JPH0364473A - Vapor deposition of titanium nitride by cold wall cvd reactor - Google Patents

Vapor deposition of titanium nitride by cold wall cvd reactor

Info

Publication number
JPH0364473A
JPH0364473A JP2103284A JP10328490A JPH0364473A JP H0364473 A JPH0364473 A JP H0364473A JP 2103284 A JP2103284 A JP 2103284A JP 10328490 A JP10328490 A JP 10328490A JP H0364473 A JPH0364473 A JP H0364473A
Authority
JP
Japan
Prior art keywords
wafer
chamber
titanium nitride
gas
vapor deposition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2103284A
Other languages
Japanese (ja)
Inventor
Arthur Sherman
アーサー・シャーマン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Varian Medical Systems Inc
Original Assignee
Varian Associates Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Varian Associates Inc filed Critical Varian Associates Inc
Publication of JPH0364473A publication Critical patent/JPH0364473A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/76Making of isolation regions between components
    • H01L21/763Polycrystalline semiconductor regions
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45563Gas nozzles
    • C23C16/45565Shower nozzles
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/02Pretreatment of the material to be coated
    • C23C16/0227Pretreatment of the material to be coated by cleaning or etching
    • C23C16/0236Pretreatment of the material to be coated by cleaning or etching by etching with a reactive gas
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/34Nitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45512Premixing before introduction in the reaction chamber
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/34Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies not provided for in groups H01L21/0405, H01L21/0445, H01L21/06, H01L21/16 and H01L21/18 with or without impurities, e.g. doping materials
    • H01L21/46Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/428
    • H01L21/461Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/428 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/4763Deposition of non-insulating, e.g. conductive -, resistive -, layers on insulating layers; After-treatment of these layers

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

PURPOSE: To execute vapor deposition without damaging the circuit elements on a cleaned wafer by passing a mixture composed of ammonia and titanium chloride heated to a prescribed temp. on the wafer, thereby forming the blanket layers of titanium nitride.
CONSTITUTION: The semiconductor wafer 24 is cleaned by exposing the wafer to ozone. Next, the cleaned wafer 24 is loaded into a cold wall CVD chamber 10. Atmosphere gases are sucked out of the chamber 10 via exhaust valves 34, 36, 40. The wafer 24 is then heated and treating gases 32 contg. the titanium chloride and the ammonia and a diluting agent selected from hydrogen and/or nitrogen are passed thereon at ≥250°C.
COPYRIGHT: (C)1991,JPO

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は半導体ウェーハ基質の上に窒化チタンのブラン
ケット層を蒸着する方法に関するものである。
TECHNICAL FIELD OF THE INVENTION The present invention relates to a method of depositing a blanket layer of titanium nitride over a semiconductor wafer substrate.

〔発明の背景〕[Background of the invention]

最も古いCVD技法の工つは窒化チタンの皮膜の付着で
あるが、これは最初1920年代に報告されている。(
シー・エフ・パラエル編著ペーパー・デポジションニュ
ーヨーク・ワイリー刊、1966年、378ページ参照
) かような皮膜は多年の間宝石又は工具のコーティン
グとして商業的に使用されたが、きわめて高い蒸着温度
が要求されるため集積回路用の薄膜としての関心を限定
してきた。最近になって、反応性スパッタリング技術が
より低温のコーティングを可能にしたので、かような薄
膜は今日工具コーティングが高湿に感じやすい所で、及
び高度集積回路並びに太陽電池における拡散バリヤとし
て使用されている。(ジェオ・イー・サントグレンほか
シン・ソリッド・フィルムス105゜353 (198
3)参照)。特に集積回路については、物理的付着技術
(すなわちスパッタリング)の乏しい工程範囲が問題で
ある。他方、CVDフィルムは適合性があるようなので
、発展性ある低温CVD処理法が実際的関心をもつであ
ろう。
The oldest CVD technique involves the deposition of titanium nitride films, which were first reported in the 1920s. (
(See Paper Deposition, edited by C.F. Parael, New York Wiley, 1966, p. 378) Such films have been used commercially as jewelry or tool coatings for many years, but extremely high deposition temperatures are required. This has limited their interest as thin films for integrated circuits. More recently, reactive sputtering techniques have enabled lower temperature coatings, so such thin films are now used where tool coatings are sensitive to high humidity and as diffusion barriers in highly integrated circuits and solar cells. ing. (Geo E. Sandgren et al. Thin Solid Films 105°353 (198
3)). Particularly for integrated circuits, the poor process coverage of physical deposition techniques (ie, sputtering) is a problem. On the other hand, as CVD films appear to be compatible, an evolving low temperature CVD processing method may be of practical interest.

CVDのTiNを作るのに使用される最初の化学はTj
CQ4.N2及びN2の混合物を常圧で加熱試料の上に
通すことから成る。より最近の研究では、CVDのTj
NはTjCQ4及びNH3から、古い方法で必要とされ
た約1000℃に比べ500℃という低い温度で蒸着し
得ることが示されている。
The first chemistry used to make CVD TiN was Tj
CQ4. It consists of passing a mixture of N2 and N2 at normal pressure over the heated sample. More recent studies have shown that CVD Tj
It has been shown that N can be deposited from TjCQ4 and NH3 at temperatures as low as 500°C compared to the approximately 1000°C required by older methods.

(ニス・アール・カーラほかシン・ソリッド・フィルム
ス140.277(1986)参照)同様にして、NH
3゜TiC114法をホットウォールチューブ反応器内
で低圧で行なうと、900〜1000 ’Cのアニール
が必要ではあるものの、700℃でTiNフィルムを蒸
着できることも示されている。
(Refer to Nis R Kara et al. Thin Solid Films 140.277 (1986)) Similarly, NH
It has also been shown that the 3° TiC114 process performed at low pressure in a hot wall tube reactor can deposit TiN films at 700°C, although an anneal of 900-1000'C is required.

CVDによりTaSi2を蒸着する試みの中で既に示さ
れているように、蒸着がホラ1ヘウオールで3 なされたか、又はコールドウオールでなされたかによっ
て、蒸着フィルムの性質に暑しい相違があ−ジャジー・
ノイズ・パブリケーション1987.100ページ参照
)従って、低圧コールドウオールC■D反応器内で研究
を実行することによりTjNの蒸着のためNH3+Ti
CQ、法をさらに利用することが決定された。その」二
、qt−ウェーハ方式が工程に対するより大きな制御を
もたらすので、高い十分な蒸着率が実現されるなら実際
的アプローチであり得る。
As has already been shown in attempts to deposit TaSi2 by CVD, there are dramatic differences in the properties of the deposited film depending on whether the deposition is done in a hot wall or a cold wall.
Noise Publication 1987, page 100) Therefore, by carrying out the study in a low-pressure cold wall C■D reactor, NH3+Ti for the deposition of TjN.
CQ, it was decided to make further use of the law. The second, qt-wafer approach provides greater control over the process and may be a practical approach if high and sufficient deposition rates are achieved.

〔発明の目的〕[Purpose of the invention]

従って本発明の主たる目的は、半導体ウェーハ」二に窒
化チタンの低反応性ブランケット層を、つ工−ハ上の回
路素子を傷めることなく、且つ高温度アニールを必要と
することなく、蒸着するための方法と装置を提供するこ
とである。
It is therefore a primary object of the present invention to deposit a low reactivity blanket layer of titanium nitride onto a semiconductor wafer without damaging the circuitry on the wafer and without requiring high temperature annealing. An object of the present invention is to provide a method and apparatus for.

〔発明の概要〕[Summary of the invention]

本発明のこれらの目的及びその他説明の進むに従って明
らかになるであろう他の目的は、本発明により、要する
にイオン化水素ガスでウェーハを清浄にした後に、NH
3とT i CQ4の少なくとも250°Cに加熱され
た混合物を使って加熱ウェーハ上にTjNのプランケッ
I−層を蒸着することにより遠戚される。
These and other objects of the present invention that will become apparent as the description progresses are such that, in short, after cleaning the wafer with ionized hydrogen gas, the NH
3 and T i CQ4 by depositing a Plancket I-layer of TjN on the heated wafer using a mixture heated to at least 250°C.

〔発明の作用〕[Action of the invention]

本発明の重要な利点は、高温度アニールを行なうことを
要さずに、基質への接触抵抗が低い均一なTiNのブラ
ンケット層を付着できる能力である。
An important advantage of the present invention is the ability to deposit a uniform blanket layer of TiN with low contact resistance to the substrate without the need for high temperature annealing.

〔実施例〕〔Example〕

以下図面を参照して本発明の実施例について説明するが
、図面に用いられる符号を一括して説明すると、以下の
通りである。
Embodiments of the present invention will be described below with reference to the drawings, and the symbols used in the drawings will be collectively explained as follows.

10・・・CVD反応器チェンバ 12.14・・ターボ分子ポンプ 16・・・ロードロック 18・・・蝋型弁 20・・・気密水冷式光ハウジング 22・・ガスマニホルド 24・・・ウェーハ 26・・・高温計 28・・・BaF2ウィンドウ 30・・・移動アーム 32・・ガスボックス 34.36,38.40・・ゲート弁 42・・・タングステンハロゲンランプ50・・・酸化
アルミニウムカップ 52・・・ステンレス鋼フェースプレート54・・チュ
ーブ陰極 56・・・冷却チャンネル 58・・排気ガス 第工図に略示するような研究用CVD反応器の中で実験
を行なった。チェンバ10はステンレス鋼製で、すべて
のフランジ部にメタルガスケラ1〜を使用している。タ
ーボ分子ポンプ12.14が主チェンバ10とロードロ
ック16を排気するため使用され、ルーツ・ブロワ(図
示せず)が多量の反応ガスを蒸着に適当な圧力で流すの
に使用される。蝶型弁18は圧とガス流の独立の制御を
可能にする。よく特徴化された実験を可能にするため、
系は焼成処理されたから5 X 10−eトールの基礎
圧力が容易に得られた。
10...CVD reactor chamber 12.14...Turbo molecular pump 16...Load lock 18...Wax type valve 20...Airtight water-cooled light housing 22...Gas manifold 24...Wafer 26... ... Pyrometer 28 ... BaF2 window 30 ... Moving arm 32 ... Gas box 34, 36, 38, 40 ... Gate valve 42 ... Tungsten halogen lamp 50 ... Aluminum oxide cup 52 ... Experiments were conducted in a research CVD reactor as schematically shown in the stainless steel faceplate 54...tube cathode 56...cooling channel 58...exhaust diagram. The chamber 10 is made of stainless steel, and metal gas scalers 1 to 1 are used for all flange parts. Turbomolecular pumps 12,14 are used to evacuate main chamber 10 and loadlock 16, and roots blowers (not shown) are used to flow bulk reactant gases at appropriate pressures for deposition. Butterfly valve 18 allows independent control of pressure and gas flow. To enable well-characterized experiments,
Since the system was calcined, base pressures of 5 x 10-e Torr were easily obtained.

気密水冷式ハウジング20内のタングステンハロゲンラ
ンプ(10kw) 42がチェンバ10の内側に位置づ
けられる。熱エネルギーが石英ウィンドウを通してチェ
ンバ内へ放射され、そこにウェーハ24(表を上)がラ
ンプ組立体の上敷インチに置かれる。
A tungsten halogen lamp (10 kW) 42 in an airtight water-cooled housing 20 is positioned inside the chamber 10. Thermal energy is radiated through the quartz window into the chamber where the wafer 24 (face up) is placed in the overlay of the lamp assembly.

ウェーハの装填は、ベロー式絶縁移動アーム30を使っ
て真空ロードロックを通じて行なわれる。つ工−ハ温度
は、チェンバ10の外部に置かれたリニア・ラブ(商標
1ooo)高温計26で測定される。ウェーハの裏側は
BaF2ウィンドウ28を通じて観測されるから200
℃もの低い温度が読み取れる。ランプ24は5CR(図
示せず)によって給電され、温度はユーロサーム制御器
808(図示せず)で高温計26の出力を使って制御さ
れる。このシステムで900℃もの高温が得られた。
Wafer loading is accomplished through a vacuum load lock using a bellows type insulated transfer arm 30. The chamber temperature is measured with a Linear Lab pyrometer 26 placed outside the chamber 10. Since the back side of the wafer is observed through the BaF2 window 28, 200
Temperatures as low as ℃ can be read. The lamp 24 is powered by a 5CR (not shown) and the temperature is controlled using the output of the pyrometer 26 with a Eurotherm controller 808 (not shown). With this system, temperatures as high as 900°C were obtained.

ガスはガスマニホルド22から流量制御器を使って導入
される。TiCQ4は40℃の温度で直接気化されて、
この実験に必要な蒸気圧を与える。
Gas is introduced from gas manifold 22 using a flow controller. TiCQ4 was directly vaporized at a temperature of 40℃,
Provide the necessary vapor pressure for this experiment.

ここに報告する実験は、温度範囲が450℃〜700℃
、圧力範囲は100mtorrから300 m tor
r、流速はT i CQ、について>2secmからN
H3について〉40secmであった。本発明では、希
釈剤としてHe、又はAr、又はN2ではなく、N2を
使用することを選ぶ。
The experiments reported here ranged from 450°C to 700°C.
, the pressure range is from 100mtorr to 300mtorr
r, the flow rate is >2 sec for T i CQ, N
Regarding H3> it was 40 sec. In the present invention, we choose to use N2 as a diluent rather than He, or Ar, or N2.

報告するす^ての実験は、NH3対TicQ、比20で
実施された。また、Ti(1,とNH3は室温で反応し
て固形生成物を生じるから、N2はTjCl、ガスマニ
ホルドをNH3マニホルドから絶縁するため使用された
。選ばれた流速は、T i CQ4について2.2 s
ccm、 NHaについて44 secm、 N2につ
いて20 secmであった。ついで薄膜を4“(約1
0.16cm)の裸のシリコンウェーハ上に種々の圧力
と温度で蒸着させた。厚さは大体1500人であった。
All experiments reported were performed at a ratio of NH3 to TicQ of 20. Also, since Ti(1, and NH3 react at room temperature to produce a solid product, N2 was used to isolate the TjCl, gas manifold from the NH3 manifold. The chosen flow rates were 2. 2s
ccm, 44 secm for NHa, and 20 secm for N2. Next, apply a thin film of 4" (approximately 1
0.16 cm) bare silicon wafers at various pressures and temperatures. The thickness was approximately 1,500 people.

すべての蒸着について薄膜は柱状配向をもつ多結晶性で
あった。第2図に見られるように結晶は大体において径
が膜厚に等しかった。また、表面は比較的滑らかで、5
0〜100人の目立つ点がかろうじて見えるくらいであ
った。
For all depositions, the films were polycrystalline with columnar orientation. As seen in Figure 2, the diameter of the crystals was approximately equal to the film thickness. In addition, the surface is relatively smooth, and
I could barely see the conspicuous spots between 0 and 100 people.

1つの蒸着をパターンつきウェーハについて行ない、そ
の薄膜の走査電子顕微鏡写真を第3図に示す。この薄膜
は約1500人厚で、きわめて正角投影的に被覆してい
ると認められる。薄膜表面に現われる粒子はガス相柱状
核生成によるもののようである。しかし大多数の本発明
の蒸着ではこの作用は見られない。
One deposition was performed on a patterned wafer and a scanning electron micrograph of the film is shown in FIG. This film is approximately 1500 mm thick and appears to have a highly conformal coverage. The particles appearing on the thin film surface appear to be due to gas phase columnar nucleation. However, this effect is not observed in most inventive depositions.

蒸着したすべての薄膜は、スコッチテープ試験で接着性
を試験され、容易にパスした。従って2000人厚以下
の薄膜について、その接着性に問題はないと見られる。
All deposited films were tested for adhesion with the Scotch tape test and passed easily. Therefore, it seems that there is no problem with the adhesion of thin films with a thickness of 2000 mm or less.

蒸着された薄膜の大多数は特徴的なTiNの金色を呈し
た。きわめて薄い膜(=500A)は銀色がかった金色
を現わし、より厚い膜(; 2000ス)は多くローズ
がかった金色を呈した。これに対しカーラ及びゴートン
の方法により蒸着した薄膜はどれも期待した金色を呈し
なかったと報告されている。
The majority of deposited films exhibited the characteristic TiN gold color. Very thin films (=500 A) appeared silvery-gold, while thicker films (; 2000 A) exhibited a rose-gold color. In contrast, it has been reported that none of the thin films deposited by the Carrer and Gorton method exhibited the expected gold color.

蒸着薄膜の元素組成を決定するためオージェ分析及びR
I3S分析を行なった。オージェ分析は薄膜中の塩素と
酸素について情報を与えたが、Ti/N比はTiとNの
線が重なって決定できなかった。典型的なオージェの深
さIIII線を第4図に示す。
Auger analysis and R
I3S analysis was performed. Auger analysis gave information about chlorine and oxygen in the thin film, but the Ti/N ratio could not be determined because the Ti and N lines overlapped. A typical Auger depth III line is shown in FIG.

興味があるのは表面近くで高い酸素濃度があることであ
る。この層は典型的に60A厚のオーダーで、表面での
TiNの酸化を表わしている。同様に、SlとT i 
Nが混じり合う界面で200λ厚の層があるようである
。しかし、薄膜の大部分はTiNであると見られる。
Of interest is the high oxygen concentration near the surface. This layer is typically on the order of 60A thick and represents oxidation of the TiN at the surface. Similarly, Sl and T i
There appears to be a 200λ thick layer at the interface where N is mixed. However, the majority of the thin film appears to be TiN.

RBS分析でTi/N比を決定することができた。T≧
−550℃でのすべての薄膜について、この比は1であ
った。T=450℃での蒸着は窒素に富んだ膜を示し、
Ti/Nは0.84〜0.92の範囲であった。
The Ti/N ratio could be determined by RBS analysis. T≧
This ratio was 1 for all films at -550°C. Deposition at T=450°C shows a nitrogen-rich film;
Ti/N was in the range of 0.84 to 0.92.

第5図は圧力と温度による酸素濃度の変化を示す。より
高温の蒸着はより高い濃度を示した。同様に、圧力が低
ければそれだけ酸素濃度が低くなることが認められた。
FIG. 5 shows the change in oxygen concentration due to pressure and temperature. Higher temperature deposition showed higher concentrations. Similarly, it was observed that the lower the pressure, the lower the oxygen concentration.

供給ガスにはほとんど酸素は導入されていないから、こ
れはチェンバ内の水蒸気と空気の痕跡から来たものにち
がいない。
Since very little oxygen was introduced into the feed gas, this must have come from traces of water vapor and air in the chamber.

圧力と温度に対する塩素濃度の変化を第6図に示す。酸
素の挙動と反対に、高い蒸着温度で塩素含有量は低くな
る。同様に、450°C以」二で高い圧力のケースは少
量の塩素を示した。以前に表面における塩素含有量は厚
みの中より7倍も高いという報告がなされているが、我
々の実験においてはそのような表面ピークは観測されな
かった。
Figure 6 shows the change in chlorine concentration with respect to pressure and temperature. Contrary to the behavior of oxygen, the chlorine content becomes lower at higher deposition temperatures. Similarly, the high pressure cases above 450°C showed small amounts of chlorine. Although it has previously been reported that the chlorine content at the surface is seven times higher than in the thickness, no such surface peak was observed in our experiments.

約40年前にCVDにより形成されたTiNはその中に
いくらか水素を取り込むことが示されている。(ニ)・
エイチ・ボラードほか トランザクションズ・オブ・ザ
・ファラデー・ソサエティ46.190 (1950)
参照)この議論を調べるため、チャールズ・エバンス・
アソシエイツにより開発されている前方散乱技術を選ん
だ(ティ・ティ・パーデインほかシン・ソリッド・フィ
ルムス119.429(1984)参照)この手続にお
いては高エネルギーHeg子が浅い角度で薄膜を叩く。
About 40 years ago, TiN formed by CVD was shown to incorporate some hydrogen into it. (d)・
H. Bollard et al. Transactions of the Faraday Society 46.190 (1950)
) To examine this argument, Charles Evans
We chose the forward scattering technique developed by T.T. Pardein et al. Thin Solid Films 119.429 (1984) in this procedure, in which high-energy Heg particles strike a thin film at a shallow angle.

He原子並びに叩き出された水素原子は前方へ散乱する
。Heを炉去し1ま た後、測定された水素フラックスは水素原子の薄膜中に
ある数値密度についての情報をもたらす。
The He atoms and the ejected hydrogen atoms are scattered forward. After removing the He, the measured hydrogen flux provides information about the numerical density present in the thin film of hydrogen atoms.

本発明の薄膜についてのかような測定の結果を第7図に
示す。ここで蒸着温度が上昇すると水素含有量は増すが
、高い圧力はこれを抑制するように見える。
The results of such measurements on the thin film of the present invention are shown in FIG. Here, increasing the deposition temperature increases the hydrogen content, but high pressure appears to suppress this.

以前に述べられているように、もし単一ウェーハ反応器
の概念を追及するのであれば、高い蒸着速さが有利であ
ろう。現在の実験において我々は、z700人/分もの
高い蒸着速さを実現し得ている。
As previously stated, high deposition rates would be advantageous if a single wafer reactor concept is pursued. In current experiments we have been able to achieve deposition rates as high as z700 people/min.

蒸着速さの圧力と温度による変化を第8図に示す。FIG. 8 shows changes in deposition rate depending on pressure and temperature.

圧力と温度の増加はより高い蒸着速さに導くようである
。ここから予期されるように、最も高い温度において拡
散は制限され、我々の実験はすべて同し流量フラックス
で行なわれたから、圧力と共に著しい変化があるとは期
待てきない。以前の研究は、ここに報告した蒸着速さの
増加はほとんど困難がないはずだと示唆している。
Increasing pressure and temperature appears to lead to higher deposition rates. As expected from this, diffusion is limited at the highest temperatures, and since all our experiments were done with the same flow flux, we would not expect it to change significantly with pressure. Previous studies suggest that the deposition rate increases reported here should be without much difficulty.

ブロメ1〜リックス・オムニ・マツプ機器でのシー1へ
抵抗0測定並びにオージェ曲線から導かれた】2 膜厚とで薄膜抵抗を計算することができた。結果を第9
図に示す。ここで最低値はより高い圧力と温度で得られ
た。反応性スパッタリングにより付着させた薄膜と比較
して、薄膜の相当なイオンボンバードメン1−を用いて
わずか100μΩ−clnくらいの低い値が得られただ
けである。(エヌ・サーチエリばかソリッド・ステート
・テクノロジー、1988年2月、p75参照)。NH
3を使って蒸着された熱的CVD薄膜について、高温ホ
ットチューブ実験での最も低い値は、700℃蒸着につ
いて75〜100μΩcmであると報告されている。大
気圧コールドウオール装置について報告されている最低
値は650℃蒸着について300μΩ−cmであった。
It was possible to calculate the thin film resistance from Blomme 1 to Sea 1 resistance measurements with the Rix Omni-Map instrument and the film thickness [2] derived from the Auger curve. 9th result
As shown in the figure. Here the lowest values were obtained at higher pressures and temperatures. Compared to thin films deposited by reactive sputtering, values as low as only 100 .mu..OMEGA.-cln have been obtained with substantial ion bombardment of thin films. (See N.Searchieri Baka Solid State Technology, February 1988, p.75). N.H.
The lowest values in high-temperature hot tube experiments have been reported for thermal CVD thin films deposited using No. 3 to be 75-100 μΩcm for 700° C. deposition. The lowest value reported for atmospheric pressure cold wall equipment was 300 μΩ-cm for 650° C. deposition.

ここに記載した実験結果に基づいて、本発明者は、低圧
コールドウオールCVD反応器を、穏和な温度と高い蒸
着速さで化学量論的Tj、N薄膜を蒸着するのに使用し
得ることをここに明示した。
Based on the experimental results described herein, the inventors have shown that a low pressure cold wall CVD reactor can be used to deposit stoichiometric Tj,N thin films at moderate temperatures and high deposition rates. It was clearly stated here.

薄膜は少量の塩素、酸素及び水素を含有していることが
確定された。薄膜は多結晶性であり、高度の正角性(c
onformality)をもつコートステップ(co
at 5teps)である。接着性に問題ばないようで
あり、薄膜はよく知られたTjNの金色を呈する。
It was determined that the film contained small amounts of chlorine, oxygen and hydrogen. The thin film is polycrystalline and highly conformal (c
coat step (co formality)
at 5 tep). There appears to be no problem with adhesion, and the thin film exhibits the well-known golden color of TjN.

蒸着されたばかりの抵抗値は100μΩ−cmと低いこ
とが見出された。
The as-deposited resistance was found to be as low as 100 μΩ-cm.

第10図及び第11図に示すような、シャワーヘッド・
ガスデイストリビユータ・ミキシングチェンバをウェー
ハ上方散インチに置いて、これを通じて反応性ガスを導
入した。T j CQ、とNH3は室温で反応して固体
(粉)付加物TjCΩ、・nNH3(ここで2 < n
 < 8 )を形成するから、これらガスを導入し混合
して、粒子のないチェンバを維持するのは困難である。
A shower head as shown in Figures 10 and 11.
A gas distributor/mixing chamber was placed an inch above the wafer through which the reactive gas was introduced. T j CQ, and NH3 react at room temperature to form a solid (powder) adduct TjCΩ, ·nNH3 (where 2 < n
< 8), it is difficult to introduce and mix these gases to maintain a particle-free chamber.

(ニス・アール・カーラほかシン・ソリッド・フィルム
ス140.277(1986)参照)しかし、250〜
300°Cの範囲の温度については粉状付加物は生成さ
れないが、同時にこの温度は認め得るTiN蒸着を可能
にするには低すぎる。予期の如く、我々のガスデイスト
リビユータ・ミキシングチェンバを電気加熱して250
〜300℃にした時、付着物はチェンバにも蒸着を受け
ているウェーハにも認められない。金属製CVD反応器
の内部諸表面を付着物や粒子のない状態に維持するため
、該諸表面すへてを250〜300℃に保つことができ
る。
(Refer to Nis Al Kara et al. Thin Solid Films 140.277 (1986)) However, 250~
For temperatures in the range of 300° C. no powdery adducts are produced, but at the same time this temperature is too low to allow appreciable TiN deposition. As expected, we electrically heated our gas distributor/mixing chamber to 250
At ˜300° C., no deposits are observed either in the chamber or on the wafer undergoing deposition. In order to keep the internal surfaces of the metal CVD reactor free of deposits and particles, all of the surfaces can be maintained at 250-300°C.

これは反応器を清掃するのに必要な時間を省くことで、
産出量を改善する追加的利益をもたらす。
This saves the time needed to clean the reactor.
Provides additional benefits that improve output.

拡散バリヤとして働くことに加え、CVDによるTiN
薄膜はシリコンに対する低抵抗オーム接触をもたなけれ
ばならない。不幸にしてシリコンはきわめて反応性の材
料であり、大気にさらすときわめて濃い自生的な酸化物
(〜25A)を生成する。
In addition to acting as a diffusion barrier, CVD TiN
The thin film must have a low resistance ohmic contact to the silicon. Unfortunately, silicon is a very reactive material and forms very thick autogenous oxides (~25A) when exposed to the atmosphere.

この酸化物をCVDによるTiNの蒸着前にそのま\に
しておくと、TjNとSiの界面にピーク濃度(20%
)の酸素が生じ、これが許容できない高い接触抵抗の原
因となる。
If this oxide is left as is before TiN is deposited by CVD, a peak concentration (20%) will occur at the interface between TjN and Si.
) of oxygen, which causes an unacceptably high contact resistance.

この問題を除くため、各蒸着の前に各ウェーハにその場
でラフ1−エツチングを行なう。まず、ウェーハをチェ
ンバに入れる前に1分間ウェーハにオゾンを当てる。こ
れでウェーハ表面にある炭素を除去する。これは痕跡量
の炭素でも自生的酸化物にあると、その除去を一層困難
にするから重要なことである。ついで、ウェーハが反応
器チェン5 バ内にある間に、その場で中空陰極放電を小さい酸化ア
ルミニウムカップ(第12図)の内側で行なう。
To eliminate this problem, each wafer is rough-etched in-situ before each deposition. First, the wafer is exposed to ozone for 1 minute before it is placed in the chamber. This removes carbon on the wafer surface. This is important because even trace amounts of carbon in autogenous oxides make removal more difficult. An in situ hollow cathode discharge is then performed inside a small aluminum oxide cup (FIG. 12) while the wafer is in the reactor chamber 5.

酸化アルミニウムカップ50はステンレス鋼のフェース
プレート52を有する。陰極として機能するチューブ5
4(水冷式のチャンネル56を備えている)から水素を
吹き込む。水素ガスは中空陰極54に吹き込まれ、ここ
からの排気ガス58はH2、H1H’及びe−の混合物
である。イオンは急速に電子と再結合するが、水素原子
はウェーハ24の表面を打つのに十分長く持続する。そ
こで自生的酸化物と反応してH20蒸気を生成し、これ
はポンプで除去される。こうして生成されたTiN又は
Si薄膜の界面領域をオージェ走査して、この手続が有
効であるとの明らかな証拠が得られた。この地点で、未
処理ウェーハについてそうであったような酸素のピーク
の証拠は存在しない。
Aluminum oxide cup 50 has a stainless steel faceplate 52. Tube 5 functioning as a cathode
4 (equipped with a water-cooled channel 56). Hydrogen gas is blown into the hollow cathode 54, from which the exhaust gas 58 is a mixture of H2, H1H' and e-. The ions quickly recombine with electrons, but the hydrogen atoms persist long enough to strike the surface of wafer 24. There it reacts with autogenous oxides to produce H20 vapor, which is pumped away. Auger scanning of the interfacial region of the TiN or Si thin films thus produced provided clear evidence of the effectiveness of this procedure. At this point, there is no evidence of an oxygen peak as there was for unprocessed wafers.

【図面の簡単な説明】[Brief explanation of drawings]

第工図は本発明に係る装置の酩示結線図、第2図は窒化
チタンの結晶サイズを示す走査電子顕微鏡写真、 6 第3図はパターンつきウェーハ上の窒化チタンのステッ
プ被覆を示す走査電子顕微鏡写真、第4図は典型的なオ
ージェ深さ曲線のグラフ、第5図は酸素濃度と圧力及び
温度との関係を示すグラフ、 第6図は塩素濃度と圧力及び温度との関係を示すグラフ
、 第7図は水素対圧力及び温度のグラフ、第8図は蒸着速
さ対圧力及び温度のグラフ、第9図は薄膜抵抗対圧力及
び温度のグラフ、第10図は本発明で使用されるシャワ
ーヘッド・ガスデイストリビユータの底部を示す底面図
、第■1図は第10図のシャワーヘッドの一部切り欠き
側面図、 第12図は本発明で使用する中空陰極水素イオン発生器
の断面図である。 主翼贅韮 10・・・CVD反応器チェンバ 12.14・・ターボ分子ポンプ 16・・・ロードロック 18・蝶型弁 20・・気密水冷式光ハウジング 22・・・ガスマニホルド 24・・・ウェーハ 26・・・高温計 28・・・BaF2ウィンドウ 30・・移動アーム 32・・・ガスボックス 34.36,38,40・・・ゲート弁42・・・タン
グステンハロゲンランプ50・酸化アルミニウムカップ 52・・・ステンレス鋼フェースプレート54・・・チ
ューブ陰極 56・冷却チャンネル 58・・・排気ガス
Fig. 2 is a scanning electron micrograph showing the crystal size of titanium nitride; Fig. 3 is a scanning electron micrograph showing the step coating of titanium nitride on a patterned wafer. Micrograph, Figure 4 is a graph of a typical Auger depth curve, Figure 5 is a graph showing the relationship between oxygen concentration, pressure and temperature, and Figure 6 is a graph showing the relationship between chlorine concentration and pressure and temperature. , FIG. 7 is a graph of hydrogen versus pressure and temperature, FIG. 8 is a graph of deposition rate versus pressure and temperature, FIG. 9 is a graph of thin film resistance versus pressure and temperature, and FIG. 10 is a graph of used in the present invention. A bottom view showing the bottom of the shower head/gas distributor, Figure 1 is a partially cutaway side view of the shower head in Figure 10, and Figure 12 is a cross section of the hollow cathode hydrogen ion generator used in the present invention. It is a diagram. Main wing 10...CVD reactor chamber 12.14...Turbo molecular pump 16...Load lock 18/Butterfly valve 20...Airtight water-cooled light housing 22...Gas manifold 24...Wafer 26 Pyrometer 28 BaF2 window 30 Moving arm 32 Gas box 34, 36, 38, 40 Gate valve 42 Tungsten halogen lamp 50 Aluminum oxide cup 52... Stainless steel face plate 54...tube cathode 56/cooling channel 58...exhaust gas

Claims (6)

【特許請求の範囲】[Claims] 1.半導体ウェーハ上に窒化チタンのブランケット層を
形成する方法であって、 (b)半導体ウェーハをコールドウォール化学的蒸着チ
ェンバに装填し、 (c)前記チェンバから雰囲気ガスを吸出し、(e)前
記ウェーハを加熱し、 (f)塩化チタンとアンモニアを含有する処理ガスを前
記ウェーハの上から流す ことから成る方法。
1. A method of forming a blanket layer of titanium nitride on a semiconductor wafer, comprising: (b) loading the semiconductor wafer into a cold wall chemical vapor deposition chamber; (c) evacuating atmospheric gas from the chamber; and (e) removing the wafer. (f) flowing a process gas containing titanium chloride and ammonia over said wafer.
2.前記処理ガスが水素と窒素から成る群から選ばれた
希釈剤を含んでいる請求項1に記載の方法。
2. The method of claim 1, wherein the process gas includes a diluent selected from the group consisting of hydrogen and nitrogen.
3.前記処理ガスが、これをウェーハの上から流す工程
の前に250℃を越える温度で混合される請求項2に記
載の方法。
3. 3. The method of claim 2, wherein the process gas is mixed at a temperature above 250<0>C prior to flowing it over the wafer.
4.前記工程(b)の前にさらに、 (a)ウェーハをオゾンに曝す工程 が行なわれる請求項3に記載の方法。4. Further, before the step (b), (a) Process of exposing the wafer to ozone 4. The method according to claim 3, wherein: 5.前記工程(c)の後で工程(e)の前にさらに、(
d)ウェーハの表面をイオン化水素ガスで清浄にする工
程 が行なわれる請求項3に記載の方法。
5. After the step (c) and before the step (e), further (
4. The method of claim 3, further comprising the step of: d) cleaning the surface of the wafer with ionized hydrogen gas.
6.反導体ウェーハ上に窒化チタンのブランケット層を
形成する方法であって、 (a)ウエーをオゾンに曝し、 (b)半導体ウェーハをコールドウォール化学的蒸着チ
ェンバに装填し、 (c)前記チェンバから雰囲気ガスを吸出し、(d)ウ
ェーハの表面をイオン化水素ガスで清浄にし、 (e)ウェーハを450℃以上の温度に加熱し、(f)
塩化チタンとアンモニアを含有する処理ガスを250℃
を越える温度で混合し、 (g)前記処理ガスを加熱されたウェーハの上から流す ことから成る方法。
6. A method of forming a blanket layer of titanium nitride on an anticonductor wafer, comprising: (a) exposing the wafer to ozone; (b) loading the semiconductor wafer into a cold-wall chemical vapor deposition chamber; and (c) removing an atmosphere from the chamber. (d) cleaning the surface of the wafer with ionized hydrogen gas; (e) heating the wafer to a temperature of 450°C or higher; (f)
Processing gas containing titanium chloride and ammonia at 250℃
(g) flowing said processing gas over a heated wafer.
JP2103284A 1989-04-25 1990-04-20 Vapor deposition of titanium nitride by cold wall cvd reactor Pending JPH0364473A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US34292889A 1989-04-25 1989-04-25
US342,928 1989-04-25

Publications (1)

Publication Number Publication Date
JPH0364473A true JPH0364473A (en) 1991-03-19

Family

ID=23343893

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2103284A Pending JPH0364473A (en) 1989-04-25 1990-04-20 Vapor deposition of titanium nitride by cold wall cvd reactor

Country Status (3)

Country Link
JP (1) JPH0364473A (en)
KR (1) KR900017144A (en)
DE (1) DE4012901A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5300321A (en) * 1992-05-12 1994-04-05 Kawasaki Steel Corporation Process for depositing titanium nitride film by CVD
WO2014014125A1 (en) * 2012-07-20 2014-01-23 Fujifilm Corporation Etching method, and method of producing semiconductor substrate product and semiconductor device using the same

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5278100A (en) * 1991-11-08 1994-01-11 Micron Technology, Inc. Chemical vapor deposition technique for depositing titanium silicide on semiconductor wafers
US5378501A (en) * 1993-10-05 1995-01-03 Foster; Robert F. Method for chemical vapor deposition of titanium nitride films at low temperatures
US5610106A (en) * 1995-03-10 1997-03-11 Sony Corporation Plasma enhanced chemical vapor deposition of titanium nitride using ammonia
DE19634841A1 (en) * 1996-08-28 1998-03-05 Siemens Ag Process for planarizing a substrate surface
US6436820B1 (en) 2000-02-03 2002-08-20 Applied Materials, Inc Method for the CVD deposition of a low residual halogen content multi-layered titanium nitride film having a combined thickness greater than 1000 Å

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5300321A (en) * 1992-05-12 1994-04-05 Kawasaki Steel Corporation Process for depositing titanium nitride film by CVD
WO2014014125A1 (en) * 2012-07-20 2014-01-23 Fujifilm Corporation Etching method, and method of producing semiconductor substrate product and semiconductor device using the same
US9558953B2 (en) 2012-07-20 2017-01-31 Fujifilm Corporation Etching method, and method of producing semiconductor substrate product and semiconductor device using the same

Also Published As

Publication number Publication date
DE4012901A1 (en) 1990-12-06
KR900017144A (en) 1990-11-15

Similar Documents

Publication Publication Date Title
US5795824A (en) Method for nucleation of CVD tungsten films
JP3740508B2 (en) Plasma enhanced annealing of titanium nitride
US5508066A (en) Method for forming a thin film
KR100355914B1 (en) Direct Circuit Manufacturing Method Using Low Temperature Plasma
KR100356264B1 (en) Plasma enhanced chemical vapor deposition of titanium nitride using ammonia
JP3712421B2 (en) Low temperature plasma enhanced chemical vapor deposition of TiN film on titanium for use in via level applications
TW200537571A (en) Forming method of barrier film, and forming method of electrode film
JPH01264258A (en) Semiconductor device and its manufacture
Musher et al. Atmospheric pressure chemical vapor deposition of TiN from tetrakis (dimethylamido) titanium and ammonia
Kim et al. Characterization of zirconium dioxide film formed by plasma enhanced metal-organic chemical vapor deposition
US20070178234A1 (en) Method of cleaning surface of semiconductor substrate, method of manufacturing thin film, method of manufacturing semiconductor device, and semiconductor device
US5741547A (en) Method for depositing a film of titanium nitride
JPH0364473A (en) Vapor deposition of titanium nitride by cold wall cvd reactor
JPH0376220A (en) Method and device for chemical vapor growth
Ishihara et al. Laser-assisted chemical vapor deposition of titanium nitride films
US20010051215A1 (en) Methods for chemical vapor deposition of titanium-silicon-nitrogen films
JP3273827B2 (en) Semiconductor device and manufacturing method thereof
Charatan et al. Plasma enhanced chemical vapor deposition of titanium nitride thin films using cyclopentadienyl cycloheptatrienyl titanium
WO1990007587A1 (en) Feeder for process gas
US6071562A (en) Process for depositing titanium nitride films
JP4763894B2 (en) Formation of CVD tantalum nitride plugs from tantalum halide precursors.
Amato-Wierda et al. Chemical vapor deposition of titanium nitride thin films from tetrakis (dimethylamido) titanium and hydrazine as a coreactant
JPH07221048A (en) Method for forming barrier metal layer
KR100243654B1 (en) A apparatus and method for copper metalorganic chemical vapor deposition
Chang et al. Effect of TiN substrate plasma treatment on copper chemical vapor deposition