JPH0356533A - Production of resin for sealing - Google Patents

Production of resin for sealing

Info

Publication number
JPH0356533A
JPH0356533A JP19151689A JP19151689A JPH0356533A JP H0356533 A JPH0356533 A JP H0356533A JP 19151689 A JP19151689 A JP 19151689A JP 19151689 A JP19151689 A JP 19151689A JP H0356533 A JPH0356533 A JP H0356533A
Authority
JP
Japan
Prior art keywords
resin
bismaleimide
formula
formulas
group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP19151689A
Other languages
Japanese (ja)
Other versions
JP2872701B2 (en
Inventor
Kenichi Suzuki
憲一 鈴木
Hisafumi Enoki
尚史 榎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Bakelite Co Ltd
Original Assignee
Sumitomo Bakelite Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Bakelite Co Ltd filed Critical Sumitomo Bakelite Co Ltd
Priority to JP19151689A priority Critical patent/JP2872701B2/en
Publication of JPH0356533A publication Critical patent/JPH0356533A/en
Application granted granted Critical
Publication of JP2872701B2 publication Critical patent/JP2872701B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)
  • Encapsulation Of And Coatings For Semiconductor Or Solid State Devices (AREA)

Abstract

PURPOSE:To produce a semiconductor sealing resin having high glass transition point and excellent moisture resistance, compatibility and low-stress characteristics by reacting a bismaleimide with a diaminopolysiloxane in the presence of a polyfunctional polyallyl ether phenol. CONSTITUTION:The objective sealing resin is produced by reacting (A) 100 pts. wt. of a bismaleimide of formula I (R1 is bivalent aromatic group) with (B) 5-50 pts. wt. of a diaminopolysiloxane of formula II (R2 is alkylene or phenylene; R3 and R4 are alkyl or phenyl; n is 1-100) in the presence of (C) 10-100 pts. wt. of a polyfunctional polyallyl ether phenol of formula III (R5 is -0-, -CH2-, -SO2-, group fo formula IV or formula V; m is 0-10) until the melting point of the produced resin reaches 50-120 deg.C. The article sealed with the resin has improved solder-cracking resistance, low stress and excellent heat-cycle resistance.

Description

【発明の詳細な説明】 (発明の利用分野) 本発明はガラス転移点(以下Tgという)が高く、耐湿
性、相溶性に優れ、かつ低応力特性に優れた半導体封止
用樹脂の製造方法に関するものである。
Detailed Description of the Invention (Field of Application of the Invention) The present invention provides a method for producing a resin for semiconductor encapsulation that has a high glass transition point (hereinafter referred to as Tg), excellent moisture resistance, compatibility, and low stress characteristics. It is related to.

(従来技術) 近年IC,LSI,}ランジスター、ダイオードなどの
半導体素子や電子回路等の封止には特性、コスト等の点
からエポキシ樹脂組成物が多量に、かつ最も一般的に用
いられている。
(Prior art) In recent years, epoxy resin compositions have been used in large quantities and most commonly for encapsulating semiconductor elements such as ICs, LSIs, transistors, and diodes, and electronic circuits due to their characteristics, cost, etc. There is.

しかし、電子部品の量産性指向、高集積化や表面実装化
の方向に進んで来ておりこれに伴い封止樹脂に対する要
求は厳しくなってきている。
However, as electronic components are becoming more mass-producible, more highly integrated, and more surface-mounted, demands on sealing resins are becoming more severe.

特に高集積化に伴うチップの大型化、パッケージの薄肉
化や表面実装時における半田浸漬(200〜300℃)
によって装置にクラックが発生し易くなっており信頼性
向上のために半導体封止用樹脂としては低応力特性と耐
熱性が強く望まれている。
In particular, chips become larger due to higher integration, packages become thinner, and solder immersion (200 to 300℃) during surface mounting.
Therefore, in order to improve reliability, low stress characteristics and heat resistance are strongly desired for semiconductor encapsulation resins.

半導体封止用樹脂としては現在エポキシ樹脂が主流であ
るが耐湿性、低応力特性の点で未だ満足されるものは得
られていない。
Currently, epoxy resins are the mainstream resin for semiconductor encapsulation, but no resin has yet been found that is satisfactory in terms of moisture resistance and low stress characteristics.

これらに対処するためにエポキシ系樹脂においてはシリ
コーン化合物等の添加やシリコーン変性エポキシ樹脂の
利用によって低応力特性をもたせる試みがなされている
が、耐熱性という点ではエボキシ樹脂を用いているかぎ
り、改良に限界があり、表面実装時の半田浸漬後の信頼
性の高いものが得られていない。
To deal with these problems, attempts have been made to make epoxy resins have low stress characteristics by adding silicone compounds or using silicone-modified epoxy resins, but in terms of heat resistance, as long as epoxy resins are used, there are no improvements. There are limits to this, and high reliability after solder immersion during surface mounting has not been achieved.

これらの半田耐熱性に対処するには樹脂特性として低応
力であり、かつTgが高く半田浴温度以上であることが
望まれている。
In order to cope with these solder heat resistance, it is desired that the resin properties be low stress and high Tg that is higher than the solder bath temperature.

エボキシ樹脂に変わる高耐熱性を有する樹脂としてはマ
レイミド樹脂が注目されてきているが、低応力特性に劣
り、堅くて脆いという欠点がある。
Maleimide resins have been attracting attention as a resin with high heat resistance to replace epoxy resins, but they have the drawbacks of poor low stress properties, hardness, and brittleness.

ポリアミノマレイミド樹脂においては堅くて脆いという
欠点は改良されて来ているが、低応力特性の面では未だ
不十分である。
Although the drawbacks of polyaminomaleimide resins such as hardness and brittleness have been improved, they are still insufficient in terms of low stress properties.

ポリマレイミドとアルケニルフェノール類またはアルケ
ニルフェノールエーテル類などを重合触媒存在下で反応
させる例(特開昭52−994 ,特開昭58−117
219号公報)やアリルエーテル化置換フェノール類/
ポラック樹脂とN,N ’−ビスマレイミド化合物から
なる樹脂組成物(特開昭62−11716,特開昭62
−22812,特開昭62−22813号公報)もある
が、ポリアミノマレイミド樹脂と同様に低応力特性に劣
る欠点がある。
Examples of reacting polymaleimide with alkenylphenols or alkenylphenol ethers in the presence of a polymerization catalyst (JP-A-52-994, JP-A-58-117)
No. 219) and allyl etherified substituted phenols/
Resin composition consisting of pollack resin and N,N'-bismaleimide compound (JP-A-62-11716, JP-A-62
-22812, JP-A-62-22813), but like polyaminomaleimide resins, they have the disadvantage of poor low stress properties.

ポリアミノマレイミド樹脂を含むマレイミド樹脂の低応
力特性の改善策として各種シリコーン化合物の添加が試
みられているが相溶性が著しく劣り、相分離して、均質
な樹脂が得られない。
Attempts have been made to add various silicone compounds as a measure to improve the low stress properties of maleimide resins including polyaminomaleimide resins, but the compatibility is extremely poor and phase separation occurs, making it impossible to obtain homogeneous resins.

とくに、シリコーンオイルを用いた場合にはオイルのプ
リードが生じるためにロール滑り、金型汚れを起こして
しまう。又シリコーンゴムを用いた場合には接着性が低
下してしまう。
In particular, when silicone oil is used, oil bleed occurs, causing roll slippage and mold staining. Furthermore, when silicone rubber is used, adhesiveness is reduced.

又相溶性を向上さ♂るために末端に一〇H基、一〇CH
,基等の反応性基を持ったシリコーン化合物を添加する
例(Brit UK PAT2018802(1984
),FR2544325,特開昭57−90827.5
6−20023.57−90012.5874749号
公報)もあるが成形時にガスが発生し7クレを生じたり
、耐熱性や耐湿性の低下を招き満足のいく性能を発揮で
きていない。
Also, in order to improve compatibility, 10H group and 10CH group are added at the end.
, an example of adding a silicone compound having a reactive group such as a group (Brit UK PAT2018802 (1984
), FR2544325, JP-A-57-90827.5
No. 6-20023.57-90012.5874749), but gas is generated during molding, resulting in cracking and deterioration of heat resistance and moisture resistance, resulting in unsatisfactory performance.

又、ビスマレイミドとジアミンとアミノ基含有ポリシロ
キサンとを溶液中で反応させる例(特開昭62−246
933号公報)も試みられている。
Also, an example of reacting bismaleimide, diamine, and amino group-containing polysiloxane in a solution (Japanese Patent Application Laid-Open No. 62-246
No. 933) has also been attempted.

しかし、無溶媒ではアミノ基含有ボリシロキサンとビス
マレイミド、ジアミンとの相溶性が悪く、均質な樹脂が
得られていない。
However, in the absence of a solvent, the amino group-containing polysiloxane has poor compatibility with bismaleimide and diamine, and a homogeneous resin cannot be obtained.

溶剤を用いると相溶性は向上するが、反応終了時に溶剤
を完全に除去することは困難で、そのtこめに貯蔵安定
性が低下したり、戊形時にガス、フクレなどが発生して
、実用上問題点が多く残る。
The use of a solvent improves compatibility, but it is difficult to completely remove the solvent at the end of the reaction, leading to a decrease in storage stability and generation of gas and blisters during molding, making it impractical for practical use. Many problems remain.

(発明の目的) 本発明の目的とするところは相溶性が良く、一般の特性
を低下させることなく、耐湿性、低応力特性に優れ、か
つ高耐熱性を有し、半田浸漬後の信頼性に非常に優れた
半導体封止用樹脂の製造方法を提供することにある。
(Objective of the Invention) The object of the present invention is to have good compatibility, excellent moisture resistance and low stress characteristics, high heat resistance, and high reliability after soldering immersion without deteriorating general characteristics. It is an object of the present invention to provide a method for producing a resin for semiconductor encapsulation which is extremely excellent in terms of performance.

(発明の構戊) 本発明は下記式〔I〕で示されるビスマレイミドと、下
記式CI!)で示されるジアミノポリシロキサンとを、 下記式〔I〕で示される多官能性ボリアリルエーテルフ
ェノール類の存在下で、生成樹脂の融点が50〜102
゜Cとなるまで反応させることを特徴とする封止用樹脂
の製造方法である。
(Structure of the Invention) The present invention provides bismaleimide represented by the following formula [I] and the following formula CI! ) in the presence of a polyfunctional polyaryl ether phenol represented by the following formula [I], the resulting resin has a melting point of 50 to 102
This is a method for producing a sealing resin, characterized in that the reaction is carried out until the temperature reaches °C.

(作用) 本発明において用いられるビスマレイミドは下記式CI
)で表される。
(Function) The bismaleimide used in the present invention has the following formula CI
).

R.:2価の芳香族基 具体例としては、N.N ’−m−7 xニレンビスマ
レイミド、N,N’−p−7二二レンビスマレイミド、
N + N ’−m−トルイレンビスマレイミド、N,
N’−4.4’−ビフエニレンビスマレイミド、N.N
 ’−4.4 ’−(3.3 ’−ジメチルービ7エニ
レン〕ビスマレイミド、N,N ’−4 .4 ’−(
3.3′−ジメチルジフェニルメタン〕ビスマレイミド
、N.N ’−4.4 ’−(3,3 ’−ジエチルジ
フエニルメタン〕ビスマレイミl’、N,N ’−4.
4 ’−ジフェニルメタンビスマレイミ}’、N,N 
’−4.4 ’−ジフエニルプロパンビスマレイミl’
、N,N ’−4.4 ’−ジフエニルエーテルビスマ
レイミ}’、N,N ’−3.3 ’−ジフエニルスル
ホンビスマレイミF、N,N″−4.4″−ジフエニル
スルホンビスマレイミドなどを挙げることができる。こ
れらは2種以上含まれていても何ら差し支えない。
R. : Specific examples of divalent aromatic groups include N. N'-m-7 x nylene bismaleimide, N,N'-p-7 nylene bismaleimide,
N + N'-m-toluylene bismaleimide, N,
N'-4.4'-biphenylene bismaleimide, N. N
'-4.4'-(3.3'-dimethyl-bi7enylene]bismaleimide, N,N'-4.4'-(
3.3'-dimethyldiphenylmethane]bismaleimide, N. N'-4.4'-(3,3'-diethyldiphenylmethane)bismaleimi', N,N'-4.
4'-diphenylmethane bismaleimi}', N, N
'-4.4'-diphenylpropane bismaleimi'
, N,N'-4.4'-diphenyl ether bismaleimi}', N,N'-3.3'-diphenyl sulfone bismaleimi F, N,N''-4.4'-diphenyl sulfone bis Examples include maleimide. There is no problem even if two or more of these are included.

本発明に用いられるジアミノポリシロキサンは下記式(
I[)で示されるポリシロキサンであり、その重合度n
は1〜100の範囲のものである。
The diamino polysiloxane used in the present invention has the following formula (
It is a polysiloxane represented by I[), and its degree of polymerization n
ranges from 1 to 100.

R2:アルキレン基またはフエニレン基R,,R,:ア
ルキル基またはフェニル基重合度が100以上の場合、
相溶性が低下してしまう。ジアミノボリシロキサンはビ
スマレイミド100重量部に対し5〜50重量部が好ま
しい。
R2: Alkylene group or phenylene group R,,R,: Alkyl group or phenyl group When the degree of polymerization is 100 or more,
Compatibility will decrease. Diaminoborisiloxane is preferably used in an amount of 5 to 50 parts by weight per 100 parts by weight of bismaleimide.

51t量部以下では硬化樹脂の低応力効果が低下し、又
、501i量部以上であれば相溶性が悪化し、強度が低
下する。
If the amount is less than 51t parts, the low stress effect of the cured resin will decrease, and if it is more than 501i parts, the compatibility will deteriorate and the strength will decrease.

多官能性ボリアリルエーテルフェノール類は下記式(I
II)で示され、その重合度mはO−10の範囲である
Polyfunctional polyallyl ether phenols have the following formula (I
II), and its degree of polymerization m is in the range of O-10.

一S○「 −と一〇一 マレイミド100重量部に対し、10−100重量部が
好ましい。10重量部以下であれば相溶性が低下し、ま
た100重畳部以上であれば硬化樹脂の耐熱性が低下す
る。
The amount is preferably 10-100 parts by weight per 100 parts by weight of 1S○'- and 101 maleimide.If it is less than 10 parts by weight, the compatibility will decrease, and if it is more than 100 parts by weight, the heat resistance of the cured resin will decrease. decreases.

ビスマレイミド(A)とジアミノポリシロキサン(B)
の反応方法は、多官能性ポリアリルエーテルフェノール
類(C)の共存下で100〜2000Cの任意の温度で
行い、反応の終点は、得られた樹脂の融点が50〜12
0゜Cの範囲となるまで反応させる。
Bismaleimide (A) and diaminopolysiloxane (B)
The reaction method is carried out at an arbitrary temperature of 100 to 2000C in the coexistence of polyfunctional polyallyl ether phenols (C), and the end point of the reaction is when the melting point of the obtained resin is 50 to 12
React until the temperature reaches 0°C.

なお、反応の終点を確認するには、反応系より少量の樹
脂を取り出し、冷却し、融点を測定し、確認する。
In addition, in order to confirm the end point of the reaction, a small amount of resin is taken out from the reaction system, cooled, and the melting point is measured and confirmed.

又、得られた樹脂を用いて戊形材料化するには硬化促進
剤、エポキシ樹脂、無機充填材、滑剤、難燃剤、離型剤
、シランカツプリング剤等を必要に応じて適宜配合添加
し、加熱混練することによって材料化できる。
In addition, in order to make a molding material using the obtained resin, a curing accelerator, epoxy resin, inorganic filler, lubricant, flame retardant, mold release agent, silane coupling agent, etc. are appropriately mixed and added as necessary. It can be made into a material by heating and kneading.

本発明の半導体封止用樹脂組戒物を戊形材料として製造
する一般的な方法としては、これらの必須戊分に各種添
加剤を加えて均一に混合した組戊物を二−ダー、熱ロー
ル等により混線処理を行い、冷却後粉砕して戊形材料と
する。
A general method for manufacturing the semiconductor encapsulating resin composition of the present invention as a molded material is to add various additives to these essential ingredients and mix the composite uniformly, then heat the composite in a secondary Cross-wire treatment is performed using a roll, etc., and after cooling, the material is crushed to form a round material.

得られた戊形材料を半導体の封止用としてもちいれば高
Tgであり、しかも低応力特性6こ優れ、非常に信頼性
の高い半導体封止用樹脂組戊物を得ることができる。
If the obtained hollow material is used for encapsulating a semiconductor, it is possible to obtain a resin assembly for semiconductor encapsulation which has a high Tg, excellent low stress properties, and is extremely reliable.

(実施例) 実施例l〜3 第l表に示す配合でジアミノポリシロキサンとo,o’
−ジアリルエーテルビス7エノールAとを加熱して溶解
し、これにN,N ’−4.4 ’−ジ7エニルメタン
ビスマレイミドを添加し、20分間反応させ、融点が6
0〜80゜Cの均質なシリコーン変性マレイミド樹脂得
た。
(Example) Examples 1 to 3 Diaminopolysiloxane and o, o' in the formulation shown in Table 1
- Diallyl ether bis-7enol A was heated and dissolved, and N,N'-4.4'-di7enylmethane bismaleimide was added thereto and reacted for 20 minutes until the melting point reached 6.
A homogeneous silicone-modified maleimide resin having a temperature of 0 to 80°C was obtained.

比較例l〜5 第1表に示す配合で実施例と同様に反応させた。Comparative examples 1-5 The reaction was carried out in the same manner as in the examples using the formulations shown in Table 1.

比較例1,3.5は相溶性が悪く、均質な樹脂が得られ
なかった。
Comparative Examples 1 and 3.5 had poor compatibility, and a homogeneous resin could not be obtained.

実施例4〜6 第2表に示すように実施例1〜3で得たシリコーン変性
マレイミド樹脂にシリカ粉末、硬化促進剤、アミノシラ
ン、着色剤および離型剤を配合し、熱ロールで混練し或
形材料を得た。
Examples 4 to 6 As shown in Table 2, silica powder, hardening accelerator, aminosilane, coloring agent, and mold release agent were blended with the silicone-modified maleimide resin obtained in Examples 1 to 3, and the mixture was kneaded with a hot roll. The shaped material was obtained.

得られた戊形材料をトランスファー戊形により180℃
,3分で戊形しフクレの無い光沢の有る戒形品が得られ
た、この戊形品をさらに180℃.8時間後硬化を行い
特性を評価した。結果を第2表に示す。
The obtained molded material was heated to 180°C by transfer molding.
The molded product was molded in 3 minutes and had a glossy finish without blisters.The molded product was further heated at 180°C. After curing for 8 hours, the properties were evaluated. The results are shown in Table 2.

実施例l〜3の樹脂を用いた実施例4〜6の戊形材料は
常温での曲げ弾性率が小さく、低応力で、内部応力も小
さい。しかも、ガラス転移点温度が高く、250℃での
曲げ強度も大きく、耐熱性、耐半田クラック性に優れて
いる。
The blank materials of Examples 4 to 6 using the resins of Examples 1 to 3 have a small bending modulus at room temperature, low stress, and small internal stress. Moreover, it has a high glass transition temperature, high bending strength at 250°C, and excellent heat resistance and solder crack resistance.

比較例6.7 比較例2.比較例4の樹脂を第2表に示す配合で同様に
戊形して特性を評価した。結果を第2表に示す。
Comparative Example 6.7 Comparative Example 2. The resin of Comparative Example 4 was molded in the same manner as shown in Table 2, and its properties were evaluated. The results are shown in Table 2.

比較例2.4の樹脂を用いた比較例6.7の成形材料は
常温での曲げ弾性率が高すぎたり、吸水率が大きいため
耐半田クラック性に劣るものであっIこ。
The molding material of Comparative Example 6.7 using the resin of Comparative Example 2.4 had an excessively high flexural modulus at room temperature and a high water absorption rate, so it had poor solder crack resistance.

(以 下 余 白) (発明の効果) 本発明の製造方法による半導体封止用樹脂を用いた組戊
物の硬化したものは高Tgであり、耐湿性及び熱時の強
度に優れているI;め封正体の耐半田クラック性が良く
、かつ低応力であり耐ヒートサイクル性にも優れており
、半導体封止用樹脂組威物として非常に信頼性の高い優
れたものである。
(The following is a blank space) (Effects of the invention) The cured composite using the resin for semiconductor encapsulation produced by the manufacturing method of the present invention has a high Tg and has excellent moisture resistance and strength under heat. The encapsulating body has good solder crack resistance, low stress, and excellent heat cycle resistance, making it an excellent and extremely reliable resin composite for semiconductor encapsulation.

Claims (1)

【特許請求の範囲】[Claims] (1)(A)下記式〔 I 〕で示されるビスマレイミド
100重量部 ▲数式、化学式、表等があります▼‐‐‐‐‐‐‐‐(
I 〕 R_1:2価の芳香族基 (B)下記式〔II〕で示されるジアミノポリシロキサン
5〜50重量部 ▲数式、化学式、表等があります▼‐‐‐‐‐‐〔II〕 R_2:アルキレン基又はフェニレン基 R_3、R_4:アルキル基又はフェニル基n:1〜1
00 (C)下記式〔III〕で示される多官能ポリアリルエー
テルフェノール類10〜100重量部 ▲数式、化学式、表等があります▼‐‐‐‐‐‐〔III
〕 R_5:−O−,−CH_2−、▲数式、化学式、表等
があります▼、 −SO_2−、▲数式、化学式、表等があります▼ m:0〜10 の(A)と(B)とを(C)の共存下で、生成樹脂の融
点が50〜1200℃となるまで反応させることを特徴
とする封止用樹脂の製造方法。
(1) (A) 100 parts by weight of bismaleimide represented by the following formula [I] ▲ Numerical formulas, chemical formulas, tables, etc. are available ▼ ‐‐‐‐‐‐‐‐‐
I] R_1: Divalent aromatic group (B) 5 to 50 parts by weight of diamino polysiloxane represented by the following formula [II] ▲ Numerical formulas, chemical formulas, tables, etc. are available▼-----[II] R_2: Alkylene group or phenylene group R_3, R_4: alkyl group or phenyl group n: 1-1
00 (C) 10 to 100 parts by weight of polyfunctional polyallyl ether phenols represented by the following formula [III] ▲ Numerical formulas, chemical formulas, tables, etc. are available ▼ ‐‐‐‐‐‐ [III
] R_5: -O-, -CH_2-, ▲ There are mathematical formulas, chemical formulas, tables, etc. ▼, -SO_2-, ▲ There are mathematical formulas, chemical formulas, tables, etc. ▼ m: 0 to 10 (A) and (B) A method for producing a sealing resin, which comprises reacting in the coexistence of (C) until the resulting resin has a melting point of 50 to 1200°C.
JP19151689A 1989-07-26 1989-07-26 Method for producing resin for semiconductor encapsulation Expired - Lifetime JP2872701B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19151689A JP2872701B2 (en) 1989-07-26 1989-07-26 Method for producing resin for semiconductor encapsulation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19151689A JP2872701B2 (en) 1989-07-26 1989-07-26 Method for producing resin for semiconductor encapsulation

Publications (2)

Publication Number Publication Date
JPH0356533A true JPH0356533A (en) 1991-03-12
JP2872701B2 JP2872701B2 (en) 1999-03-24

Family

ID=16275956

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19151689A Expired - Lifetime JP2872701B2 (en) 1989-07-26 1989-07-26 Method for producing resin for semiconductor encapsulation

Country Status (1)

Country Link
JP (1) JP2872701B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024077887A1 (en) * 2022-10-11 2024-04-18 苏州生益科技有限公司 Modified bismaleimide prepolymer, resin composition, and use of resin composition

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024077887A1 (en) * 2022-10-11 2024-04-18 苏州生益科技有限公司 Modified bismaleimide prepolymer, resin composition, and use of resin composition

Also Published As

Publication number Publication date
JP2872701B2 (en) 1999-03-24

Similar Documents

Publication Publication Date Title
KR950005314B1 (en) Thermosetting resin composition
EP0507603B1 (en) Thermosetting resin compositions and their manufacture
JPH04359911A (en) Thermosetting resin composition
US5182351A (en) Thermosetting resin compositions
US4876298A (en) Epoxy resin composition
JPH0356533A (en) Production of resin for sealing
JPH044213A (en) Production of resin for sealing semiconductor
JP2837503B2 (en) Resin composition for semiconductor encapsulation
JPH0321637A (en) Resin for sealing
JPH04117458A (en) Resin composition for semiconductor sealing
JPH02155950A (en) Sealing resin composition
JPH044214A (en) Production of resin for sealing semiconductor
JPH0326712A (en) Production of sealing resin
JPH03738A (en) Sealing resin
JPH0245554A (en) Resin composition for semiconductor sealing use
JP2823653B2 (en) Resin composition for semiconductor encapsulation
JP2857216B2 (en) Method for producing resin for semiconductor encapsulation
JP2857217B2 (en) Method for producing resin for semiconductor encapsulation
JPH02202910A (en) Sealing resin composition
JPH02187461A (en) Resin composition for sealing use
JPH02102217A (en) Epoxy resin composition
JPH04366174A (en) Resin composition for semiconductor sealing
JPH02222419A (en) Silicone-modified maleimide resin and composition thereof
JPH0413755A (en) Resin composition for sealing semiconductor
JP2823654B2 (en) Resin composition for semiconductor encapsulation