JPH0357185B2 - - Google Patents

Info

Publication number
JPH0357185B2
JPH0357185B2 JP63127420A JP12742088A JPH0357185B2 JP H0357185 B2 JPH0357185 B2 JP H0357185B2 JP 63127420 A JP63127420 A JP 63127420A JP 12742088 A JP12742088 A JP 12742088A JP H0357185 B2 JPH0357185 B2 JP H0357185B2
Authority
JP
Japan
Prior art keywords
sputtering
vacuum chamber
plasma source
substrate
cathode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63127420A
Other languages
Japanese (ja)
Other versions
JPH01298151A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP12742088A priority Critical patent/JPH01298151A/en
Publication of JPH01298151A publication Critical patent/JPH01298151A/en
Publication of JPH0357185B2 publication Critical patent/JPH0357185B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Physical Vapour Deposition (AREA)
  • Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は化合物薄膜の形成方法に関し、特に低
温で化合物薄膜を作製する方法に係わるものであ
る。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method for forming a compound thin film, and particularly to a method for forming a compound thin film at low temperatures.

[従来の技術] 周知の如く、スパツタリングにより化合物薄膜
を形成する方法として、下記に述べる方法が一般
的である。
[Prior Art] As is well known, the method described below is a common method for forming a compound thin film by sputtering.

(1) 酸化物、窒化物等の化合物のターゲツトをス
パツタリングする方法 (2) 反応ガス雰囲気で金属ターゲツトをスパツタ
リングする方法 (3) 金属薄膜を作製し、その後反応ガス雰囲気で
加熱して前記金属薄膜と反応させる方法 [発明が解決しようとする課題] しかしながら、上記(1)の方法の場合、化合物の
スパツタ率が金属のスパツタ率より低いため、成
膜速度が非常に遅い。また、化合物ターゲツトと
化合物薄膜との組成に差が生じるという問題点を
有する。
(1) A method of sputtering a compound target such as an oxide or nitride. (2) A method of sputtering a metal target in a reactive gas atmosphere. (3) A method of producing a metal thin film and then heating it in a reactive gas atmosphere to form the metal thin film. [Problem to be Solved by the Invention] However, in the case of the method (1) above, the sputtering rate of the compound is lower than that of the metal, so the film formation rate is very slow. Another problem is that there is a difference in composition between the compound target and the compound thin film.

上記(2)の方法の場合、金属ターゲツトの表面が
スパツタ中に反応することにより成膜速度が低下
する、基板温度を高くする必要があるなどの問題
点を有する。
In the case of method (2) above, there are problems such as the reaction of the surface of the metal target during sputtering, which reduces the film formation rate, and the need to raise the substrate temperature.

上記(3)の方法の場合、加熱温度が高い、膜厚の
厚い場合には長時間の処理が必要であるなどの問
題点を有する。
In the case of method (3) above, there are problems such as high heating temperature and long processing time required when the film is thick.

本発明は上記事情に鑑みてなされたもので、成
膜速度が大きく、かつ低い基板温度で化合物薄膜
がえられる化合物薄膜の形成方法を提供すること
を目的とする。
The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a method for forming a compound thin film that can be formed at a high film formation rate and at a low substrate temperature.

[課題を解決するための手段] 本発明は、真空槽と、この真空槽内に設けら
れ、スパツタリング用ターゲツトを備えた陰極
と、同真空槽内に設けられた電子サイクロトン共
鳴プラズマ源と、前記陰極とプラズマ源間に設け
られた仕切り板と、前記真空槽内に前記陰極、プ
ラズマ源のいずれにも対向して設けられ、被処理
物を支持する基板ホルダとを具備した装置を用い
て、スパツタリングにより金属薄層を形成した
後、この金属薄層に反応ガスプラズマを照射して
前記金属薄層を反応ガス成分と反応させて化合物
薄層を形成し、この工程を繰返すことを要旨とす
る。
[Means for Solving the Problems] The present invention provides a vacuum chamber, a cathode provided in the vacuum chamber and provided with a sputtering target, an electron cycloton resonance plasma source provided in the vacuum chamber, Using an apparatus comprising a partition plate provided between the cathode and the plasma source, and a substrate holder provided in the vacuum chamber facing both the cathode and the plasma source and supporting a processed object. The gist is to form a thin metal layer by sputtering, then irradiate the thin metal layer with reactive gas plasma to react the thin metal layer with the reactive gas component to form a thin compound layer, and repeat this process. do.

[作用] 本発明においては、スパツタリングにより金属
薄層を形成するため成膜速度は化合物をスパツタ
リングするのに比べて非常に大きい。また、この
金属薄層に反応ガスプラズマを照射するため、前
記金属薄膜と反応ガスとの反応が早く、かつ低温
で進行し、短時間で金属薄層が化合物薄層へと変
化し、この繰返しにより低い基板温度、大きな成
膜速度で化合物薄膜を形成することが可能とな
る。
[Function] In the present invention, since the metal thin layer is formed by sputtering, the film formation rate is much higher than that when sputtering a compound. In addition, since this metal thin layer is irradiated with reactive gas plasma, the reaction between the metal thin film and the reactive gas proceeds quickly and at a low temperature, and the metal thin layer changes into a compound thin layer in a short time, and this process is repeated. This makes it possible to form a compound thin film at a low substrate temperature and at a high film formation rate.

[実施例] 以下、本発明の一実施例について説明する。[Example] An embodiment of the present invention will be described below.

まず、本発明に係る薄膜装置について第1図を
参照して説明する。
First, a thin film device according to the present invention will be explained with reference to FIG.

図中の1は、真空槽である。この真空槽1の下
部には、上部にスパツタリング用ターゲツト2を
載置した陰極3が設けられている。また、同真空
槽1の下部で前記陰極3の近くには、CVD時に
用いるECRプラズマ源4が設けられている。こ
のプラズマ源4には、ECRプラズマ源用ガス導
入口5が接続されている。前記陰極3とプラズマ
源4間には、クロスコンタミネーシヨンを避ける
ため仕切り板6が設けられている。前記真空槽1
の上部には、被処理物としての基板7を支持する
回転可能な基板ホルダ8が、前記陰極3、プラズ
マ源4と対向するように配置されている。前記基
板ホルダ8と陰極3、スパツタリング源4間には
シヤツタ9が設けられ、このシヤツタ9の開閉に
より所定の時間のみスパツタリングによる成膜あ
るいはプラズマ照射による反応が起こるようにな
つている。ここで、基板ホルダ8は、スパツタリ
ング時には基板7を前記陰極3に、CVD時には
プラズマ源4に夫々対向させることができるよう
になつている。また、基板ホルダ8の回転を手動
又は自動でスパツタリング及びCVDの動作を連
動させることにより、スパツタリングとECRプ
ラズマCVDとを任意の順序でまた任意回数だけ
連続して行なうことが可能である。前記真空槽1
の側部で前記プラズマ源4側には、ゲートバルブ
10を備えた排気口11が設けられている。この
排気口11をプラズマ源4側に設けるのは、特に
CVD時のプラズマ流がターゲツト2の周囲に達
してターゲツト2を汚染するのを防ぐためであ
る。なお、図中の12は、スパツタリング用ガス
導入口である。
1 in the figure is a vacuum chamber. A cathode 3 on which a sputtering target 2 is placed is provided at the bottom of the vacuum chamber 1. Further, at the bottom of the vacuum chamber 1 and near the cathode 3, an ECR plasma source 4 used during CVD is provided. This plasma source 4 is connected to an ECR plasma source gas inlet 5 . A partition plate 6 is provided between the cathode 3 and the plasma source 4 to avoid cross contamination. The vacuum chamber 1
A rotatable substrate holder 8 that supports a substrate 7 as an object to be processed is arranged above the cathode 3 and the plasma source 4 so as to face the cathode 3 and the plasma source 4. A shutter 9 is provided between the substrate holder 8, the cathode 3, and the sputtering source 4, and opening and closing of the shutter 9 causes film formation by sputtering or reaction by plasma irradiation to occur only for a predetermined time. Here, the substrate holder 8 is configured so that the substrate 7 can be opposed to the cathode 3 during sputtering and to the plasma source 4 during CVD. Furthermore, by manually or automatically rotating the substrate holder 8 to interlock sputtering and CVD operations, sputtering and ECR plasma CVD can be performed continuously in any order and any number of times. The vacuum chamber 1
An exhaust port 11 equipped with a gate valve 10 is provided on the side of the plasma source 4 . It is especially important to provide this exhaust port 11 on the plasma source 4 side.
This is to prevent the plasma flow during CVD from reaching the surroundings of the target 2 and contaminating the target 2. Note that 12 in the figure is a sputtering gas inlet.

次に、上記した装置を用いて基板上に化合物薄
膜を形成する場合について詳述する。
Next, a case in which a compound thin film is formed on a substrate using the above-described apparatus will be described in detail.

実施例 1 本実施例では、スパツタリング源のターゲツト
として直径4″のFe片を使用し、プラズマ源4の
反応ガスとしてO2ガスを使用し、更に基板とし
て厚さ1mmのガラス板を使用した。
Example 1 In this example, a piece of Fe with a diameter of 4'' was used as the target of the sputtering source, O 2 gas was used as the reactive gas of the plasma source 4, and a glass plate with a thickness of 1 mm was used as the substrate.

まず、真空槽1内を予め2×10-7Torrまで排
気した。つづいて、真空槽1内にArガスを導入
して1×10-3Torrとした後、スパツタリングを
行い成膜速度5Å/secで基板7の主面に厚さ15
ÅのFe膜を形成した。次いで、前記基板7がタ
ーゲツト2の真上に位置する状態で基板ホルダ8
を180度回転して基板7をプラズマ源4の真上に
位置するように移動し、この位置でO2プラズマ
を10sec照射した。ここで、プラズマ源4にはO2
ガスを3sccm流し、マイクロ波の出力は300Wであ
る。また、基板の温度は60℃に保持した。この操
作を50回繰返すことにより、厚さ約750Åの化合
物薄膜を得た。
First, the inside of the vacuum chamber 1 was evacuated to 2×10 −7 Torr in advance. Next, after introducing Ar gas into the vacuum chamber 1 to set the pressure to 1×10 -3 Torr, sputtering was performed to form a film on the main surface of the substrate 7 at a film formation rate of 5 Å/sec to a thickness of 15
A Fe film with a thickness of 1.5 nm was formed. Next, with the substrate 7 positioned directly above the target 2, the substrate holder 8 is
was rotated 180 degrees to move the substrate 7 to a position directly above the plasma source 4, and at this position O 2 plasma was irradiated for 10 seconds. Here, the plasma source 4 contains O 2
Gas flows at 3sccm and the microwave output is 300W. Furthermore, the temperature of the substrate was maintained at 60°C. By repeating this operation 50 times, a compound thin film with a thickness of about 750 Å was obtained.

しかして、実施例1によれば、スパツタリング
により基板7の主面にFe膜を形成した後、基板
ホルダ8を回転させて基板7をプラズマ源4の真
上に移動し、この状態でO2ガスプラズマを照射
して化合物薄層を形成し、これらの操作を繰返す
ことにより、所定厚の化合物薄膜を低い基板温度
でしかも大きな成膜速度で作製することができ
る。事実、上記実施例1で得られた化合物薄膜を
X線回折したところ、得られた膜はγ−Fe2O3
あることが確認できた。また。VSMの磁気測定
結果、保磁力320(Oe)、飽和磁束密度4300ガウ
ス、残留磁束密度3400ガウス、角型比0.79で、保
磁力、残留磁束密度が高く磁気記録媒体に適した
ものであることが確認できた。また、プラズマ源
として電子サイクロトン共鳴マイクロ波プラズマ
源(ECRプラズマ源)を使用することにより、
より反応性の高いプラズマを得ることができるた
め、化合物形成を効率よく行なうことができる。
なお、前記プラズマ源は動作圧力が低いため、ス
パツタリング源と同一真空槽内で動作させるのに
適している。
According to Example 1, after forming the Fe film on the main surface of the substrate 7 by sputtering, the substrate holder 8 is rotated to move the substrate 7 directly above the plasma source 4, and in this state O 2 By irradiating gas plasma to form a compound thin layer and repeating these operations, a compound thin film of a predetermined thickness can be produced at a low substrate temperature and at a high deposition rate. In fact, when the compound thin film obtained in Example 1 was subjected to X-ray diffraction, it was confirmed that the obtained film was γ-Fe 2 O 3 . Also. The VSM's magnetic measurement results showed a coercive force of 320 (Oe), a saturation magnetic flux density of 4300 Gauss, a residual magnetic flux density of 3400 Gauss, and a squareness ratio of 0.79, indicating that it has a high coercive force and residual magnetic flux density and is suitable for magnetic recording media. It could be confirmed. In addition, by using an electron cycloton resonance microwave plasma source (ECR plasma source) as a plasma source,
Since plasma with higher reactivity can be obtained, compounds can be formed efficiently.
Note that since the plasma source has a low operating pressure, it is suitable for operating in the same vacuum chamber as the sputtering source.

実施例 2 本実施例では、スパツタリング源のターゲツト
として直径4″のFe片上にBiとYのチツプを張付
けたものを使用し、プラズマ源4の反応ガスとし
てO2ガスを使用し、更に基板として厚さ0.5mmの
Gd3Ga5O12ガーネツト単結晶板を使用した。
Example 2 In this example, a 4" diameter Fe piece with Bi and Y chips attached is used as the target of the sputtering source, O 2 gas is used as the reactive gas of the plasma source 4, and a substrate is used as the substrate. Thickness 0.5mm
A Gd 3 Ga 5 O 12 garnet single crystal plate was used.

まず、真空槽1内を予め2×10-7Torrまで排
気した。つづいて、真空槽1内にArガスを導入
して7×10-3Torrとした後、前記基板7がター
ゲツト2の真上に位置する状態で高周波出力
600Wでスパツタリングを行なつた。同時にプラ
ズマ源4にO2ガスを3sccm流し、マイクロ波出力
300WでO2ガスプラズマを基板7へ照射した。次
いで、この状態で基板ホルダ8を10rpmで回転さ
せ、スパツタリングによるBi−Fe−Y合金薄膜
の形成とO2ガスプラズマ照射を交互に行ない、
成膜時間60minで厚さ2.5μmの化合物薄膜を得た。
なお、基板の温度は200℃に保持した。
First, the inside of the vacuum chamber 1 was evacuated to 2×10 −7 Torr in advance. Next, after introducing Ar gas into the vacuum chamber 1 to set the temperature to 7×10 -3 Torr, high frequency output was performed with the substrate 7 positioned directly above the target 2.
Sputtering was performed at 600W. At the same time, 3 sccm of O 2 gas is flowed into the plasma source 4, and the microwave output is
The substrate 7 was irradiated with O 2 gas plasma at 300W. Next, in this state, the substrate holder 8 is rotated at 10 rpm, and a Bi-Fe-Y alloy thin film is formed by sputtering and O 2 gas plasma irradiation is performed alternately.
A compound thin film with a thickness of 2.5 μm was obtained in a film formation time of 60 min.
Note that the temperature of the substrate was maintained at 200°C.

実施例2で得られた薄膜をX線マイクロアナラ
イザーにより組成分析した結果、膜の組成は
Bi2.2Y0.8Fe5.0O12であり、X線回折の結果ガーネ
ツト単層であることが判明した。
As a result of compositional analysis of the thin film obtained in Example 2 using an X-ray microanalyzer, the composition of the film was found to be
Bi 2.2 Y 0.8 Fe 5.0 O 12 and X-ray diffraction revealed that it was a garnet single layer.

(比較例) 比較のため、上記実施例2と同一のターゲツ
ト、基板を使用し、スパツタリング用のガスとし
てArとO2の混合ガス(Ar:O2=7:1)を7×
10-3Torrの圧力となるように真空槽内に導入し、
高周波出力600W、基板温度200℃でスパツタリン
グを行なつた。また、基板はスパツタリング源の
真上に静止したままであり、プラズマ源は使用し
なかつた。その結果、成膜時間60minで厚さ
1.5μmの膜が形成された。しかるに、比較例で得
られた薄膜をX線マイクロアナライザーにより組
成分析した結果、膜の組成はBi2.0Y1.0Fe5.0O12
あるが、X線回折の結果膜は非晶質でありガーネ
ツト相は形成されていないことが判明した。
(Comparative Example) For comparison, the same target and substrate as in Example 2 were used, and a mixed gas of Ar and O 2 (Ar:O 2 = 7:1) was used as the sputtering gas at 7×
Introduced into a vacuum chamber to a pressure of 10 -3 Torr,
Sputtering was performed at a high frequency output of 600W and a substrate temperature of 200℃. Also, the substrate remained stationary directly above the sputtering source and no plasma source was used. As a result, the thickness was
A 1.5 μm film was formed. However, as a result of compositional analysis of the thin film obtained in the comparative example with an was found not to have been formed.

[発明の効果] 以上詳述した如く本発明によれば、低い基板温
度でしかも大きな成膜速度で化合物薄膜を形成で
き、もつて基板の種類の選択範囲を広げ、効率も
向上させて工業的にも有利な化合物薄膜の形成方
法を提供できる。
[Effects of the Invention] As detailed above, according to the present invention, it is possible to form a compound thin film at a low substrate temperature and at a high film formation rate, thereby expanding the selection range of substrate types, improving efficiency, and improving industrial efficiency. It is also possible to provide a method for forming a compound thin film which is advantageous for the present invention.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例に係る成膜装置の説
明図である。 1……真空槽、2……ターゲツト、3……スパ
ツタリング用陰極、4……ECRプラズマ源、5,
12……ガス導入口、6……仕切り板、7……基
板、8……基板ホルダ、9……シヤツタ、10…
…ゲートバルブ、11……排気口。
FIG. 1 is an explanatory diagram of a film forming apparatus according to an embodiment of the present invention. 1... Vacuum chamber, 2... Target, 3... Cathode for sputtering, 4... ECR plasma source, 5,
12... Gas inlet, 6... Partition plate, 7... Substrate, 8... Substrate holder, 9... Shutter, 10...
...gate valve, 11...exhaust port.

Claims (1)

【特許請求の範囲】[Claims] 1 真空槽と、この真空槽内に設けられ、スパツ
タリング用ターゲツトを備えた陰極と、同真空槽
内に設けられた電子サイクロトン共鳴プラズマ源
と、前記陰極とプラズマ源間に設けられた仕切り
板と、前記真空槽内に前記陰極、プラズマ源のい
ずれにも対向して設けられ、被処理物を支持する
基板ホルダとを具備した装置を用いて、スパツタ
リングにより金属薄層を形成した後、この金属薄
層に反応ガスプラズマを照射して前記金属薄層を
反応ガス成分と反応させて化合物薄層を形成し、
この工程を繰返すことを特徴とする化合物薄膜の
形成方法。
1. A vacuum chamber, a cathode provided in the vacuum chamber and provided with a sputtering target, an electron cycloton resonance plasma source provided in the vacuum chamber, and a partition plate provided between the cathode and the plasma source. After forming a thin metal layer by sputtering using an apparatus comprising: a substrate holder which is provided in the vacuum chamber to face both the cathode and the plasma source and supports the object to be processed; irradiating the thin metal layer with a reactive gas plasma to cause the thin metal layer to react with a reactive gas component to form a thin compound layer;
A method for forming a thin compound film characterized by repeating this process.
JP12742088A 1988-05-25 1988-05-25 Formation of thin compound film Granted JPH01298151A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12742088A JPH01298151A (en) 1988-05-25 1988-05-25 Formation of thin compound film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12742088A JPH01298151A (en) 1988-05-25 1988-05-25 Formation of thin compound film

Publications (2)

Publication Number Publication Date
JPH01298151A JPH01298151A (en) 1989-12-01
JPH0357185B2 true JPH0357185B2 (en) 1991-08-30

Family

ID=14959521

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12742088A Granted JPH01298151A (en) 1988-05-25 1988-05-25 Formation of thin compound film

Country Status (1)

Country Link
JP (1) JPH01298151A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2005087973A1 (en) * 2004-03-15 2008-01-31 株式会社アルバック Film forming apparatus and film forming method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4613015B2 (en) * 2004-02-10 2011-01-12 株式会社アルバック Film forming method and film forming apparatus

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6376867A (en) * 1986-09-19 1988-04-07 Mitsubishi Kasei Corp Reactive sputtering device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6376867A (en) * 1986-09-19 1988-04-07 Mitsubishi Kasei Corp Reactive sputtering device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2005087973A1 (en) * 2004-03-15 2008-01-31 株式会社アルバック Film forming apparatus and film forming method

Also Published As

Publication number Publication date
JPH01298151A (en) 1989-12-01

Similar Documents

Publication Publication Date Title
EP0265246B1 (en) Magnetic iron oxide film and production thereof
US4003813A (en) Method of making a magnetic oxide film with high coercive force
JPH0357185B2 (en)
JPH01319670A (en) Production single crystal magnetic film having biaxial anisotropy
JPH0364473A (en) Vapor deposition of titanium nitride by cold wall cvd reactor
JPH05255859A (en) Thin film forming equipment
JPH0357187B2 (en)
JPH05311429A (en) Thin film forming device
JPH04337445A (en) Manufacture of microsection
JPH03146656A (en) Method and device for film formation
JP2611976B2 (en) Method for manufacturing magneto-optical recording film
JPS6293366A (en) Manufacture of boron nitride film
JPH0620321A (en) Production of magnetic recording medium
JPS61168592A (en) Method of crystal growth by molecular beam
JPS62264427A (en) Magnetic recording medium
JPH0941143A (en) Production of recording medium
JPH025255A (en) Production of magneto-optical recording medium
JPH01297808A (en) Manufacture of magnetic garnet film
JPS61188760A (en) Photomagnetic recording medium
JPH0247011B2 (en) JISEITAIHAKUMAKUNOSEIZOHOHO
JPH04333561A (en) Formation of nitride film
JPH0499172A (en) Device for forming thin film
JPH06166592A (en) Method of forming metal epitaxial film
JPS63206387A (en) Production of diamond thin film
JPH01298153A (en) Formation of laminated film