JPH0358416A - Side etching amount control method and semiconductor device - Google Patents

Side etching amount control method and semiconductor device

Info

Publication number
JPH0358416A
JPH0358416A JP19452389A JP19452389A JPH0358416A JP H0358416 A JPH0358416 A JP H0358416A JP 19452389 A JP19452389 A JP 19452389A JP 19452389 A JP19452389 A JP 19452389A JP H0358416 A JPH0358416 A JP H0358416A
Authority
JP
Japan
Prior art keywords
layer
etched
etching
side etching
control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19452389A
Other languages
Japanese (ja)
Inventor
Tatsuichi Ko
高 辰一
Jiro Oshima
次郎 大島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP19452389A priority Critical patent/JPH0358416A/en
Publication of JPH0358416A publication Critical patent/JPH0358416A/en
Pending legal-status Critical Current

Links

Landscapes

  • Bipolar Transistors (AREA)
  • Drying Of Semiconductors (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Abstract

PURPOSE:To make it possible to measure the correct amount of side etching by a method wherein the connection between the recessed regions of the controlling layer to be etched is observed with an optical microscope from above a substrate, and the amount of side etching is controlled. CONSTITUTION:On a controlling layer 6 to be etched which is identical to the layer 6 to be etched, on which a field region having no semiconductor element is formed, controlling aperture masks Za, b, having the shape identical to or correlated with an aperture mask for element, are laminated side by side in such a manner that their aperture regions are arranged with prescribed intervals. Thus, recessed regions are formed in the layer 6 to be etched, and at the same time, recessed regions are formed in the controlling layer 6 to be etched. Then, the state of connection to be made between the recessed regions of the controlling layer 6 through side etching is observed with an optical microscope from above the substrate, and the amount of side etching is controlled. As a result, the amount of side etching can be measured simply and accurately in non-destructive manner.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明は、サイドエッチングを用いる半導体装置の製造
工程におけるサイドエッチ量制御方法と、その制御方法
を使用する半導体装置に関するもので、特に高精度のサ
イドエッチ量が要求される工程及び半導体装置に使用さ
れる. (従来の技術) 半)4体装置の微細化、高速化に伴い、自己整合技術が
種々開発されている. 例えば、特開昭60−8186
2号に開示されている超高速バイボーラ・デバイスの外
部ベース開口領域は、ベース領域、エミッタ領域上のシ
リコン窒化膜のサイドエッチングにより、自己整合的に
形成されている.従来の高精度を必要とするサイドエッ
チ量の制御方法は、先行ウエーハ或いは抜取りウエーハ
を割り、断面を走査型顕微鏡(SEM)でi京し、サイ
ドエッチ量を測定、制御していた。 又、より簡便な手
段として、表面からサイドエッチの像を光学顕微鏡で観
察し、概略のエッチ量を判断していた。
[Detailed Description of the Invention] [Object of the Invention] (Industrial Application Field) The present invention relates to a side etching amount control method in a semiconductor device manufacturing process using side etching, and a semiconductor device using the control method. It is especially used in processes and semiconductor devices that require highly accurate side etching. (Conventional technology) Various self-alignment technologies have been developed as semi-four-body devices become smaller and faster. For example, JP-A-60-8186
The external base opening region of the ultrahigh-speed bibolar device disclosed in No. 2 is formed in a self-aligned manner by side etching of the silicon nitride film on the base region and emitter region. A conventional method for controlling the amount of side etch, which requires high precision, involves cutting a preceding wafer or a sampled wafer, observing the cross section with a scanning microscope (SEM), and measuring and controlling the amount of side etch. Moreover, as a simpler means, the image of side etching from the surface is observed with an optical microscope to determine the approximate amount of etching.

従来のSEMを用いた測定の場合、ウェーハを割って測
定するため、無駄なウェーハが多数必要であるばかりで
なく、測定に時間がかかり、生産性が悪かった。 より
簡便な光学顕微鏡を用いた場合、サイドエッチのイメー
ジはエツチ膜の上の膜により像がボゲルため、正確なサ
イドエッチ量の測定及び制御はできなかった. (発明が解決しようとする課題) これまで述べたように、従来のサイドエッチ量制御方法
において、ウェーハを割ってSEMでサイドエッチ量を
測定し、制御する方法は、工程コスト、工程時間等が多
くかかり生産性が悪いという課題があり、又光学顕微鏡
により非破壊的にサイドエッチ量を測定、制御する方法
は、正確なサイドエッチ量の測定ができないという課題
かある。
In the case of measurement using a conventional SEM, since the wafer is broken and measured, not only a large number of wasted wafers are required, but also the measurement takes time, resulting in poor productivity. When using a simpler optical microscope, the image of the side etch was blurred by the film on top of the etch film, making it impossible to accurately measure and control the amount of side etch. (Problems to be Solved by the Invention) As mentioned above, in the conventional side etch amount control method, the method of dividing the wafer and measuring the side etch amount with SEM and controlling it has a high process cost, process time, etc. There is a problem that it takes a lot of time and productivity is poor, and the method of non-destructively measuring and controlling the side etching amount using an optical microscope has a problem that it is not possible to accurately measure the side etching amount.

本発明の目的は、サイドエッチングを用いる半導体装置
の製造工程において、前記課題を解決し、サイドエッチ
量の簡便で且つ正確な工程管理ができる制御方法及びそ
の方法を用いた半導体装置を提供することである, [発明の構成] 〈課題を解決するための手段とその作用)本発明のサイ
ドエッチ量制御方法は、半導体基板上又は基板内の選択
的にエッチングされる被エッチング層上に、表面が耐エ
ッチング材から成り、開口領域を有する素子用開口マス
クを積層した後、開口領域に露出する前記被エッチング
層面からサイドエッチングを含むエッチングを施し、該
被エッチング層に凹領域を形成する半導体装置の製造工
程において、 前記基板の半導体素子を形成しないフィ
ールド領域に形成される前記被エッチング層と等しい制
御用被エッチング層上に、前記素子用開口マスクと等し
いか或いは相関のとれる形状の制御用開口マスクを、そ
の開口領域が所定間隔となるよう並設積層した後、前記
被エッチング層に凹領域を形成する工程と同時に前記制
御用被エッチング層に凹領域を形成する工程を施し、該
工程において制御用被エッチング層の凹領域間がサイド
エッチングにより連結されることを基板上方から光学顕
inでltll!し、サイドエツチlを制御することを
特徴とするものである. 又、本発明の半導体装置は、上記サイドエッチ量制御方
法を使用して製造され、且つ前記制御用被エッチング層
の凹領域を具備することを特徴とするものである. 本発明は、次の知見に火づいて行なわれた.即ちiR能
素子の横成要素として用いられる前記凹領域と被エッチ
ング層との光学的なコントラストは小さい. 従って光
学gR@鏡による従来技術では、サイドエッチングによ
り形成される凹領域側壁と被エッチング層との境界面の
正確な識別は難しく、サイドエッチ量の微妙な制御はで
きなかった. 本発OJJでは、機能素子として動作を
しない複数の制御用開口マスクを、その開口領域が所定
間隔、例えば所望のサイドエッチ量の2倍程度の間隔に
なるよう並設するので、サイドエッチングの進行に伴い
隣り合う制御用凹領域の間隔は縮小し、両凹領域間の介
在膜は薄くなり、更に所望のサイドエッチ量近傍に達す
ると、この介在膜は干渉等の光学作用により、着色して
il!測される.即ち制御用凹領域と、両領域間に介在
する薄い制御用被エッチング層との光学的なコントラス
トは極めて大きく、従って制御用凹領域間がサイドエッ
チングにより連結されることを基板上方から光学顕y&
鐘で正確にwA8!lすることができ、微妙なサイドエ
ッチ量制御が可能となる. なお制御用開口マスクの開口領域が所定間隔になるよう
並設する場合、次のように実施することが望ましい. 所定間隔が所望のサイドエッチ量の2倍程度であること
、或いは所定間隔が所望のサイドエッチ量の2倍前後で
変化させた複数組の制御用開口領域を設けること、或い
は所定間隔を徐々に変化させなから少なくとも3つ以上
の制御用開口マスクが整列していること。
An object of the present invention is to provide a control method that solves the above-mentioned problems in the manufacturing process of a semiconductor device using side etching, and allows simple and accurate process control of the amount of side etching, and a semiconductor device using the method. [Structure of the Invention] <Means for Solving the Problems and Their Effects> The method for controlling the amount of side etching of the present invention provides a method for controlling the amount of side etching by etching a surface layer on a semiconductor substrate or a layer to be etched selectively in the substrate. A semiconductor device in which a device opening mask is made of an etching-resistant material and has an opening region, and then etching including side etching is performed from the surface of the layer to be etched exposed in the opening region to form a concave region in the layer to be etched. In the manufacturing process, a control opening having a shape equal to or correlated with the element opening mask is formed on a control etching layer equal to the etching layer formed in a field region of the substrate where no semiconductor element is formed. After the masks are laminated in parallel so that their opening areas are at a predetermined interval, a step of forming a recessed region in the control layer to be etched is performed simultaneously with the step of forming a recessed region in the layer to be etched, and in the step, Use an optical microscope from above the substrate to confirm that the concave regions of the control layer to be etched are connected by side etching! It is characterized by controlling the side etching l. Further, the semiconductor device of the present invention is manufactured using the side etching amount control method described above, and is characterized in that the semiconductor device includes a recessed region of the control layer to be etched. The present invention was made based on the following findings. That is, the optical contrast between the recessed region used as a horizontal component of the iR element and the layer to be etched is small. Therefore, with the conventional technology using optical gR@mirror, it is difficult to accurately identify the interface between the sidewall of the recessed region formed by side etching and the layer to be etched, and delicate control of the amount of side etching is not possible. In this OJJ, a plurality of control opening masks that do not operate as functional elements are arranged in parallel so that their opening areas are at predetermined intervals, for example, at intervals of about twice the desired side etching amount, so that the side etching progresses. As a result, the distance between adjacent control concave regions decreases, the intervening film between both concave regions becomes thinner, and when the desired amount of side etching is reached, this intervening film becomes colored due to optical effects such as interference. Il! It is measured. In other words, the optical contrast between the control recessed region and the thin control etching layer interposed between the two regions is extremely large, and therefore it can be seen from above the substrate that the control recessed regions are connected by side etching.
Accurate wA8 at the bell! This makes it possible to finely control the amount of side etching. In addition, when the aperture areas of the control aperture masks are arranged in parallel at a predetermined interval, it is desirable to carry out the following procedure. The predetermined interval is about twice the desired amount of side etching, or a plurality of sets of control opening areas are provided in which the predetermined interval is changed around twice the desired amount of side etching, or the predetermined interval is gradually increased. At least three or more control aperture masks must be aligned without being changed.

又上記素子用開口マスクは、機能素子の槓成要素として
用いられる多層薄膜を有し、この多層1模に酸化膜、窒
化1漠、及びポリシリコン或いはポリサイドのような導
電性膜を含む場合もあるが、開D pi域を含む開口マ
スクの表面は、被エッチング層に比しエッチング速度が
実質的に無視できる耐エッチング材で覆われていること
か必要である。
Further, the aperture mask for an element has a multilayer thin film used as a forming element of a functional element, and this multilayer may include an oxide film, a nitride film, and a conductive film such as polysilicon or polycide. However, the surface of the opening mask including the open D pi region must be covered with an etching-resistant material whose etching rate is substantially negligible compared to the layer to be etched.

(実施1列) 第1図及び第2図Cよ、本発明のサイドエッチ量制御方
法の一実施例を説明するだめの平面図及び断面図である
。 第1図は半導体基板上の制御用被エッチング層l上
に1組の制御用開口マスク2a及び2bが並設、積層さ
れた平面図である.この1組の制御用開口マスクの開口
領域3a及び3bの間隔Wは、所望のサイドエッチ11
1.の2倍に設定される. 開口頭域3a及び3bから
エッチングを行ない、徐々に凹領域のサイドエッチ端部
が広がっていく. 第1図においては、サイドエッチ端
部A,B,Cの順にエッチングが進行しており、サイド
エッチ端部Cになると隣接する凹領域は連結される. 第2図は、制御用被エッチング層上に制御用開口マスク
を並設積層した後、凹領域を形成する製造工程を示す断
面図である. 本実施例のこの製造工程は、素子の被エ
ッチング層上に素子用開口マスクを積層した後、凹領域
を形成する製造工程とほぼ等しく且つ同時に行なうので
、素子用の製造工程については記述を省略する。 第2
図(a)に示すように、半導体基板4の主表面上に50
 r+nの熱酸化膜5を形成した後、CVD法によりシ
リコン窒化PIA6、ポリシリコンM7を400 nl
, CVD法によりシリコン酸化11!8を300r+
+m順次堆積する. 次に同図(b)に示すように、通
常のフォトリングラフィ技術により、レジストパターン
9を形成し、これをマスクにシリコン酸化M8、ポリシ
リコンpa7を順次異方性エッチングにより除去する.
 隣り合うレジストパターンの開口部間の間隔Wは所望
のサイドエッチ量l0の2倍に設定される. 次に同図
(c)に示すように、レジスト9を除去した後、ポリシ
リコン膜7の側壁部を酸化し、関壁酸化Ii!10を形
成する. ここにおいて、シリコン窒化PIA6は、制
御用被エッチング層1であり、制御用開口マスク2a及
び2bは、開口領域3a及び3bを有し、表面がシリコ
ン酸化膜で覆われたポリシリコンfllA 7とシリコ
ン酸化j摸8の積層膜である. 次に同図(d)に示す
ように、開口頭域3a ,3bに露出するシリコン窒化
膜6より、100〜190℃に加熱した熱燐酸を用い、
シリコン窒化膜6をエッチングして凹領域11a,fl
bを形成する. エッチングの進行に伴い、凹領域のサ
イドエッチング端部はA, Bを経てCに達して凹領域
11a及びllbは連結する. なお第2図中のA,B
,Cは第1図のA,B,Cと対応している. このエッチング工程の途中、若しくはエッチング工程終
了後、ウエーハを収り出し、光学顕微鏡で、凹領域11
aとllbとに挟まれる介在膜12近傍をill測する
. 介在WA12の膜厚が薄いと、薄い石鹸展と同様、
光の干渉等によりあざやかな色彩が見られ、その存在を
正確に識別できる.第1図及び第2図に示す実施例では
、説明の簡便化のためマスクの開口領域は1組で、その
間隔は1種類としたが、実際には多数の異なる間隔の開
口領域を同時に形成することにより、サイドエッチング
の進行状況がより正確に把握できる.第3図及び第4図
は、多数の異なる間隔の制御用開口領域を並設する実施
例を示す模式的平面図である. 第3図は、制御用開口
領域3の間隔Wが所望のサイドエッチ量の2倍前後で変
化する複数組の制御用開口マスクを並設したものである
(Embodiment 1 row) FIG. 1 and FIG. 2C are a plan view and a cross-sectional view for explaining one embodiment of the side etch amount control method of the present invention. FIG. 1 is a plan view showing a set of control aperture masks 2a and 2b arranged and stacked on a control etching layer l on a semiconductor substrate. The interval W between the opening regions 3a and 3b of this set of control opening masks is determined by the desired side etching 11.
1. is set to twice that of . Etching is performed from the opening head regions 3a and 3b, and the side etched ends of the recessed regions gradually widen. In FIG. 1, etching progresses in the order of side etch ends A, B, and C, and at side etch end C, adjacent recessed regions are connected. FIG. 2 is a cross-sectional view showing a manufacturing process in which a concave region is formed after a control aperture mask is laminated in parallel on a control layer to be etched. This manufacturing process of this example is performed almost identically and simultaneously with the manufacturing process of forming the concave area after laminating the device opening mask on the layer to be etched of the device, so a description of the manufacturing process for the device will be omitted. do. Second
As shown in FIG.
After forming the r+n thermal oxide film 5, 400 nl of silicon nitride PIA6 and polysilicon M7 are deposited by the CVD method.
, 300r+ silicon oxide 11!8 by CVD method
+m are deposited sequentially. Next, as shown in FIG. 4B, a resist pattern 9 is formed by a conventional photolithography technique, and using this as a mask, silicon oxide M8 and polysilicon pa7 are sequentially removed by anisotropic etching.
The distance W between the openings of adjacent resist patterns is set to twice the desired side etching amount l0. Next, as shown in FIG. 3(c), after removing the resist 9, the side wall portion of the polysilicon film 7 is oxidized, and the barrier wall is oxidized Ii! Form 10. Here, the silicon nitride PIA 6 is the layer to be etched for control 1, and the control opening masks 2a and 2b have opening regions 3a and 3b, and the polysilicon fllA 7 whose surface is covered with a silicon oxide film and silicon This is a laminated film of oxide J8. Next, as shown in FIG. 4(d), hot phosphoric acid heated to 100 to 190° C. is applied to the silicon nitride film 6 exposed in the opening head regions 3a and 3b.
Etching the silicon nitride film 6 to form concave regions 11a, fl
Form b. As the etching progresses, the side etched end of the recessed region passes through A and B and reaches C, and the recessed regions 11a and llb are connected. Note that A and B in Figure 2
, C correspond to A, B, and C in Figure 1. During or after the etching process, the wafer is taken out and the concave areas 11 are examined using an optical microscope.
Measure the vicinity of the intervening film 12 sandwiched between a and llb. If the film thickness of the intervening WA12 is thin, similar to a thin soap film,
Vivid colors can be seen due to light interference, making it possible to accurately identify their presence. In the embodiments shown in FIGS. 1 and 2, the mask has one set of aperture areas and one type of spacing for the sake of simplicity; however, in reality, many aperture areas with different spacings are formed at the same time. By doing so, the progress of side etching can be grasped more accurately. FIGS. 3 and 4 are schematic plan views showing an embodiment in which a large number of control opening areas at different intervals are arranged in parallel. FIG. 3 shows a plurality of sets of control aperture masks arranged in parallel, in which the interval W between the control aperture regions 3 changes around twice the desired side etching amount.

又第4図は、制御用開口領域の間隔Wが、所望のサイド
エッチ量l0の2@に達しない値から、2倍を越える値
まで徐々に変化するように制御用開口マスクを整列して
並設したものである.制御用開口マスクの開口領域の形
状は、素子用開口マスクの開口領域の形状と常に等しく
する必要はない。 制御用開口マスクを用いて得られた
凹領域のサイドエッチ量と、素子用開口マスクを用いて
得られた凹領域グ)サイドエッチ量との間に一定の相関
関係があり、あらかじめその間1系を試行等により決め
ることができる形状であれば差支えない. 次に、本発明を、トレンチ・アイソレーション横造の超
高速バイボーラ1・ランジスタに適用した実施例につい
て、以下説明する。 第5図は、該トランジスタの製造
工程の概要を示す断面図、第6図は主な製造工程終了後
の該トランジスタの断1h1図である。
FIG. 4 also shows that the control opening masks are arranged so that the interval W between the control opening regions gradually changes from a value that does not reach 2@ of the desired side etching amount l0 to a value that exceeds twice the desired side etching amount l0. They are installed side by side. The shape of the aperture region of the control aperture mask does not always need to be equal to the shape of the aperture region of the element aperture mask. There is a certain correlation between the side etching amount of the concave area obtained using the control aperture mask and the side etching amount of the concave area obtained using the element aperture mask, and There is no problem as long as the shape can be determined by trial etc. Next, an embodiment in which the present invention is applied to an ultra-high-speed bibolar 1 transistor with horizontal trench isolation will be described below. FIG. 5 is a cross-sectional view showing an outline of the manufacturing process of the transistor, and FIG. 6 is a cross-sectional view 1h1 of the transistor after the main manufacturing process is completed.

第5図(a)に示すように、P型シリコン基板2l上に
N1型埋込層22、N一型エピタキシャル層23を形成
する. 次に素子間、素子内分離のためトレンチ・アイ
ソレーション24及びロコス酸化25を施す。 次に素
子形成領域及び制御用開口マスク形成領域に酸化膜26
を形成し、その上に窒化M27を積層する。 窒化堰2
7及び酸化1摸26のうち、コレクタ取り出しm域上の
前記両膜を選択的に除去し、コレクタ開口28を設ける
. CVD法により全面にポリシリコン膜29を被着し
た後、不要部分のポリシリコン膜を選択酸化1.、ポリ
シリコン酸化I1*3 0とずる。
As shown in FIG. 5(a), an N1 type buried layer 22 and an N1 type epitaxial layer 23 are formed on a P type silicon substrate 2l. Next, trench isolation 24 and LOCOS oxidation 25 are performed for isolation between and within elements. Next, an oxide film 26 is formed in the element formation region and the control opening mask formation region.
is formed, and nitride M27 is laminated thereon. Nitriding weir 2
Of 7 and oxidation 1 and 26, both films on the collector extraction region m are selectively removed to form a collector opening 28. After a polysilicon film 29 is deposited on the entire surface by CVD, unnecessary portions of the polysilicon film are selectively oxidized (1). , polysilicon oxide I1*3 0.

コレクタ取り出し領域のポリシリコン屓29bに選択的
にリンを導入した後コレクタコンタク1〜用のN1拡散
層31を形成する. 素子形戒領域のポリシリコン層2
9及び本発明の制御用開口マスク形成頭域のポリシリコ
ン層29aにはボロンを導入ずる。 更にCVD酸化I
A32を被着し、エミッタ形成領域及び制御用開口マス
ク形成領域に開口を有するセルファライメント用レジス
トパターン33を形成する. 同図(b)に示すように、レジストパターン33を用い
、CVD酸化膜32及びポリシリコン!I29及び29
aをRIEにより除去し、窒化1摸27に達する開口3
4、34a,及び34a2を形成した後、これら開口に
露出するポリシリコン膜29及び29aのlIl壁ニ酸
化膜35、35,,、35a2を形成する. なお、特許請求の範囲第l項に記載されている被エッチ
ング層は素子用と制御用と等しく、いずれも窒化膜27
である. 素子用開口マスクΣ旦は、開口領域34を有
し、表面がSin2で覆われたポリシリコンIIl29
とCVD酸化1ll132とより成る積層膜である. 
また、g1御用開口マスク50a+及びi旦むは、それ
ぞれ開口領域34と等しい形状の開口領域34,,及び
34a2をイ『し、表面がSin,で覆われたポリシリ
コン膜29aとCVD酸化膜32とより成る積層膜であ
る. なお開口領域34a,と34a2との間隔は、所
定のサイドエッチ量の2倍に設定されている.同図(c
)に示すように、開口頭域34,3 4 a+ 13 
4 a2から約150℃に加熱した熱燐酸を用い、シリ
;Iン窒化膜27をエッチングして凹領域36及び36
,,、36a2を形成する. サイドエッチ量は、凹領
域36a,と36a2とに挟まれた介在層近傍37を上
方より光学顕微鏡で観測して制御される. 第6図に示すように、凹領域底面の酸化膜を除去し酸化
膜開口38を形成する. 次に凹領域のオーバーハング
部にポリシリコンを埋め込み、埋込ポリシリコン層39
を形成する. 次に埋込ボリシリコン層39及び開口領
域34に露出する基板表面に熱酸化展を形成した後、ボ
ロンをシリコン基板にイオン注入し、内部ベース領域を
形成する. 符号40は埋込ボリシリコン層39の側面
に形戒される酸化膜である. 次にポリシリコンサイド
ウォール41を形成し、これをマスクにエミッタ開口4
2を形成する. 次にエミッタボシリコン43を被着し
、エミツタ領域を形成する.AIを蒸着しパターニング
してAI配線44を形成する. 上記構成のバイボーラトランジスタの外部ペース領域4
5は埋込ボリシリコン層39を不純物源として自己整合
的に形成される. 埋込ボリシリコン層39は、本発明
のサイドエッチ量制御方法を適用することにより、精度
良く形成ずることができる. 本発明は上記実施例に限定されない. 一般にサイドエ
ッチングを伴うエッチング工程において、精度良くサイ
ドエッチ量を制御する必要のあるエ程又は半導体装置に
適用できる。
After selectively introducing phosphorus into the polysilicon layer 29b in the collector extraction region, N1 diffusion layers 31 for collector contacts 1 to 1 are formed. Polysilicon layer 2 in element shape area
9, and boron is introduced into the polysilicon layer 29a in the region where the control opening mask of the present invention is formed. Furthermore, CVD oxidation I
A32 is deposited to form a self-alignment resist pattern 33 having openings in the emitter formation region and the control opening mask formation region. As shown in FIG. 3B, using a resist pattern 33, a CVD oxide film 32 and a polysilicon film 32 are formed. I29 and 29
a is removed by RIE, and an opening 3 reaching the nitriding layer 27 is formed.
4, 34a, and 34a2, lIl wall dioxide films 35, 35, . . . 35a2 of the polysilicon films 29 and 29a exposed in these openings are formed. Note that the layer to be etched described in claim 1 is the same for the device and for the control, and both are for the nitride film 27.
It is. The element opening mask Σdan is made of polysilicon IIl29 having an opening region 34 and whose surface is covered with Sin2.
It is a laminated film consisting of 111132 and CVD oxidation.
In addition, the opening masks 50a+ and idanmu for g1 have opening regions 34 and 34a2 of the same shape as the opening region 34, respectively, and a polysilicon film 29a whose surface is covered with Sin, and a CVD oxide film 32. It is a laminated film consisting of. Note that the distance between the opening regions 34a and 34a2 is set to twice the predetermined side etching amount. The same figure (c
), open head area 34, 3 4 a+ 13
4 Using hot phosphoric acid heated to about 150° C. from a2, the silicon/I nitride film 27 is etched to form concave regions 36 and 36.
,,, form 36a2. The amount of side etching is controlled by observing the vicinity 37 of the intervening layer sandwiched between the concave regions 36a and 36a2 from above using an optical microscope. As shown in FIG. 6, the oxide film on the bottom of the recessed region is removed to form an oxide film opening 38. Next, polysilicon is buried in the overhang part of the recessed region, and a buried polysilicon layer 39 is formed.
form. Next, after thermal oxidation is formed on the surface of the substrate exposed to the buried polysilicon layer 39 and the opening region 34, boron ions are implanted into the silicon substrate to form an internal base region. Reference numeral 40 is an oxide film formed on the side surface of the buried polysilicon layer 39. Next, a polysilicon sidewall 41 is formed, and the emitter opening 4 is formed using this as a mask.
Form 2. Next, emitter silicon 43 is deposited to form an emitter region. AI is deposited and patterned to form AI wiring 44. External pace region 4 of the bibolar transistor with the above configuration
5 is formed in a self-aligned manner using the buried polysilicon layer 39 as an impurity source. The buried polysilicon layer 39 can be formed with high precision by applying the side etching amount control method of the present invention. The present invention is not limited to the above embodiments. Generally, in an etching process involving side etching, the present invention can be applied to an etching process or a semiconductor device where it is necessary to control the amount of side etching with high precision.

[発明の効果] 本発明のサイドエツヂ量制御方法及び半導体装置によれ
ば、サイドエッチングを用いる半導体装置の製造工程に
おいて、サイドエッチ址を非破壊的に簡便で且つ正確に
測定できるようになり、工程コストの削減、工程の短縮
化、ち密な工程管理が可能となった.
[Effects of the Invention] According to the side edge amount control method and semiconductor device of the present invention, the side etch area can be measured non-destructively, simply and accurately in the manufacturing process of a semiconductor device using side etching, and the process It has become possible to reduce costs, shorten the process, and perform detailed process control.

【図面の簡単な説明】[Brief explanation of drawings]

第1図及び第2図は、サイドエッチ量制御方法の一実施
例を説明するための平面図及び断面図、第3図及び第4
図は本発明の制御用開口領域並設の実施例を示す平面図
、第5図は本発明の半導体装置の製造工程を示す断面図
、第6図は本発明の半導体装置の断面図である. 1,6.27・・・被エッチング層(シリコン窒化II
Q )、 2a , 2b , 5 0a+ , 5 
0a2・・・制御用開口マスク、 3a ,3b ,3
4a+,34a2・・・制御用開口領域、 4.21・
・・半導体基板、 11a,1 lb ,36,36a
+,36az”’凹領域、 i旦・・・素子用開口マス
ク、 34・・・素子用開口領域、 W ・・開口領域の間隔. 第 1 図 第 2 図〈1〉 第 2 図〈2〉 第 3 図 第 4 図 (a) (b) 第 5 図(1〉
1 and 2 are a plan view and a cross-sectional view for explaining an embodiment of the side etch amount control method, and FIGS. 3 and 4 are
FIG. 5 is a plan view showing an embodiment of parallel arrangement of control opening regions of the present invention, FIG. 5 is a cross-sectional view showing the manufacturing process of the semiconductor device of the present invention, and FIG. 6 is a cross-sectional view of the semiconductor device of the present invention. .. 1,6.27...Layer to be etched (silicon nitride II
Q), 2a, 2b, 5 0a+, 5
0a2... control aperture mask, 3a, 3b, 3
4a+, 34a2... Control opening area, 4.21.
...Semiconductor substrate, 11a, 1 lb, 36, 36a
+, 36az"' concave area, i Dan...Aperture mask for element, 34...Aperture area for element, W...Distance between aperture areas. Fig. 1 Fig. 2 <1> Fig. 2 <2> Figure 3 Figure 4 (a) (b) Figure 5 (1>

Claims (1)

【特許請求の範囲】 1半導体基板上又は基板内の選択的にエッチングされる
被エッチング層上に、表面が耐エッチング材から成り、
開口領域を有する素子用開口マスクを積層した後、開口
領域に露出する前記被エッチング層面からサイドエッチ
ングを含むエッチングを施し、該被エッチング層に凹領
域を形成する半導体装置の製造工程において、 前記基板の半導体素子を形成しないフィールド領域に形
成される前記被エッチング層と等しい制御用波エッチン
グ層上に、前記素子用開口マスクと等しいか或いは相関
のとれる形状の制御用開口マスクを、その開口領域が所
定間隔となるよう並設積層した後、前記被エッチング層
に凹領域を形成する工程と同時に前記制御用被エッチン
グ層に凹領域を形成する工程を施し、該工程において制
御用被エッチング層の凹領域間がサイドエッチングによ
り連結されることを基板上方から光学顕微鏡で観測し、
サイドエッチ量を制御することを特徴とするサイドエッ
チ量制御方法。 2特許請求の範囲第1項記載の制御用被エッチング層の
凹領域を具備する半導体装置。
[Claims] 1. On a semiconductor substrate or on a layer to be etched which is selectively etched in the substrate, the surface is made of an etching-resistant material,
In a manufacturing process of a semiconductor device, the step of manufacturing a semiconductor device includes stacking an opening mask for an element having an opening region, and then performing etching including side etching from the surface of the layer to be etched exposed in the opening region to form a concave region in the layer to be etched. A control aperture mask having a shape equal to or correlated with the element aperture mask is placed on the control wave etching layer, which is formed in a field region where no semiconductor element is formed, and whose opening area is equal to or correlated with the element aperture mask. After stacking the layers in parallel at a predetermined interval, a step of forming a recessed region in the control layer to be etched is performed at the same time as a step of forming a recessed region in the layer to be etched; Using an optical microscope, we observed from above the substrate that the regions were connected by side etching.
A side etch amount control method characterized by controlling a side etch amount. 2. A semiconductor device comprising a concave region of a control layer to be etched according to claim 1.
JP19452389A 1989-07-27 1989-07-27 Side etching amount control method and semiconductor device Pending JPH0358416A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19452389A JPH0358416A (en) 1989-07-27 1989-07-27 Side etching amount control method and semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19452389A JPH0358416A (en) 1989-07-27 1989-07-27 Side etching amount control method and semiconductor device

Publications (1)

Publication Number Publication Date
JPH0358416A true JPH0358416A (en) 1991-03-13

Family

ID=16325950

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19452389A Pending JPH0358416A (en) 1989-07-27 1989-07-27 Side etching amount control method and semiconductor device

Country Status (1)

Country Link
JP (1) JPH0358416A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0776645A1 (en) 1995-11-29 1997-06-04 Uni-Charm Corporation Disposable diaper with visual wetness indicator
US5766212A (en) * 1996-05-16 1998-06-16 Uni-Charm Corporation Disposable diaper
US6572575B1 (en) 1999-08-20 2003-06-03 Uni-Charm Corporation Disposable diaper having pattern sheet, and method for manufacturing the same
JP2007322594A (en) * 2006-05-31 2007-12-13 Pilot Ink Co Ltd Color changeable self-adhesive label, and color changeable article using the same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0776645A1 (en) 1995-11-29 1997-06-04 Uni-Charm Corporation Disposable diaper with visual wetness indicator
US5690624A (en) * 1995-11-29 1997-11-25 Uni-Charm Corporation Disposable diaper
US5766212A (en) * 1996-05-16 1998-06-16 Uni-Charm Corporation Disposable diaper
US6572575B1 (en) 1999-08-20 2003-06-03 Uni-Charm Corporation Disposable diaper having pattern sheet, and method for manufacturing the same
JP2007322594A (en) * 2006-05-31 2007-12-13 Pilot Ink Co Ltd Color changeable self-adhesive label, and color changeable article using the same

Similar Documents

Publication Publication Date Title
GB2128400A (en) Isolation and wiring of a semiconductor integrated circuit device and method of manufacturing the same
JP2519819B2 (en) Contact hole forming method
JPH09181164A (en) Semiconductor device and forming method of its element isolation region
JPH0358416A (en) Side etching amount control method and semiconductor device
JPH1145874A (en) Manufacture of semiconductor device
KR950009889B1 (en) Manufacturing method of isolation region of semiconductor device using trench method
JP2671359B2 (en) Method for manufacturing semiconductor device
JP2786259B2 (en) Method for manufacturing semiconductor device
KR0172047B1 (en) Method of manufacturing semiconductor device
JP3875750B2 (en) Manufacturing method of semiconductor device
KR100266659B1 (en) Method for fabricating mask of semiconductor device
JPH02172215A (en) Manufacture of semiconductor device
KR100278646B1 (en) Pattern formation method for thickness monitor of semiconductor device
JPS62296425A (en) Etch-back flattening process
JPS6024009A (en) Formation of impurity region on semiconductor
JPH04240748A (en) Manufacture of semiconductor device
JPH02161752A (en) Manufacture of semiconductor device
JPH03280429A (en) Manufacture of semiconductor device
JPH02230718A (en) Aligning mark and manufacture thereof
JPH07201823A (en) Method of manufacturing semiconductor device
JPH0269925A (en) Manufacture of semiconductor element
JP2001237309A (en) Manufacturing method of semiconductor device
JPS6010732A (en) Manufacture of semiconductor device
JPS62247530A (en) Method for forming mask pattern
JPH09205216A (en) Micromachining method