JPH0379861B2 - - Google Patents

Info

Publication number
JPH0379861B2
JPH0379861B2 JP56209541A JP20954181A JPH0379861B2 JP H0379861 B2 JPH0379861 B2 JP H0379861B2 JP 56209541 A JP56209541 A JP 56209541A JP 20954181 A JP20954181 A JP 20954181A JP H0379861 B2 JPH0379861 B2 JP H0379861B2
Authority
JP
Japan
Prior art keywords
pulsed
laser
annealing
pulse
electron beam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP56209541A
Other languages
Japanese (ja)
Other versions
JPS58112326A (en
Inventor
Seiichiro Kawamura
Junji Sakurai
Motoo Nakano
Hiroshi Yasuda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP20954181A priority Critical patent/JPS58112326A/en
Publication of JPS58112326A publication Critical patent/JPS58112326A/en
Publication of JPH0379861B2 publication Critical patent/JPH0379861B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/26Bombardment with radiation
    • H01L21/263Bombardment with radiation with high-energy radiation
    • H01L21/268Bombardment with radiation with high-energy radiation using electromagnetic radiation, e.g. laser radiation

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Optics & Photonics (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Electromagnetism (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Recrystallisation Techniques (AREA)

Description

【発明の詳細な説明】 (1) 発明の技術分野 本発明はビームアニール方法、特にレーザービ
ーム及び電子ビームを用いるアニール方法に係
る。
DETAILED DESCRIPTION OF THE INVENTION (1) Technical Field of the Invention The present invention relates to a beam annealing method, particularly an annealing method using a laser beam and an electron beam.

(2) 技術の背景 1974年に提案されて以来レーザーアニールは急
速に脚光を浴び、それとの類似性から電子ビーム
アニールも同様に着目されている。レーザーアニ
ール又は電子ビームアニールとは、レーザーベー
ム又は電子ビームのエネルギーを固体表面で吸収
させ、熱エネルギーの形に変換して表面層の加熱
に利用する技術であると言うことができる。
(2) Background of the technology Laser annealing has rapidly attracted attention since it was proposed in 1974, and electron beam annealing is also attracting attention due to its similarities. Laser annealing or electron beam annealing can be said to be a technique in which the energy of a laser beam or electron beam is absorbed by a solid surface, converted into thermal energy, and used for heating a surface layer.

これらの技術は新しい技術であるだけに、アニ
ール方法として新生面を切り拓くとともに、未解
決の問題もあり、また研究及び開発次第で大きく
進歩することが期待されている。
Since these techniques are new, they open up new fields as annealing methods, and there are also unresolved problems, and it is expected that significant progress will be made depending on research and development.

(3) 従来技術と問題点 従来のビームアニール方法としては、一般的に
は、連続発振(CW)レーザーが用いられ、通
常、ヒーターで電気的に基板加熱を行なつてい
る。しかし、ヒーターによる基板加熱では基板全
体を(長時間)加熱する必要があり、増々微細化
し、複雑化しつつある半導体デバイスの処理技術
としては望ましくない。さらに、ヒーター加熱で
は高々400〜500℃の温度が達成されるにすぎず、
アニールの効果も限られてしまうという問題点が
ある。
(3) Prior Art and Problems Conventional beam annealing methods generally use a continuous wave (CW) laser, and typically heat the substrate electrically with a heater. However, heating the substrate using a heater requires heating the entire substrate (for a long time), which is not desirable as a processing technology for semiconductor devices, which are becoming increasingly finer and more complex. Furthermore, heater heating can only achieve temperatures of 400 to 500°C;
There is a problem that the effect of annealing is also limited.

(4) 発明の目的 本発明は上記のような従来技術の現状に鑑み、
不所望なヒーターによる基板加熱を除去し、かつ
高温度の予備加熱を可能にするアニール技術を提
供することを目的とする。
(4) Purpose of the invention In view of the current state of the prior art as described above, the present invention
An object of the present invention is to provide an annealing technique that eliminates undesired substrate heating by a heater and enables high-temperature preheating.

(5) 発明の構成 本発明は、パルスレーザービームとパルス電子
ビームの一方からなる第1のパルスビームとその
他方からなる第2のパルスビームとを同期させて
基板上の半導体層表面に照射し、第1のパルスビ
ームは第2のパルスビームよりビーム径が大きく
かつ第2のパルスビームを包含する領域に照射
し、かつ第2のパルスビームを第1のパルスビー
ムの照射期間の途中に照射するように同期させ、
よつて第1のパルスビームで該半導体層を加熱し
ながら該第1のパルスビームよりパルス強度の大
きい第2のパルスビームで所望のアニールを行
い、該第1のパルスビームおよび第2のパルスビ
ームを走査して該半導体層を結晶化することを特
徴とする複合ビームアニール方法を提供すること
によつて、上記目的を達成する。
(5) Structure of the Invention The present invention provides a method for synchronizing a first pulse beam consisting of one of a pulsed laser beam and a pulsed electron beam and a second pulsed beam consisting of the other to irradiate the surface of a semiconductor layer on a substrate. , the first pulsed beam has a larger beam diameter than the second pulsed beam and is irradiated to a region that includes the second pulsed beam, and the second pulsed beam is irradiated in the middle of the irradiation period of the first pulsed beam. synchronize it so that
Therefore, while heating the semiconductor layer with the first pulsed beam, desired annealing is performed with a second pulsed beam having a higher pulse intensity than the first pulsed beam, and the first pulsed beam and the second pulsed beam are heated. The above object is achieved by providing a composite beam annealing method characterized in that the semiconductor layer is crystallized by scanning the semiconductor layer.

以下、実施例を用いて本発明を詳細に説明す
る。
Hereinafter, the present invention will be explained in detail using Examples.

(6) 実施例 第1図〜第3図は本発明に依る複合ビームアニ
ール方法の一実施例を説明するものである。ホル
ダー11上にアニールされるベき試料12を載置
し、この試料12に上方から電子ビーム1及びレ
ーザービーム2を照射する。これら両ビームの走
査は、一般的には、ホルダーを移動することによ
つて行なう。
(6) Embodiment FIGS. 1 to 3 illustrate an embodiment of the composite beam annealing method according to the present invention. A sample 12 to be annealed is placed on a holder 11, and the sample 12 is irradiated with an electron beam 1 and a laser beam 2 from above. Scanning of both beams is generally performed by moving the holder.

本発明で用いるレーザーは、通常のレーザーア
ニールで用いられているCWレーザーではなく、
例えばイツトリウム・アルミアン・ガーネツト
(Y2Al5O,YAG)レーザー又はアレキサンドラ
イトレーザーなどのパルスレーザー、しかも電気
的手段等により制御可能なパルスレーザーであ
る。本発明に従いこのような高出力のパルスレー
ザーを用いることによつて、従来技術で問題のあ
つたヒーターによる基板加熱を除去すること、及
び処理領域の所望の高温度を達成することが可能
となる。電気的等による制御が可能でなければな
らない理由は、後述するようにパルス電子ビーム
と同期させる必要があるからである。
The laser used in the present invention is not the CW laser used in normal laser annealing, but
For example, a pulsed laser such as a yttrium aluminum garnet (Y 2 Al 5 O, YAG) laser or an alexandrite laser, and moreover, a pulsed laser that can be controlled by electrical means or the like. By using such a high power pulsed laser in accordance with the present invention, it is possible to eliminate the heating of the substrate by the heater, which was problematic in the prior art, and to achieve the desired high temperature in the processing area. . The reason why electrical control must be possible is because it is necessary to synchronize with the pulsed electron beam, as will be described later.

本発明で用いる電子ビームもパルスビームでな
ければならない。上記パルスレーザーと同期させ
るためにである。
The electron beam used in the present invention must also be a pulsed beam. This is to synchronize with the pulse laser mentioned above.

例えば、YAGレーザービームのスポツトは直
径150μm程度、電子ビームのスポツトは直径
50μm程度とし(好ましくは両スポツトを同心に
する)、第2図に見られるように、電子ビーム1
の直径が50%分重複するようにパルスの走査を調
節することが好ましいので、例えば10cm/secの
速度で走査すると、YAGレーザーは4KHzの周波
数で照射する必要がある。これは250μsecの周期
(第3図のT)に相当する。
For example, a YAG laser beam spot has a diameter of about 150 μm, and an electron beam spot has a diameter of about 150 μm.
50 μm (preferably both spots should be concentric), and as shown in Figure 2, the electron beam
It is preferable to adjust the scanning of the pulses so that their diameters overlap by 50%, so when scanning at a speed of 10 cm/sec, for example, the YAG laser needs to be emitted at a frequency of 4 KHz. This corresponds to a period of 250 μsec (T in FIG. 3).

この場合の時間に対するパルス強度の様子を第
3図に例示したが、重要な点は電子ビームのパル
ス1がレーザービームのパルス2と同期され、パ
ルス2の時間幅内にあることである。そうしない
と、瞬間加熱、瞬時冷却の性質からしてYAGレ
ーザーによる加熱の意味がなくなるからである。
両パルスを同期させる手法は、簡単には電源(一
般的にはこれから供給する電力自体をパルス状に
する)からYAGレーザーに供給する電力の一部
を途中から分岐させ、遅延回路を通して電子ビー
ム源へ供給すればよい。
The pulse intensity with respect to time in this case is illustrated in FIG. 3, and the important point is that pulse 1 of the electron beam is synchronized with pulse 2 of the laser beam and is within the time width of pulse 2. Otherwise, heating with a YAG laser would be meaningless due to the nature of instantaneous heating and instantaneous cooling.
The method of synchronizing both pulses is simply to branch off part of the power supplied to the YAG laser from the power supply (generally, the power itself is pulsed), and pass it through a delay circuit to the electron beam source. All you have to do is supply it to

以上の条件の下で、シリコンウエーハ表面層を
酸化後CVDでシリコン層を沈着させたものをア
ニール処理したところ、結晶寸法が数十μmの多
結晶層が得られた。これはヒーターによる基板加
熱を行なつたCWレーザーアニールで得られる多
結晶の結晶寸法が数μmであるので約10倍の大き
さであり、本発明に依る方法の有利さの一例であ
る。
Under the above conditions, when a silicon wafer surface layer was oxidized and a silicon layer was deposited by CVD and then annealed, a polycrystalline layer with a crystal size of several tens of μm was obtained. This is about 10 times larger than the crystal size of polycrystals obtained by CW laser annealing in which the substrate is heated by a heater, which is several μm, and is an example of the advantage of the method according to the present invention.

以上の例では、パルス電子ビームを本来のアニ
ール目的に使用し、パルスレーザービームを予備
加熱又は冷却速度のコントロールに用いたが、本
発明に依る方法はこうした場合に限らず、パルス
レーザービームを本来のアニール目的に使用し、
パルス電子ビームを補助的加熱に利用することも
可能である。例えば、電子ビームの直径を100〜
150μmとし、YAGレーザービームの直径を40〜
60μmとして用いてもよい。
In the above examples, the pulsed electron beam was used for the original purpose of annealing, and the pulsed laser beam was used for preheating or controlling the cooling rate, but the method according to the present invention is not limited to such cases. used for annealing purposes,
It is also possible to use a pulsed electron beam for supplemental heating. For example, if the diameter of the electron beam is 100~
150μm, and the diameter of the YAG laser beam is 40~
It may be used as 60 μm.

(7) 発明の効果 以上の説明から明らかなように、本発明に係る
複合ビームアニール方法に依れば、不所望な基板
加熱を除去することができ、局所的な被処理領域
近傍のみが加熱されるにすぎないので、低温プロ
セスが可能となる。さらに、例えば1000℃位の予
備加熱が可能となることなども含めて、アニール
効果を高め、アニールの利用可能性を拡大するも
のである。
(7) Effects of the Invention As is clear from the above explanation, according to the composite beam annealing method according to the present invention, undesired substrate heating can be removed, and only the vicinity of the localized region to be processed is heated. This makes low-temperature processing possible. Furthermore, it enhances the annealing effect and expands the possibilities of using annealing, including the possibility of preheating to, for example, about 1000°C.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に依る方法の実施例を説明する
全体的概略図、第2図はパルスレーザービームと
パルス電子ビームの各スポツトとその走査状態を
示す図、第3図はレーザービームと電子ビームの
パルス強度対時間を表わすグラフである。 1……レーザービーム(又は電子ビーム)、2
……電子ビーム(又はレーザービーム)。
FIG. 1 is an overall schematic diagram illustrating an embodiment of the method according to the present invention, FIG. 2 is a diagram showing each spot of a pulsed laser beam and a pulsed electron beam and its scanning state, and FIG. 3 is a diagram showing the laser beam and electron beam. 1 is a graph representing beam pulse intensity versus time; 1... Laser beam (or electron beam), 2
...electron beam (or laser beam).

Claims (1)

【特許請求の範囲】[Claims] 1 パルスレーザービームとパルス電子ビームの
一方からなる第1のパルスビームとその他方から
なる第2のパルスビームとを同期させて基板上の
半導体層表面に照射し、第1のパルスビームは第
2のパルスビームよりビーム径が大きくかつ第2
のパルスビームを包含する領域に照射し、かつ第
2のパルスビームを第1のパルスビームの照射期
間の途中に照射するように同期させ、よつて第1
のパルスビームで該半導体層を加熱しながら該第
1のパルスビームよりパルス強度の大きい第2の
パルスビームで所望のアニールを行い、該第1の
パルスビームおよび第2のパルスビームを走査し
て該半導体層を結晶化することを特徴とする複合
ビームアニール方法。
1 A first pulsed beam consisting of one of a pulsed laser beam and a pulsed electron beam and a second pulsed beam consisting of the other are synchronized and irradiated onto the surface of the semiconductor layer on the substrate, and the first pulsed beam is irradiated with the second pulsed beam. The beam diameter is larger than the pulse beam of
irradiate a region encompassing the first pulse beam, and synchronize the second pulse beam so as to irradiate it in the middle of the irradiation period of the first pulse beam.
While heating the semiconductor layer with a pulsed beam, desired annealing is performed with a second pulsed beam having a higher pulse intensity than the first pulsed beam, and the first pulsed beam and the second pulsed beam are scanned. A composite beam annealing method characterized by crystallizing the semiconductor layer.
JP20954181A 1981-12-26 1981-12-26 Rrocess of annealing by compound beams Granted JPS58112326A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20954181A JPS58112326A (en) 1981-12-26 1981-12-26 Rrocess of annealing by compound beams

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20954181A JPS58112326A (en) 1981-12-26 1981-12-26 Rrocess of annealing by compound beams

Publications (2)

Publication Number Publication Date
JPS58112326A JPS58112326A (en) 1983-07-04
JPH0379861B2 true JPH0379861B2 (en) 1991-12-20

Family

ID=16574507

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20954181A Granted JPS58112326A (en) 1981-12-26 1981-12-26 Rrocess of annealing by compound beams

Country Status (1)

Country Link
JP (1) JPS58112326A (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6092607A (en) * 1983-10-27 1985-05-24 Agency Of Ind Science & Technol Electron beam annealing device
JPS6130025A (en) * 1984-07-21 1986-02-12 Agency Of Ind Science & Technol Manufacture of single crystal semiconductor thin film
JPS6130027A (en) * 1984-07-21 1986-02-12 Agency Of Ind Science & Technol Apparatus for manufacture of single crystal semiconductor thin film
US4731338A (en) * 1986-10-09 1988-03-15 Amoco Corporation Method for selective intermixing of layered structures composed of thin solid films
JPH0670590B2 (en) * 1988-09-10 1994-09-07 倉敷紡績株式会社 Color order determination method
JP4922578B2 (en) * 2004-08-03 2012-04-25 株式会社アメータ Aroma diffuser

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55148430A (en) * 1979-05-09 1980-11-19 Toshiba Corp Manufacture of semiconductor device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55148430A (en) * 1979-05-09 1980-11-19 Toshiba Corp Manufacture of semiconductor device

Also Published As

Publication number Publication date
JPS58112326A (en) 1983-07-04

Similar Documents

Publication Publication Date Title
US4375993A (en) Method of producing a semiconductor device by simultaneous multiple laser annealing
US4234356A (en) Dual wavelength optical annealing of materials
Tseng et al. Grain size dependence in a self‐implanted silicon layer on laser irradiation energy density
US4474625A (en) Method for superficial annealing of semiconductor materials using pulsed micro-wave energy
JPH0379861B2 (en)
US4547256A (en) Method for thermally treating a semiconductor substrate
Wood et al. Laser processing of semiconductors: An overview
JPH0419698B2 (en)
JP2510157B2 (en) Method for modifying semiconductor
JPS61260621A (en) Retreatment for amorphous silicon film or polycrystalline silicon film
JPH0360015A (en) Laser annealing device
WO1980001121A1 (en) Dual wavelength laser annealing of materials
JPH02112227A (en) Manufacture of semiconductor crystal layer
JPS58114435A (en) Laser annealiing method
JPH021531B2 (en)
JPH0355975B2 (en)
McMahon et al. Dual electron beam processing system for semiconductor materials
SU1737283A1 (en) High-temperature wire thermal converter regulation method
JPS61108121A (en) Manufacture of semiconductor device
JPH0371767B2 (en)
JPS59139624A (en) Heating method of sample
JPH0342819A (en) Laser annealer and laser annealing method
JPS6244847B2 (en)
JPH03190121A (en) Laser recrystallization device
JPS6221789A (en) Recrystallization