon thin film
KR20050000460A (en) Method of crystallization of large-area amorphous silicon film
JP2000277454A (en) Semiconductor manufacturing device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041201

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20050713

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20050713

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20050722

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060822

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061016

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20061114

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061211

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20070205

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20070223

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090630

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090729

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120807

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120807

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130807

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees