JPH0356689B2 - - Google Patents
Info
- Publication number
- JPH0356689B2 JPH0356689B2 JP58046200A JP4620083A JPH0356689B2 JP H0356689 B2 JPH0356689 B2 JP H0356689B2 JP 58046200 A JP58046200 A JP 58046200A JP 4620083 A JP4620083 A JP 4620083A JP H0356689 B2 JPH0356689 B2 JP H0356689B2
- Authority
- JP
- Japan
- Prior art keywords
- water
- pipe
- negative pressure
- porous
- irrigation
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 167
- 230000002262 irrigation Effects 0.000 claims description 43
- 238000003973 irrigation Methods 0.000 claims description 43
- 238000000034 method Methods 0.000 claims description 40
- 239000002689 soil Substances 0.000 claims description 36
- 230000035699 permeability Effects 0.000 claims description 11
- 239000011148 porous material Substances 0.000 claims description 3
- 241000196324 Embryophyta Species 0.000 description 7
- 241000219112 Cucumis Species 0.000 description 6
- 235000015510 Cucumis melo subsp melo Nutrition 0.000 description 6
- 239000002699 waste material Substances 0.000 description 4
- FJJCIZWZNKZHII-UHFFFAOYSA-N [4,6-bis(cyanoamino)-1,3,5-triazin-2-yl]cyanamide Chemical compound N#CNC1=NC(NC#N)=NC(NC#N)=N1 FJJCIZWZNKZHII-UHFFFAOYSA-N 0.000 description 3
- 238000010521 absorption reaction Methods 0.000 description 3
- 238000001514 detection method Methods 0.000 description 3
- 230000008020 evaporation Effects 0.000 description 3
- 238000001704 evaporation Methods 0.000 description 3
- 238000002474 experimental method Methods 0.000 description 3
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 3
- 229920002554 vinyl polymer Polymers 0.000 description 3
- 241000607479 Yersinia pestis Species 0.000 description 2
- 235000009508 confectionery Nutrition 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 201000010099 disease Diseases 0.000 description 2
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 2
- 235000013399 edible fruits Nutrition 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 229920001971 elastomer Polymers 0.000 description 2
- 239000003673 groundwater Substances 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 229920006395 saturated elastomer Polymers 0.000 description 2
- 238000005507 spraying Methods 0.000 description 2
- 235000013311 vegetables Nutrition 0.000 description 2
- 235000003228 Lactuca sativa Nutrition 0.000 description 1
- 240000008415 Lactuca sativa Species 0.000 description 1
- 235000007688 Lycopersicon esculentum Nutrition 0.000 description 1
- 240000003768 Solanum lycopersicum Species 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000004927 clay Substances 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 235000012055 fruits and vegetables Nutrition 0.000 description 1
- 235000021384 green leafy vegetables Nutrition 0.000 description 1
- 238000007689 inspection Methods 0.000 description 1
- 239000003621 irrigation water Substances 0.000 description 1
- 229910052573 porcelain Inorganic materials 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 238000005245 sintering Methods 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000009423 ventilation Methods 0.000 description 1
Description
【発明の詳細な説明】
本発明は所要の透水係数と反通気性(通気耐
圧)を有せしめた毛細管状の多数の細孔を備設せ
る多孔質管を、水位調節の可能な水源に連通する
送水管に並列に直立支設せる立上がり管に連設
し、該送水管と立上がり管と多孔質管とを該多孔
質管が栽培作物根群域内に位置するように栽培土
壌中に埋設し、該多孔質管内の水分に設定負圧を
与えるように該水源の水位を該多孔質管より低位
とし、該多孔質管の内外の水分の負圧差により水
分が該多孔質管から該栽培作物根群域内に滲出す
ることを特徴とする負圧差潅漑方法である。DETAILED DESCRIPTION OF THE INVENTION The present invention connects a porous pipe equipped with a large number of capillary-like pores with a required hydraulic permeability and anti-air permeability (withstand pressure) to a water source whose water level can be adjusted. The water pipe is connected to a riser pipe that is supported upright in parallel with the water pipe, and the water pipe, the riser pipe, and the porous pipe are buried in the cultivation soil so that the porous pipe is located within the root group area of the cultivated crop. , the water level of the water source is set lower than the porous pipe so as to give a set negative pressure to the water inside the porous pipe, and the negative pressure difference between the inside and outside of the porous pipe causes water to flow from the porous pipe to the cultivated crop. This is a negative pressure differential irrigation method characterized by seeping into the root group area.
これらの特徴によつて、この潅漑方法は作物を
優良適切に栽培するのに必要且つ充分な水分量
を、気象の変化と成育の段階に順応して自動的
に、連続して確実に供給することを、きわめて経
済的に、且つ能率的に実施することができる。 Due to these characteristics, this irrigation method automatically and continuously reliably supplies the necessary and sufficient amount of water for the successful cultivation of crops, adapting to changes in the weather and the growth stage. This can be done very economically and efficiently.
在来、農作物などに対する潅漑方法としてスプ
リンクラー法、多孔質管法(以上は散水潅漑)、
ボーダー法、コンターデイツチ法、水盤法、うね
間法、点滴法(以上は地表潅漑)、開渠法、暗渠
法、(以上は地下潅漑)などの方法が知られてお
り、これらの方法は、土壌中の水分が消費された
ときに、圧力水をノズルから噴射され、雨滴状、
噴霧状に潅水する方法、圃場の土壌面に水を流し
て土中に浸透させ、あるいは土壌面に湛水して浸
入させる方法、そのほか直接に作物の根群域に毛
管上昇によつて給水する方法などであつて、いず
れも地上、地表または地下から、用水を補給する
ものであるが、このような水管理のもとで作物の
肥培管理を行なう場合、常時土壌中の水分状態を
把持しなければならない上に、潅漑水量を決定す
るための各諸元に対する調査が必要となり、これ
ら各諸元の調査及び決定に当つては、技術面にお
いても、経済面においても、多大の労力、手数、
時間、経費の浪費を余儀なくされる実情であり、
例えばスプリンクラーや多孔ホースなどにより栽
培物の上方から散水する方法が、その根群域に充
分潅水するためには多量の水を要し、その上蒸発
による水のロスも大きく、有限な水資源の浪費が
甚だしいという欠点を除去するために開発された
点滴方法−栽培物に沿つて送水管を架設し、その
根群周辺に規制された量の水滴を滴下させる方法
−にしても、導水管からの滴下量の調整が困難な
ばかりでなく、蒸発による損失も少なくなく、そ
の上、潅水量を時間的、場所的に、根群域に適当
な水分状態を保持させるためには電気的制御装置
などを必要としなければならないという欠点があ
り、また一つの水位調節タンクで送水と給水を兼
ねた潅漑方法は、作物根群域に対する水分の均一
な潅水が難かしいという欠点があつた。 Conventional irrigation methods for crops include sprinkler method, porous pipe method (hereinafter referred to as watering irrigation),
Methods such as the border method, contour method, basin method, furrow method, drip method (the above are surface irrigation), open drain method, underdrain method, (the above are underground irrigation) are known, and these methods When the water in the soil is consumed, pressurized water is sprayed from a nozzle, forming raindrop-shaped,
Irrigation methods include spraying water, pouring water over the soil surface of the field and allowing it to penetrate into the soil, or flooding the soil surface with water, or directly supplying water to the root zone of crops through capillary rise. These methods all involve replenishing water from above ground, on the surface of the ground, or underground. However, when fertilizing crops under this type of water management, it is necessary to constantly monitor the moisture status of the soil. In addition, it is necessary to investigate each dimension in order to determine the amount of irrigation water, and investigating and determining each of these dimensions requires a great deal of effort and effort, both technically and economically. ,
The reality is that we are forced to waste time and money,
For example, methods of watering plants from above using sprinklers or porous hoses require a large amount of water to sufficiently irrigate the root zone, and there is also a large amount of water loss due to evaporation, making use of limited water resources. Even with the drip method, which was developed to eliminate the disadvantage of excessive waste - a method in which water pipes are built along the cultivated plants and a regulated amount of water drops are dripped around the roots of the plants - there is still no water from the water pipes. Not only is it difficult to adjust the amount of water dripped, but there is also considerable loss due to evaporation.Furthermore, an electrical control device is required to adjust the amount of water to maintain an appropriate moisture level in the root zone in terms of time and location. Irrigation methods that use a single water level adjustment tank for both water supply and water supply have the disadvantage that it is difficult to irrigate the crop root group with even water.
また近時土壌が十分湿潤していない初期には高
圧給水タンクから送水パイプに送水し、土壌が十
分に湿潤した後は送水管とほぼ同等もしくは土壌
の負圧の強さを考慮した低い高さの水位をもつた
低圧給水タンクに切替えるようにした地下潅漑方
法も提案されているが、この方法は提案のごと
く、給水のための先端部である透水管に、ただ毛
細状の多数の細孔を備えたものを適用するのであ
れば、透水管内の水圧が0圧(ゼロ圧)以上の正
圧水である場合にのみ、管内部から外方へ給水は
可能である。何故ならば、透水管内部の水圧を負
圧とする場合、一般に透水管は反通気性が必ずし
も厳密に付与されていないから、恒に土壌中の外
気の管内への侵入を防止することはできず、この
管内に侵入した外気は給水の流れを遮断するの
で、給水は不能となる。よつて適当な反通気性
が、透水管に、厳密に付与されていなければ、高
低いずれにしても、透水管内の水は、正圧である
場合にのみ連続した給水が可能である。また従来
の潅漑方法に比較して、消費水量を激減せしめる
だけのものであつて、作物の正常な生育を保証す
ることができず、水分飽和(満水)状態となり、
且つ給水は停止しないので、作物の正常な生育は
阻害れ、場合によつては、枯死に至るものである
から、恒に栽培作物の正常な生育を保証すること
ができないという致命的な欠点があつた。 In addition, in the early stages when the soil is not sufficiently moist, water is sent from a high-pressure water supply tank to a water pipe, and after the soil is sufficiently moist, the height is approximately the same as that of a water pipe, or at a lower height that takes into account the strength of the negative pressure in the soil. An underground irrigation method has also been proposed that involves switching to a low-pressure water supply tank with a water level of If a pipe equipped with this is applied, water can be supplied from the inside of the pipe to the outside only when the water pressure inside the water permeable pipe is positive pressure water of 0 pressure (zero pressure) or higher. This is because when the water pressure inside the permeable pipe is set to negative pressure, the permeable pipe is generally not strictly breathable, so it is not possible to constantly prevent outside air in the soil from entering the pipe. First, the outside air that has entered the pipe blocks the flow of water, making water supply impossible. Therefore, unless a suitable air permeability is strictly provided to the water permeable pipe, water in the water permeable pipe can be continuously supplied only under positive pressure, whether high or low. In addition, compared to conventional irrigation methods, it only drastically reduces the amount of water consumed, and cannot guarantee the normal growth of crops, resulting in water saturation (full of water).
Moreover, since the water supply does not stop, the normal growth of crops is inhibited, and in some cases, they may even die, so this has the fatal drawback of not being able to guarantee the normal growth of cultivated crops at all times. It was hot.
本発明は在来の潅漑方法の上記のような諸欠点
をすべて除去して新規特考されたものであつて、
作物根群域内に均一で適当な水分状態を保持させ
るために、多孔質管の設定負圧と作物根群域内の
水分負圧との増減変化によつて自己制御すること
ができ、電気的制御装置などの制御装置は一切必
要とせず、極めて経済的且つ能率的な潅漑方法で
ある。 The present invention has been newly developed by eliminating all the above-mentioned drawbacks of conventional irrigation methods, and
In order to maintain a uniform and appropriate moisture condition within the crop root zone, it can be self-controlled by increasing or decreasing the set negative pressure of the porous pipe and the moisture negative pressure within the crop root zone. It is an extremely economical and efficient irrigation method that does not require any control equipment.
本発明の原理及び一実施例を添付図面について
説明すれば、次ぎの如くである。 The principle and embodiment of the present invention will be described below with reference to the accompanying drawings.
第1図は本発明の原理を示すものであり、1は
マリオツト給水装置、4は水位調節タンク、10
は多孔質管であつて、地表面G、L、より一定の
深さの土壌中に埋設してある給水装置に連通した
水位調節タンク4に連通せる給水管7に支設した
立上がり管8にビニール管9を介して該多孔質管
10は連結してある。畑地aには根群bを有する
作物cが栽培してある。畑地aの土壌中の水分は
作物cの根群域bによる吸水と土壌面蒸発による
水分消費によつて減少し、土壌中の水分のもつ負
圧は増大し、作物cの有効根群bの給水域cにあ
る土壌内に埋設した多孔質管10を飽水して該管
10内の水圧をある一定の負圧hp(図面では土壌
中、Bの位置に正、負圧0(ゼロ)基準水面−そ
こに地下水面があるのと同等である−を設定でき
る、その水面上の負圧水柱高)にすると、土壌中
の水分Cの負圧hs(図面ではAよりCの負圧)と
多孔質管10内に水圧負圧hpとの間に負圧差Δh
(hs−hp)が発生し、この負圧差Δhを発生させる
ことによつて、多孔質管10と給水域の土塊との
間に水分の移動が起るが、土壌中の水分Cの負圧
hsが多孔質管10内の水分負圧hpより大なる場
合に多孔質管10から土壌中へ給水されることと
なる。本発明はこの原理をもつて所期の給水を行
なうものであつて、土壌中の負圧を直接多孔質管
10が受け取り、負圧差Δhを解消しようとして
多孔質管10から土壌中の作物根群域Cへ水分を
供給するものである。 FIG. 1 shows the principle of the present invention, in which 1 is a Marriott water supply system, 4 is a water level adjustment tank, and 10 is a water supply system.
is a porous pipe, and is connected to the riser pipe 8 that is connected to the water supply pipe 7 that communicates with the water level adjustment tank 4 that communicates with the water supply device buried in the soil at a certain depth from the ground surface G, L. The porous tubes 10 are connected via vinyl tubes 9. A crop c having a root group b is grown in a field a. The moisture in the soil of field a decreases due to water absorption by root group b of crop c and water consumption due to soil surface evaporation, and the negative pressure of moisture in the soil increases, causing the effective root group b of crop c to decrease. A porous pipe 10 buried in the soil in the water supply area c is saturated with water, and the water pressure inside the pipe 10 is set to a certain negative pressure hp (in the drawing, the positive pressure is at position B in the soil, and the negative pressure is 0 (zero)). If we set the standard water level (equivalent to the groundwater level there) and set the negative pressure above the water column (the height of the water column), then the negative pressure hs of moisture C in the soil (in the drawing, the negative pressure of C is higher than that of A). There is a negative pressure difference Δh between the negative water pressure hp in the porous pipe 10
(hs - hp) occurs, and by generating this negative pressure difference Δh, moisture movement occurs between the porous pipe 10 and the soil mass in the water supply area, but the negative pressure of moisture C in the soil
When hs is larger than the water negative pressure hp in the porous pipe 10, water is supplied from the porous pipe 10 into the soil. The present invention carries out the desired water supply based on this principle, and the porous pipe 10 directly receives the negative pressure in the soil, and in an attempt to eliminate the negative pressure difference Δh, the porous pipe 10 supplies water to the crop roots in the soil. It supplies moisture to Group C.
第3図、第4図は上記の原理による本発明の一
実施例を示すものである。フロート・レベル・ス
イツチ(マリオツト給水装置と同機能をもつ)よ
り量水計2、給水管3、たわみ管15を介して水
位調節タンク4に給水するようにし、水位調節タ
ンク4はジヤツキ6により昇降自在のものとす
る。水位調節タンク4よりたわみ管14を介して
送水管7を設置し、送水管7には所要数(図面で
は2本)の立上がり管8を並列に直立、支設し
て、その各頭部を同一水平線上にあらしめると共
にその各頭部にビニール管9、ゴム栓11、ソケ
ツト12を介して多孔質管10をそれぞれ連結し
て、作物cの有効根群bの給水域Cにある土壌内
に、各多孔質管をいずれも同一水平線上にあらし
めて埋設する。故に送水管7に直立、支設した立
上がり管8が何本あつても、その各立上がり管8
の各頭部を水平方向に揃えることができるので、
これら立上がり管8にそれぞれ連結して土壌中に
埋設した各多孔質管10の埋設深さを一定にする
ことができるから、水位調節を正確に行なうこと
ができ、従つて栽培作物cの各根群bに対し、各
多孔質管10より水分をムラなく均等に供給する
ことができる。水位調節タンク4はたわみ管15
により給水装置に連結され、たわみ管14により
給水管7に連結されているので、ジヤツキ6によ
り昇降自在であるから、水位Bを設定し、多孔質
管10における水分Cとの間に所望の負圧差Δh
を設定して、第1図について説明した負圧差の設
定による潅漑を行なうことができる。第3図に示
すように水位調節の可能な水源である水位調節タ
ンク4→送水管7→立上がり管(送水支管)8→
多孔質管10で、いわば一つのセツトになつてお
り、従つて水位調節タンク4と立上がり管8内の
水圧は常に一定である。また各立上がり管8から
それぞれ各一本づつ連結配置した多孔質管10は
いずれも独立しているので、いずれかに気泡が侵
入することがあつても、その箇所だけを調整すれ
ばよく、従つて多孔質管10全体の給水には変化
はないから、多孔質管10の埋設や調整作業及び
負圧の設定は、極めて簡単に行なうことができ
る。図中13は圧力を検出する検出カツプ(テン
シオ・メーター)である。 3 and 4 show an embodiment of the present invention based on the above principle. Water is supplied from a float level switch (which has the same function as the Marriott water supply system) to the water level adjustment tank 4 via the water meter 2, water supply pipe 3, and deflection pipe 15, and the water level adjustment tank 4 is raised and lowered by a jack 6. Let it be whatever you want. A water pipe 7 is installed from the water level adjustment tank 4 via a flexible pipe 14, and a required number (two in the drawing) of riser pipes 8 are vertically supported in parallel to the water pipe 7. They are placed on the same horizontal line, and a porous pipe 10 is connected to each head of the pipe through a vinyl pipe 9, a rubber stopper 11, and a socket 12. Next, all porous pipes are buried on the same horizontal line. Therefore, no matter how many riser pipes 8 are installed upright and supported on the water pipe 7, each riser pipe 8
Since each head of can be aligned horizontally,
Since the buried depth of each porous pipe 10 connected to each of these riser pipes 8 and buried in the soil can be made constant, the water level can be adjusted accurately, and therefore each root of cultivated crop c can be Moisture can be evenly and evenly supplied to group b from each porous tube 10. Water level adjustment tank 4 is a flexible pipe 15
Since it is connected to the water supply device by the flexible pipe 14 and is connected to the water supply pipe 7 by the flexible pipe 14, it can be raised and lowered by the jack 6. Pressure difference Δh
Irrigation can be performed by setting the negative pressure difference as explained with reference to FIG. As shown in Figure 3, the water level adjustment tank 4, which is a water source whose water level can be adjusted, → the water pipe 7 → the riser pipe (water supply branch pipe) 8 →
The porous pipes 10 form one set, so that the water pressure in the water level adjustment tank 4 and the riser pipe 8 is always constant. In addition, since the porous pipes 10 connected and arranged one by one from each riser pipe 8 are all independent, even if air bubbles enter one of them, it is only necessary to adjust that part. Since there is no change in the water supply throughout the porous pipe 10, the embedding and adjustment work of the porous pipe 10 and the setting of the negative pressure can be performed extremely easily. In the figure, 13 is a detection cup (tensiometer) for detecting pressure.
本発明は、給水が自動的、連続的に行なわれる
ので、作物栽培期間中、設定負圧の調節も2回〜
3回で済むことが実験の結果明らかになり、栽培
期間中の潅水操作は省力的で節水を大ならしめる
ことができることが実証された。 Since the present invention automatically and continuously supplies water, the set negative pressure can be adjusted twice or more during the crop cultivation period.
Experiments have revealed that irrigation can be done only three times, demonstrating that irrigation operations during the cultivation period are labor-saving and can significantly save water.
本発明において採択する多孔質管10は、透水
係数が10-4〜10-5・cm/sの範囲のもので、反通
気性(通気耐圧)が100cm−H2O以上であること
を必要とするものであり、例えばアルミナを主原
料とし、その中に媒溶剤として粘土を用い、さら
にその中に微細な天然有機物粉末を混入して、
1400〜1600℃の高温で焼結された素焼磁器によつ
て構成され、焼結によつて、該天然有機物粉末が
燃焼気化するときに生ずる肉眼では見ることので
きない極めて微細な毛細管状の細孔が管周面全域
にわたつて穿設され、該多孔質管10の内外の負
圧差によつて水が浸出する機能を具備させたもの
に製作する。故に多孔質管10内の圧力よりもそ
の外周側の圧力が低い場合、多孔質管10内の水
は、内外圧力差によつて浸出し、土壌aは飽和状
態に湿潤されていない状態においては、水液の吸
収力を有しているから、埋設された多孔質管10
の周辺の土壌は、浸出した水液の吸収作用の影響
下にあつて負圧状態となつているので、送水管7
内の水に正圧力を加えなくても、土壌自体の吸水
作用により、多孔質管10の内部の水が土壌中の
浸出し、拡散浸潤して作物根群域bに到達し、作
物の根群によつて浸潤水分が吸収されることか
ら、多孔質管10と作物根群域との間において、
土壌中に多孔質管10と作物根群域との間に生ず
る動水勾配によつて、絶えず作物に対し必要且つ
充分な水分量の供給を確保することができるので
ある。 The porous pipe 10 adopted in the present invention must have a water permeability coefficient in the range of 10 -4 to 10 -5 cm/s, and an anti-air permeability (air permeability pressure) of 100 cm-H 2 O or more. For example, alumina is used as the main raw material, clay is used as a solvent, and fine natural organic powder is mixed in.
It is made of unglazed porcelain sintered at a high temperature of 1400 to 1600℃, and due to sintering, extremely fine capillary-like pores that are invisible to the naked eye are created when the natural organic powder is combusted and vaporized. The porous tube 10 is made to have a function in which water is leached out by a negative pressure difference between the inside and outside of the porous tube 10. Therefore, when the pressure on the outer circumferential side of the porous pipe 10 is lower than the pressure inside the porous pipe 10, the water inside the porous pipe 10 leaches out due to the pressure difference between the inside and outside, and the soil a is not moistened to a saturated state. , because it has the ability to absorb water, the buried porous pipe 10
The soil around water pipe 7 is under the influence of absorption of leached water and is under negative pressure.
Even without applying positive pressure to the water inside the porous tube 10, due to the water absorption action of the soil itself, the water inside the porous tube 10 leaches into the soil, diffuses and infiltrates, and reaches the crop root zone b, causing the crop roots to Between the porous tube 10 and the crop root group area, since infiltrated moisture is absorbed by the group,
The hydraulic gradient created in the soil between the porous tube 10 and the crop root zone ensures that the crop is constantly supplied with the necessary and sufficient amount of water.
本発明における設定負圧の範囲は、実験の結果
によれば、−10〜−30cmH(水柱高)−pFに換算し
て1.0〜1.5−でよいものであつて、これより高負
圧、例えば−100cmとか−400cmとか−pF値とし
て2.0とか2.6とか−を設定する必要はない。 According to the results of experiments, the range of the negative pressure set in the present invention is 1.0 to 1.5 in terms of -10 to -30 cmH (water column height) -pF, and higher negative pressures, e.g. There is no need to set -100cm or -400cm or -2.0 or 2.6 as a pF value.
すなわち、第5図に示すように本発明における
設定負圧の範囲は、−10〜−30cmH(水柱高)−pF
に換算して1.0〜1.5の範囲−において座標(小黒
円)が最も多く看取できたのである。 That is, as shown in Fig. 5, the range of negative pressure set in the present invention is -10 to -30 cmH (water column height) - pF.
The largest number of coordinates (small black circles) could be seen in the range of 1.0 to 1.5.
本発明において作物に供給する水分量は設定負
圧によつて異なつて来るので、設定負圧を調節す
ることによつて、土壌中における水分分布(水分
張力)を調節することが可能である。実験の結
果、設定負圧の調節により、1〜6株の複数の作
物に必要な水分量の供給ができることが実証され
た。すなわち、一本の多孔質管による1600Cm2の
給水域において、
レタス(葉菜) 6株
トマト(果菜) 4株
メロン(果菜) 2株
これらの最大必要水量の供給を充分に行なうこ
とができた。本発明によれば、1反(1000平方
米)の栽培土地における作物について、わずかに
1500本程度の多孔質管で必要且つ充分な水分量を
作物に供給して、例えば甘く、粘りのあるメロン
など良質の作物を成育させることができることが
実証された。故に営農者にとつて、労力、手数、
時間、経費の節減が著しく大となり、施設費も極
めて経済的となる効果がある。 In the present invention, the amount of water supplied to crops varies depending on the set negative pressure, so by adjusting the set negative pressure, it is possible to adjust the water distribution (water tension) in the soil. As a result of the experiment, it was demonstrated that by adjusting the set negative pressure, it was possible to supply the necessary amount of water to multiple crops of 1 to 6 plants. In other words, in a water supply area of 1600 cm 2 by one porous pipe, we were able to sufficiently supply the maximum required amount of water for 6 plants of lettuce (leaf vegetable), 4 plants of tomato (fruit vegetable), and 2 plants of melon (fruit vegetable). . According to the present invention, for crops on one plot (1,000 square meters) of cultivated land, only a small amount of
It has been demonstrated that approximately 1,500 porous tubes can supply crops with the necessary and sufficient amount of moisture to grow high-quality crops, such as sweet and sticky melons. Therefore, for farmers, labor, effort,
This has the effect of significantly reducing time and costs, and making facility costs extremely economical.
さらに本発明におけるそれぞれの設定負圧によ
つて絶えず給水される水分量は、作物の成育段階
及び気象条件に順応して、それぞれの設定負圧に
おいて給水量が顕著に自己制御されていることは
第5図及び第6図の各実験表に示すとおりであ
る。よつて第5図及び第6図は、本発明がこの自
己制御機能を発揮することにより、作物の成育段
階と、晴天、曇天、雨天等の各種の気象条件によ
く順応して、所要の給水を可能にすることを実証
するものである。 Furthermore, the amount of water constantly supplied by each set negative pressure in the present invention is significantly self-controlled at each set negative pressure, adapting to the growth stage of the crop and weather conditions. The results are as shown in the experimental tables in FIGS. 5 and 6. Therefore, FIGS. 5 and 6 show that by exhibiting this self-regulating function, the present invention adapts well to the growth stage of crops and various weather conditions such as sunny, cloudy, and rainy days, and provides the necessary water supply. This is to demonstrate that it is possible.
本発明と在来の点滴方式の各潅水量と収量との
関係を、作物の一例として、プリンス・メロンに
ついて比較試験した結果は、別表(その一)に示
すとおりであつた。すなわち、本発明を実施した
負圧差潅漑区は点滴ノズル潅漑区に比較して、潅
水量の点で、約14%減の節水であつた。また収量
においては、本発明を実施した負圧差潅漑区は、
点滴ノズル潅漑区よりも約18%の増収を示した。 The results of a comparative test of the relationship between each irrigation amount and yield of the present invention and the conventional drip method using prince melon as an example of a crop are as shown in the attached table (Part 1). That is, the negative pressure differential irrigation area in which the present invention was implemented was able to save approximately 14% of water in terms of water amount compared to the drip nozzle irrigation area. In addition, in terms of yield, the negative pressure differential irrigation area in which the present invention was implemented had
The yield was approximately 18% higher than in the drip nozzle irrigated area.
本発明を実施して成育させた作物の一例とし
て、アンデス・メロンについて、その品質調査を
した結果、別表(その二)に示すとおりであつ
た。すなわち、甘く、粘りのある品質のすぐれた
アンデス・メロンが極めて経済的且つ能率的に得
られることが判明した。 As an example of a crop grown according to the present invention, the quality of Andean melon was investigated, and the results were as shown in the attached table (Part 2). That is, it has been found that sweet and sticky Andean melons of excellent quality can be obtained extremely economically and efficiently.
本発明の負圧差潅漑方法は叙上のとりおである
から、在来の潅漑方式に対比して次ぎのような顕
著な効果をもたらすことができる。 Since the negative pressure differential irrigation method of the present invention has the advantages described above, it can bring about the following remarkable effects compared to conventional irrigation methods.
(A) 本発明は、その給水は土壌中の水分負圧が管
内に設定した負の水位(負圧)に達すれば、停
止して、栽培作物生育に有害な水分飽和(満
水)状態には絶対にならないので、栽培作物の
正常な生育を確実に実現することができる。(A) In the present invention, the water supply is stopped when the negative water pressure in the soil reaches the negative water level (negative pressure) set in the pipe, and the water supply is stopped to prevent water saturation (full water) that is harmful to the growth of cultivated crops. Since this will never occur, normal growth of cultivated crops can be ensured.
(B) 本発明は、基本的には水位調節の可能な水
源、送水管、多孔質管だけで行なうものであつ
て、極めて簡単な自動潅漑方法であるから、在
来の潅漑方法での自動化で必要とされて来た電
磁性、水分検出弁などの(水のもつエネルギー
以外の)他のエネルギーを用いた手動又は自動
の制御装置を一切必要とせず、これ等をすべて
省略することができるので、極めて経済的であ
り且つ能率的である。(B) The present invention basically uses only a water source with adjustable water level, water pipes, and porous pipes, and is an extremely simple automatic irrigation method, so it can be automated using conventional irrigation methods. There is no need for manual or automatic control devices that use other energy (other than the energy of water), such as electromagnetic properties and moisture detection valves, which have been required in the past, and these can be completely omitted. Therefore, it is extremely economical and efficient.
(C) 本発明は、潅漑の起動において、無加圧で、
なんら電源などを用いることを要せず、唯単に
多孔質管の負圧のバランスを利用した低負圧差
潅漑方法であるから、従来の潅漑方式の多くが
潅漑の起動において、ポンプなどによる圧力水
を利用しなければならなかつた欠点を除去する
ことができる。(C) The present invention allows for the start-up of irrigation without pressurization.
It is a low negative pressure differential irrigation method that does not require the use of any power source and simply utilizes the balance of negative pressure in porous pipes, so many conventional irrigation methods use pressurized water from a pump etc. to start irrigation. It is possible to eliminate the disadvantages of having to use
(D) 本発明はこれを実施するにあたり、営農者自
身でも一連の給水施設の施行が可能であるのみ
でなく、給水施設に対する機械的な点検がな
く、多孔質管その他の取替え作業なども簡単、
容易に行なうことができて、著しく経済的であ
るから、従来の潅漑方式のように給、配水施工
のための経費が甚だしく高く、その上、専門技
術者による施工を要したりして、多大の施設費
を浪費して来た欠点を除去することができる。(D) In implementing the present invention, not only can farmers themselves install a series of water supply facilities, but there is no mechanical inspection of water supply facilities, and it is easy to replace porous pipes and other parts. ,
It is easy to carry out and is extremely economical, but unlike conventional irrigation methods, the cost of supplying and distributing water is extremely high, and on top of that, the construction requires specialized engineers, resulting in a large amount of work. It is possible to eliminate the drawbacks that have been wasting facility costs.
(E) 本発明は多孔質管を中心とする小潅水面積
(給水域)に複数の作物を肥培するため、水分
の有効利用度が高く、また多孔質管の透水性が
均一であるため、どの地点の給水域も同じ給水
量で連続的潅漑を行なうことができ、作物根群
域周辺の毛管負圧と多孔質管内負圧とのバラン
スによつて、自動的に水が補給されるため、要
求水量だけ給水されて、作物根群域には過剰水
は生じないから、従来の潅漑方式の地表潅漑方
法における大量の水を必要として水資産の浪費
が甚だしい欠点、地下潅漑法における土性によ
つて水利用の効率が左右されやすい欠点などの
諸欠点をすべて除去することができる。(E) Since the present invention fertilizes multiple crops in a small irrigation area (water supply area) centered on a porous pipe, the degree of effective water utilization is high, and the water permeability of the porous pipe is uniform. The water supply area at any point can be continuously irrigated with the same amount of water, and water is automatically replenished by the balance between the negative pressure in the capillary around the crop root group and the negative pressure in the porous pipe. , only the required amount of water is supplied and there is no excess water in the crop root zone, so the traditional surface irrigation method requires a large amount of water and wastes water resources, and the subsurface irrigation method has the drawbacks of soil quality. It is possible to eliminate all the disadvantages such as those that tend to affect the efficiency of water use.
(F) 本発明は潅水開始時に多孔質管内の負圧を設
定した後は、消費水量に対応して給水の自己制
御が行なわれ、且つ一定の土壌水分範囲が確保
でき、また潅水量の調節についての負圧の設定
(負圧の与え方)は、操作が簡単で、年齢的労
力には左右されることがなく、さらに在来の自
動制御法に比べて、精度の高い経済的な潅水の
自己制御がなされ得るから、従来の潅漑方式の
ように間断潅漑のため潅水の開始、終了などの
技術及び管理についての労力、手数、時間、経
費を浪費し、また潅水の自動制御のためには水
分検出器、圧力変換器、外部ユニツトなど各種
の高価な装置を必要とすることを余儀なくされ
て来た欠点をすべて除去することができる。(F) In the present invention, after setting the negative pressure inside the porous pipe at the start of irrigation, water supply is self-controlled in accordance with the amount of water consumed, and a certain soil moisture range can be ensured, and the amount of water can be adjusted. Setting the negative pressure (how to apply negative pressure) is easy to operate, is not dependent on age or effort, and is more accurate and economical than conventional automatic control methods. Therefore, as in the conventional irrigation system, intermittent irrigation wastes effort, effort, time, and expense for techniques and management such as starting and stopping irrigation, and automatic control of irrigation requires This eliminates all the disadvantages of requiring various expensive equipment such as moisture detectors, pressure transducers, external units, etc.
(G) 本発明においては、上記のように土壌水分は
安定し、且つ日日の気象要素の変化に順応し
て、給水が調節され得るから、過湿による病虫
害の発生は抑制され、その防止、除去労力は著
しく削減されるので、従来の潅漑方式のように
土壌水分条件が一定でなく、加えて気象条件な
どから病虫害の発生が多発傾向となり、薬剤散
布に労力、手数、時間、経費の浪費が甚だしか
つた欠点を除去することができる。(G) In the present invention, as mentioned above, the soil moisture is stable and the water supply can be adjusted according to daily changes in weather elements, so the occurrence of pests and diseases due to overhumidity is suppressed and prevented. Since the removal labor is significantly reduced, the soil moisture conditions are not constant as in conventional irrigation methods, and in addition, pests and diseases tend to occur frequently due to weather conditions, and the amount of labor, effort, time, and expense required for spraying chemicals increases. It is possible to eliminate the drawbacks that are extremely wasteful.
(H) 本発明においては、既述のように各作物のそ
れぞれに常に均等、適量な水分が供給されるの
で、品質が揃い、商品化率が向上するのみなら
ず、果菜類、特にメロンなどの品質向上には極
めて効果的である。従つて、従来の潅漑方式の
ように作物の要求する水量と潅水量とが合致し
難いことから、品質の均一化や商品化に多くの
技術と労力、時間、経費をかけなければならな
かつた欠点をすべて除去することができる。(H) In the present invention, as mentioned above, an even and appropriate amount of water is always supplied to each crop, which not only improves the quality and commercialization rate but also improves the quality of fruits and vegetables, especially melons, etc. It is extremely effective in improving the quality of products. Therefore, as with conventional irrigation methods, it is difficult to match the amount of water required by crops with the amount of irrigation, and it is necessary to invest a lot of technology, effort, time, and money to make the quality uniform and commercialize the product. All defects can be removed.
上記のように、給水端に所要の透水係数と反通
気性(通気耐圧)を有せしめた多孔質管を適用す
ることおよび給水源の水位を該多孔質管より低位
とすることによつて、該多孔質管内の水分に設定
負圧を適切に与えることを必須の構成要件とす
る、本発明は潅漑方法としてきわめて経済的且つ
能率的であつて、非常に実用価値の高いものであ
る。 As mentioned above, by applying a porous pipe with the required hydraulic permeability and anti-air permeability (ventilation resistance) to the water supply end, and by setting the water level of the water supply source to a lower level than the porous pipe, The present invention, which has an essential component of appropriately applying a set negative pressure to the moisture within the porous pipe, is extremely economical and efficient as an irrigation method, and has very high practical value.
第1図は本発明を略示する縦断面図、第2図は
その平面図、第3図は一実施例の縦断面図、第4
図はその要部縦断面図、第5図は潅水量と設定負
圧の関係を示す図、第6図は気象条件に順応する
自動的潅水の調節と継続を示す図である。
[符号の説明]、1はマリオツト給水装置、2
は量水メーター、3は給水管、4は水位調節タン
ク、5はフロート付給水調節弁、6はジヤツキ、
〔4,5,6は一体となつてマリオツト装置の機
能を実現する〕、7は送水管、8は立上がり管、
9はビニール管、10は多孔質管、11はゴム
栓、12はソケツト、13は検出カツプ、14,
15はいずれもたわみ管、Aは多孔質管外土壌毛
管負圧hsに対する基準水面(そこに地下水面があ
るのと同等である)、Bは多孔質管内設定負圧hp
に対する基準水面、Cは多孔質管の中心、G,L
は地表面、aは畑地、bは作物根群域、cは作
物、Δhは負圧差(hs−hp)。
FIG. 1 is a vertical cross-sectional view schematically showing the present invention, FIG. 2 is a plan view thereof, FIG. 3 is a vertical cross-sectional view of one embodiment, and FIG.
The figure is a longitudinal sectional view of the main part, FIG. 5 is a diagram showing the relationship between irrigation amount and set negative pressure, and FIG. 6 is a diagram showing automatic irrigation adjustment and continuation according to weather conditions. [Explanation of symbols], 1 is Marriott water supply device, 2
is a water meter, 3 is a water supply pipe, 4 is a water level adjustment tank, 5 is a water supply adjustment valve with a float, 6 is a jack,
[4, 5, and 6 work together to realize the functions of the Marriott device], 7 is a water pipe, 8 is a riser pipe,
9 is a vinyl tube, 10 is a porous tube, 11 is a rubber stopper, 12 is a socket, 13 is a detection cup, 14,
15 are all flexible pipes, A is the reference water level for the soil capillary negative pressure hs outside the porous pipe (this is equivalent to the ground water table being there), and B is the set negative pressure hp inside the porous pipe.
The reference water level for , C is the center of the porous pipe, G, L
is the ground surface, a is the field, b is the crop root zone, c is the crop, and Δh is the negative pressure difference (hs-hp).
【表】【table】
Claims (1)
管状の多数の細孔を備設せる多孔質管を、水位調
節の可能な水源に連通する送水管に並列に直立支
設せる立上がり管に連設し、該送水管と立上がり
管と多孔質管とを該多孔質管が栽培作物根群域内
に位置するように栽培土壌中に埋設し、該多孔質
管内の水分に設定負圧を与えるように該水源の水
位を該多孔質管より低位とし、該多孔質管の内外
の水分の負圧差により水分が該多孔質管から該栽
培作物根群域内に滲出することを特徴とする負圧
差潅漑方法。1. A riser pipe in which a porous pipe equipped with a large number of capillary-like pores with the required hydraulic permeability and air permeability is installed vertically in parallel to a water supply pipe communicating with a water source where the water level can be adjusted. The water pipe, the riser pipe, and the porous pipe are buried in cultivation soil so that the porous pipe is located within the root group of the cultivated crop, and a set negative pressure is applied to the water in the porous pipe. A negative pressure difference characterized in that the water level of the water source is set lower than the porous pipe, and water oozes from the porous pipe into the root group of the cultivated crop due to the negative pressure difference between the inside and outside of the porous pipe. Irrigation method.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4620083A JPS59173028A (en) | 1983-03-19 | 1983-03-19 | Negative pressure irrigating method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4620083A JPS59173028A (en) | 1983-03-19 | 1983-03-19 | Negative pressure irrigating method |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS59173028A JPS59173028A (en) | 1984-09-29 |
JPH0356689B2 true JPH0356689B2 (en) | 1991-08-29 |
Family
ID=12740431
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP4620083A Granted JPS59173028A (en) | 1983-03-19 | 1983-03-19 | Negative pressure irrigating method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS59173028A (en) |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61170326A (en) * | 1985-01-25 | 1986-08-01 | 古河機械金属株式会社 | Water supply drainage and air supply method of soil |
JP3773723B2 (en) | 1999-01-29 | 2006-05-10 | シャープ株式会社 | Liquid crystal display |
JP2005248679A (en) * | 2004-03-04 | 2005-09-15 | Toshiaki Ishiyama | Underground water content adjustment system |
JP2013233103A (en) * | 2012-05-08 | 2013-11-21 | Shiima Consultant:Kk | Greening structure |
CN103548645B (en) * | 2013-11-11 | 2015-03-11 | 中国农业科学院农业资源与农业区划研究所 | Constant negative pressure irrigation system applied to agricultural irrigation |
CN105850662B (en) * | 2016-05-18 | 2019-03-01 | 中国农业科学院农业资源与农业区划研究所 | A kind of Non-energy-consumption negative pressure regulating system |
CN105850331B (en) * | 2016-05-18 | 2019-03-01 | 中国农业科学院农业资源与农业区划研究所 | Water-fertilizer integral greenhouse cucumber Negative pressure irrigation system |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5460137A (en) * | 1977-10-19 | 1979-05-15 | World Seiko Kk | Underground irrigating method and apparatus |
-
1983
- 1983-03-19 JP JP4620083A patent/JPS59173028A/en active Granted
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5460137A (en) * | 1977-10-19 | 1979-05-15 | World Seiko Kk | Underground irrigating method and apparatus |
Also Published As
Publication number | Publication date |
---|---|
JPS59173028A (en) | 1984-09-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Dukes et al. | Use of irrigation technologies for vegetable crops in Florida | |
EP0300536B1 (en) | Method and device for mineral wool culture of plants with suction pressure control | |
CN103503741B (en) | Irrigation system and method for utilizing irrigation system to irrigate nyssa aquatica seedlings | |
Sivakumar | Water Management Strategies to be adopted in Sri Lanka to Improve Food Productivity to Accommodate the Population Growth | |
CN110169345A (en) | Water and fertilizer integrated irrigation system | |
JPH0356689B2 (en) | ||
CN204031996U (en) | Intelligent remote water pump controller and magnetic valve regulator control system | |
Martynova et al. | Determination of the dependence of the humidification circuit parameters during drip irrigation on the properties of irrigation water | |
CN206586093U (en) | A kind of sub-irrigation water saving fixtures | |
Eid et al. | Impact of laser land leveling on water productivity of wheat under deficit irrigation condations | |
CN103798101A (en) | Rice seasonal drought irrigation method | |
CN103380714B (en) | Nearly root returns infiltrating irrigation water-saving irrigation method | |
Ranjan et al. | Performance evaluation of drip irrigation under high density planting of papaya | |
Varshney | Modern methods of irrigation | |
Kizyaev et al. | Definition of humidification circuit parameters for drip irrigation | |
CN208159602U (en) | A kind of independent drip irrigation appliance based on desert or Gobi Region plant water requirement | |
Chandra et al. | Evaluation of drip irrigation system for okra crop under Tarai condition of Uttarakhand, India | |
CN112042355A (en) | Method for regulating and controlling water and fertilizer of rhizosphere soil through automatic underground blueberry scenting and irrigating | |
Akin et al. | Water use of walnut trees under different irrigation regimes | |
RU2773959C1 (en) | Drip-injection irrigation system | |
Faridi et al. | Pot Irrigation | |
Sidar | System, principles and Mehod of irrigation | |
CN204070009U (en) | Root fills with water-saving temp control digital signal device | |
CN108323414A (en) | A kind of independent drip irrigation appliance based on desert or Gobi Region plant water requirement | |
Prichard | Vineyard irrigation systems |