JPS6376867A - Reactive sputtering device - Google Patents

Reactive sputtering device

Info

Publication number
JPS6376867A
JPS6376867A JP22102486A JP22102486A JPS6376867A JP S6376867 A JPS6376867 A JP S6376867A JP 22102486 A JP22102486 A JP 22102486A JP 22102486 A JP22102486 A JP 22102486A JP S6376867 A JPS6376867 A JP S6376867A
Authority
JP
Japan
Prior art keywords
sputtering
substrate
reactive
ionization device
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22102486A
Other languages
Japanese (ja)
Inventor
Toshihiko Yoshitomi
吉富 敏彦
Yukio Watabe
行男 渡部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Kasei Corp
Original Assignee
Mitsubishi Kasei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Kasei Corp filed Critical Mitsubishi Kasei Corp
Priority to JP22102486A priority Critical patent/JPS6376867A/en
Publication of JPS6376867A publication Critical patent/JPS6376867A/en
Pending legal-status Critical Current

Links

Landscapes

  • Physical Vapour Deposition (AREA)

Abstract

PURPOSE:To activate a reactive gas and to execute sputtering with high reactivity by introducing the reactive gas through an electron cyclotron resonance ionization device into a vacuum vessel at the time of sputtering. CONSTITUTION:The electron cyclotron resonance ionization device (ECR ionization device) 2 is mounted to the center of a substrate 3 of a sputtering device or the position of targets 1. While the targets 1 in the vacuum vessel A are sputtered, reactive ions are supplied from the ECR ionization device 2 to form the reaction product on the substrate 3 or in the vessel A. Said product is deposited on the substrate 3. The threshold of the intensity at which microwave and electron cyclotron frequencies coincide is generated at the center of the ionization part 2 by an electromagnet 4 at this time. The reactive gas is satisfactorily activated by charging of the relatively low-power microwaves by the above-mentioned mechanism.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は反応性スパッタリング装置に関するものである
。詳しくは、スパッタリング装置の真空槽中に窒素ガス
、酸素ガス等の反応性ガスを導入し、所望の反応を行な
わせつつスパッタリングを行なうスパッタリング装置に
関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a reactive sputtering apparatus. Specifically, the present invention relates to a sputtering apparatus in which a reactive gas such as nitrogen gas or oxygen gas is introduced into a vacuum chamber of the sputtering apparatus, and sputtering is performed while causing a desired reaction.

〔従来の技術〕[Conventional technology]

従来よりチン化物、酸化物等の薄膜を作製する方法とし
ては反応性スパッタ、反応性イオンブレーティング等が
知られている。
Reactive sputtering, reactive ion blating, and the like are conventionally known methods for producing thin films of tinides, oxides, and the like.

反応性スパッタ等では通常スパッタリング用の不活性ガ
ス中にN2.02などの反応させたいガスを混入させた
り、放電ガスとしてこれらのガスを用いたりすることに
よりチン化物や酸化物を作製する。
In reactive sputtering, tinides and oxides are usually produced by mixing a gas to be reacted, such as N2.02, into an inert gas for sputtering, or by using these gases as a discharge gas.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上述のような方式の反応性スパッタにおける問題点とし
ては、スパッタ時におけるN2やo2の活性化度が不十
分なために膜中にチッ素や酸素が充分に導入されず高度
な酸化物や窒化物が得られないという問題点があった。
The problem with the above-mentioned method of reactive sputtering is that due to insufficient activation of N2 and O2 during sputtering, nitrogen and oxygen are not sufficiently introduced into the film, resulting in the formation of advanced oxides and nitrides. There was a problem with not being able to get things.

たとえば超伝導材料として注目されるNb−Nなどの膜
を形成させようとした場合、NbとNの結合割合が/:
/にならず臨界温度が理論値より下まわっているという
現状である。
For example, when trying to form a film of Nb-N, which is attracting attention as a superconducting material, the bonding ratio of Nb and N is /:
The current situation is that the critical temperature is lower than the theoretical value.

反応性ガスが活性化しにくいための他の悪影響としては
スパッタ中に真空槽や基板から放出される02 (0)
やN20、OHに比べ活性化さね、たガス量が十分でな
いため膜中にN−結合や、o−結合以外にこれらのガス
が混入しているということがおこった。
Another adverse effect of the reactive gas being difficult to activate is the 02 (0) emitted from the vacuum chamber and substrate during sputtering.
Since the amount of the gas is not sufficient for activation compared to N20, OH, and OH, these gases may be mixed into the film in addition to N-bonds and O-bonds.

また反応ガスが十分活性化されていないと化学量論ルに
近いチツ化膜や酸化膜を得るためには堆積速度を遅くし
なければならないという問題点があった。
Another problem is that if the reaction gas is not activated sufficiently, the deposition rate must be slowed down in order to obtain a nitride film or oxide film close to stoichiometry.

°そこでたとえばスパッタ用放電の他にマイクロ波放電
を加えこれにより反応ガスを活性化し、これらの問題点
を解決しようとする方法が提案されている。
Therefore, a method has been proposed in which, for example, in addition to the sputtering discharge, a microwave discharge is added to thereby activate the reactive gas to solve these problems.

しかしマイクロ波放電でもガスの活性化は十分とはいい
がたく、十分な活性化を行なうには多量のマイクロ波の
投入が必要となる。
However, it cannot be said that even microwave discharge is sufficient to activate the gas, and a large amount of microwaves must be applied to achieve sufficient activation.

そこで、本発明者は、上記難点を解決するために、スパ
ッタ装置に電子サイクロトロン共鳴(FC!R)イオン
化装置を組み合せることによp効率的に、質のよい薄膜
を作製しうることを見出し、本発明に到達した。
Therefore, in order to solve the above-mentioned difficulties, the present inventor discovered that it is possible to efficiently produce a high-quality thin film by combining an electron cyclotron resonance (FC!R) ionization device with a sputtering device. , arrived at the present invention.

すなわち、本発明の要旨は、真空槽中に反応性ガスを導
入してスパッタリングを行なう反応性スパッタリング装
置において、反応性ガスを、真空槽に設置した電子サイ
クロトロン共鳴イオン化装置を経て真空槽中に導入する
構造としたことを特徴とする反応性スパッタリング装置
にある。
That is, the gist of the present invention is that, in a reactive sputtering apparatus that performs sputtering by introducing a reactive gas into a vacuum chamber, the reactive gas is introduced into the vacuum chamber through an electron cyclotron resonance ionization device installed in the vacuum chamber. A reactive sputtering apparatus is characterized in that it has a structure in which:

〔問題点を解決するための手段〕[Means for solving problems]

以下、本発明の詳細な説明する。 The present invention will be explained in detail below.

図/、図2はスパッタ装置にEORイオン化装置を組み
込んだ場合を示す。
FIG. 2 shows a case where an EOR ionization device is incorporated into a sputtering device.

すなわち、通常のスパッタ装置の基板の中心(図/)ま
たは(図2)ターゲットの位置にECRイオン化装置を
とりつけたものである。
That is, an ECR ionization device is installed at the center of the substrate of a normal sputtering device (Figure 2) or at the target position (Figure 2).

ターゲットのスパッタ法としては通常のRFスパッタ、
DCスパッタ、マグネトロンスパッタが用いられる。ま
ず反応性スパッタを行うには真空槽(A)中のターゲッ
ト(1)をスパッタしながら、ECRイオン化装置(2
)から反応性イオン(Nζ、N+など)を供給する。こ
のようにして基板(3)上または真空槽(A)内で反応
物ができ基板上に堆積される。
The target sputtering method is normal RF sputtering,
DC sputtering and magnetron sputtering are used. First, to perform reactive sputtering, sputter the target (1) in the vacuum chamber (A) while using the ECR ionization device (2).
) supplies reactive ions (Nζ, N+, etc.). In this way, reactants are formed on the substrate (3) or in the vacuum chamber (A) and deposited on the substrate.

図において(4)はマイクロ波と電子サロクロトン周波
数とが一致する強さの臨界をイオン化部(2)の中心で
発生させるための宵磁石であり、(5)は反応ガス導入
口、(6)はマイクロ波導波管である。
In the figure, (4) is an evening magnet for generating a critical force at the center of the ionization section (2) with a strength that matches the microwave and electron sarcroton frequencies, (5) is a reactant gas inlet, and (6) is a microwave waveguide.

図/の装置の場合基板回転は必ずしも必要ではないが図
−の場合は適当な速度で基板を回転させる必要がある。
In the case of the apparatus shown in figure 2, it is not necessarily necessary to rotate the substrate, but in the case of figure 2, it is necessary to rotate the substrate at an appropriate speed.

上記ECRイオン化装置としては、市販のEORイオン
化装置を備えたCVD装置又はエレチング装置のイオン
化装置を用いて供給することができる。
As the ECR ionization device, an ionization device of a CVD device or an eleching device equipped with a commercially available EOR ionization device can be used.

ECRをガスの活性化に用いる場合、磁場中におかれた
電子は角速度 mc!   m;電子の質量、C;光の速度)で磁力、
[(7) tわりに回転する。この周波数に電子のサイ
クロトロン運動が一致した時に電子は効率よく加速され
磁場に垂直な方向の運動エネルギー成分を得る。またこ
の磁場のために磁場を横切る方向の電子の拡散がおさえ
られる。例えば電子・イオン衝突、電子・中性子蔀突が
少ない場合(低圧の場合)は、電子の磁場を横切る方向
の速度をτ土として、2πυ土/Kが典型的拡散長とな
る。このためKCRでは、高湿に加熱された、密度の高
い電子が得られる。
When ECR is used to activate a gas, electrons placed in a magnetic field have an angular velocity mc! m: mass of electron, C: speed of light) and magnetic force,
[(7) Rotate instead of t. When the cyclotron motion of the electrons matches this frequency, the electrons are efficiently accelerated and obtain a kinetic energy component in the direction perpendicular to the magnetic field. This magnetic field also suppresses the diffusion of electrons across the magnetic field. For example, when there are few electron/ion collisions or electron/neutron collisions (low pressure), the typical diffusion length is 2πυ/K, where the velocity of the electron in the direction across the magnetic field is τ. Therefore, in KCR, electrons with high density and heated with high humidity can be obtained.

このように活性化された電子が得やすいので電子と中性
原子との衝突・中性原子の電離確率活性化度の高いガス
が得られることになる。
Since it is easy to obtain activated electrons in this way, a gas with a high activation probability of collision between electrons and neutral atoms and ionization of neutral atoms can be obtained.

本装置によれば作製した薄膜の、たとえば保護膜形成の
ために表面処理(表面チツ化等)を好適に行なうことが
できる。すなわち、薄膜作製後、図/の場合はそのまま
イオン化装置からがECRイオン化装置直上にくるよう
にし、ついでECRイオンを供給することにより行なう
According to this apparatus, it is possible to suitably perform surface treatment (surface titration, etc.) on the produced thin film, for example, to form a protective film. That is, after forming the thin film, in the case shown in the figure, the ionization device is placed directly above the ECR ionization device, and then ECR ions are supplied.

本装置においては、さらに装置をインラインにすること
により、好ましい態様を提供しうる。
In this device, a preferred embodiment can be provided by further making the device in-line.

このインライン装置は多数個のスパッタ室を真空状態で
連結してなるスパッタ装置であり各スパッタ室において
異種の材料の簿膜形成もしくは表面処理が可能となるも
のをいう。
This in-line device is a sputtering device in which a large number of sputtering chambers are connected in a vacuum state, and each sputtering chamber can perform film formation or surface treatment of different materials.

たとえば、(1)基板上に誘電体層を形成し、さらに柑
気記録層を設ける場合、(11)磁気記録層上にチツ化
物等の保護+tK、さらには誘電体層を設ける場合等に
、好適である。
For example, it is suitable for (1) forming a dielectric layer on a substrate and further providing a citrus recording layer, (11) providing protection of titanium, etc. + tK on a magnetic recording layer, and further providing a dielectric layer. It is.

〔発明の効果〕〔Effect of the invention〕

本発明に係る装置は、反応性の高いスパッタ法を提供し
以下のような特徴を有する。
The apparatus according to the present invention provides a highly reactive sputtering method and has the following features.

蒸着ガスまたはスパッタ原子と真空槽中または基板上で
反応する反応ガスの活性化源としてEORイオン化装置
を用いることにより、比較的低パワー(≦/ KW )
のマイクロ波の投入により十分反応ガスを活性化できる
By using an EOR ionization device as an activation source for a reactive gas that reacts with the deposition gas or sputtered atoms in the vacuum chamber or on the substrate, relatively low power (≦/KW) can be achieved.
The reaction gas can be sufficiently activated by applying microwaves.

またこの放電を安定に起すことができる。Moreover, this discharge can be stably caused.

【図面の簡単な説明】[Brief explanation of the drawing]

図7(a)、(b)及び図コ(a)、(b)は、本発明
に係る真空蒸着装置の主要部分の概略を示す。 /:ターゲット、 、2 : ECRイオン化部3:基
板、 A:真空槽(スパッタ装置)出 願 人  三菱
化成工業株式会社 代 理 人  弁理士 長谷用   −(ほか7名)
7(a), (b) and FIGS. 7(a) and 7(b) schematically show the main parts of the vacuum evaporation apparatus according to the present invention. /: Target, , 2: ECR ionization unit 3: Substrate, A: Vacuum chamber (sputtering device) Applicant: Mitsubishi Chemical Industries, Ltd. Agent Patent attorney Hase - (7 others)

Claims (1)

【特許請求の範囲】[Claims] (1)真空槽中に反応性ガスを導入してスパッタリング
を行なう反応性スパッタリング装置において、反応性ガ
スを、真空槽に設置した電子サイクロトロン共鳴イオン
化装置を経て真空槽中に導入する構造としたことを特徴
とする反応性スパッタリング装置。
(1) In a reactive sputtering device that performs sputtering by introducing a reactive gas into a vacuum chamber, the reactive gas is introduced into the vacuum chamber through an electron cyclotron resonance ionization device installed in the vacuum chamber. A reactive sputtering device featuring:
JP22102486A 1986-09-19 1986-09-19 Reactive sputtering device Pending JPS6376867A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22102486A JPS6376867A (en) 1986-09-19 1986-09-19 Reactive sputtering device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22102486A JPS6376867A (en) 1986-09-19 1986-09-19 Reactive sputtering device

Publications (1)

Publication Number Publication Date
JPS6376867A true JPS6376867A (en) 1988-04-07

Family

ID=16760291

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22102486A Pending JPS6376867A (en) 1986-09-19 1986-09-19 Reactive sputtering device

Country Status (1)

Country Link
JP (1) JPS6376867A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01298151A (en) * 1988-05-25 1989-12-01 Raimuzu:Kk Formation of thin compound film
JPH01298152A (en) * 1988-05-25 1989-12-01 Raimuzu:Kk Film-forming apparatus

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59200757A (en) * 1983-04-26 1984-11-14 Konishiroku Photo Ind Co Ltd Vapor depositing method
JPS6050167A (en) * 1983-08-26 1985-03-19 Nippon Telegr & Teleph Corp <Ntt> Plasma sticking device
JPS60135573A (en) * 1983-12-26 1985-07-18 Hitachi Ltd Method and device for sputtering

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59200757A (en) * 1983-04-26 1984-11-14 Konishiroku Photo Ind Co Ltd Vapor depositing method
JPS6050167A (en) * 1983-08-26 1985-03-19 Nippon Telegr & Teleph Corp <Ntt> Plasma sticking device
JPS60135573A (en) * 1983-12-26 1985-07-18 Hitachi Ltd Method and device for sputtering

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01298151A (en) * 1988-05-25 1989-12-01 Raimuzu:Kk Formation of thin compound film
JPH01298152A (en) * 1988-05-25 1989-12-01 Raimuzu:Kk Film-forming apparatus
JPH0357185B2 (en) * 1988-05-25 1991-08-30
JPH0357187B2 (en) * 1988-05-25 1991-08-30

Similar Documents

Publication Publication Date Title
US6238527B1 (en) Thin film forming apparatus and method of forming thin film of compound by using the same
US4599135A (en) Thin film deposition
US20080026548A1 (en) Film Forming Apparatus and Film Forming Method
US3409529A (en) High current duoplasmatron having an apertured anode comprising a metal of high magnetic permeability
WO1988002791A1 (en) Thin film formation apparatus
CN103382547A (en) Reactive sputter deposition of dielectric films
US6090247A (en) Apparatus for coating substrates
JPS6376867A (en) Reactive sputtering device
US20110233049A1 (en) Sputtering system
Matsuoka et al. Oxide film deposition by radio frequency sputtering with electron cyclotron resonance plasma stimulation
Musil Basic properties of low-pressure plasma
JP2970916B2 (en) Digital CVD method
JPH0317254A (en) Method and device for producing oxide thin film
JPH0417669A (en) Film forming method using plasma and rf ion plating device
JP3005381B2 (en) Superconductor sample etching method
JPS61127862A (en) Method and device for forming thin film
JPH067548B2 (en) Thin film formation method
JP3416173B2 (en) Electron beam heating type vapor deposition apparatus and vapor deposition method
JP2687468B2 (en) Thin film forming equipment
JPH03253574A (en) Formation of thin film and thin film forming device
JPH01163917A (en) Compound membrane formation method
JPH02224234A (en) Plasma treatment device and its treatment method
JPH0243357A (en) Production of thin superconducting film
JPS63262457A (en) Preparation of boron nitride film
JPH0428863A (en) Method and device for forming film