JPH044214A - Production of resin for sealing semiconductor - Google Patents

Production of resin for sealing semiconductor

Info

Publication number
JPH044214A
JPH044214A JP10544290A JP10544290A JPH044214A JP H044214 A JPH044214 A JP H044214A JP 10544290 A JP10544290 A JP 10544290A JP 10544290 A JP10544290 A JP 10544290A JP H044214 A JPH044214 A JP H044214A
Authority
JP
Japan
Prior art keywords
resin
reaction
formula
polymaleimide
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10544290A
Other languages
Japanese (ja)
Inventor
Kenichi Suzuki
憲一 鈴木
Hisafumi Enoki
尚史 榎
Hikari Okubo
光 大久保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Bakelite Co Ltd
Original Assignee
Sumitomo Bakelite Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Bakelite Co Ltd filed Critical Sumitomo Bakelite Co Ltd
Priority to JP10544290A priority Critical patent/JPH044214A/en
Publication of JPH044214A publication Critical patent/JPH044214A/en
Pending legal-status Critical Current

Links

Landscapes

  • Epoxy Resins (AREA)
  • Macromonomer-Based Addition Polymer (AREA)
  • Encapsulation Of And Coatings For Semiconductor Or Solid State Devices (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Polymers With Sulfur, Phosphorus Or Metals In The Main Chain (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)
  • Silicon Polymers (AREA)

Abstract

PURPOSE:To obtain the subject resin, good in compatibility and excellent in moisture and heat resistance, low stress characteristics and reliability after dipping thereof in solders by reacting polymaleimide with a varnish of a polysiloxane prepared by a specific method under specified conditions. CONSTITUTION:The objective resin is obtained by initially reacting a diglycidylpolysiloxane expressed by formula I (R1 is alkylene or phenylene; R2 and R3 are alkyl or phenyl; n is 1-100) with a diaminopolysiloxane expressed by formula 11 (n' is n) at (1.2:1)-(0.8:1) molar ratio in the presence of 10-70wt.% allylated phenolic resin expressed by formula III [a to c are percentages of respective units and numbers of 1-100, provided that (a+b+c) is 100] until the rate of reaction attains >=80% and then reacting 100 pts.wt. polymaleimide with 10-100 pts.wt. varnish of the polysiloxane prepared by the aforementioned reaction until the melting point of the produced resin attains 50-120 deg.C.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明はガラス転移点(以下Tgという)が高く、耐湿
性、相溶性に憬れ、かつ低応力特性に優れた半導体封止
用樹脂の製造方法に関するものである。
Detailed Description of the Invention (Field of Industrial Application) The present invention is directed to the production of a resin for semiconductor encapsulation that has a high glass transition point (hereinafter referred to as Tg), has poor moisture resistance and compatibility, and has excellent low stress characteristics. It is about the method.

(従来技術) 近年IC,LSI、トランジスター、ダイオードなどの
半導体素子や電子回路等の封止には特性、コスト等の点
からエポキシ樹脂組成物が一般的に用いられている。
(Prior Art) In recent years, epoxy resin compositions have been commonly used for sealing semiconductor elements such as ICs, LSIs, transistors, diodes, and electronic circuits from the viewpoint of characteristics, cost, and the like.

しかし、電子部品の量産性指向、高集積化や表面実装化
の方向に進んで来ておりこれに伴い封止樹脂に対する要
求は厳しくなってきている。
However, as electronic components are becoming more mass-producible, more highly integrated, and more surface-mounted, demands on sealing resins are becoming more severe.

特に高集積化に伴うチップの大型化、パッケージの薄肉
化や表面実装時における半田浸漬(200〜300°C
)によって装置にクラックが発生し易くなっており、信
頼性向上のために半導体封止用樹脂としては低応力特性
と耐熱性が強く望まれている。
In particular, chips become larger due to higher integration, packages become thinner, and solder immersion (200 to 300°C) during surface mounting is required.
), which makes it easy for devices to crack, and in order to improve reliability, it is strongly desired that resins for semiconductor encapsulation have low stress characteristics and heat resistance.

半導体封止用樹脂としては現在エポキシ樹脂が主流であ
るが、耐熱性という点ではエポキシ樹脂を用いている限
り改良に限界があり、表面実装時の半田浸漬後の信頼性
の高いものが得られていない。
Epoxy resin is currently the mainstream resin for semiconductor encapsulation, but there are limits to its improvement in terms of heat resistance as long as epoxy resin is used, and it is difficult to obtain a highly reliable product after solder immersion during surface mounting. Not yet.

これらの半田耐熱性に対処するには樹脂特性として低応
力であり、かつTgが高く半田浴温度以上であることが
望まれている。
In order to cope with these solder heat resistance, it is desired that the resin properties be low stress and high Tg that is higher than the solder bath temperature.

エポキシ樹脂に代わる高耐熱性を有する樹脂としてはマ
レイミド樹脂が注目されてきているが、ビスマレイミド
と芳香族ジアミンとの反応によって得られるアミン変性
マレイミド樹脂は、乾燥時の耐熱性には優れているが、
吸水率が大きく、吸湿時の半田浸漬でクラックを発生し
、信頼性に乏しい欠点がある。
Maleimide resins are attracting attention as a resin with high heat resistance to replace epoxy resins, but amine-modified maleimide resins obtained by the reaction of bismaleimide and aromatic diamines have excellent heat resistance during drying. but,
It has a high water absorption rate, and cracks occur when immersed in solder when moisture is absorbed, resulting in poor reliability.

マレイミド樹脂としては、この他に、ポリマレイミドと
アルケニルフェノール類またはアルケニルフェニルエー
テル類などを重合触媒存在下で反応させる例(特開昭5
2−994.58−117219.61−95012.
62−11716.63−230728号公報)もある
が、アミン変性マレイミド樹脂と同様に硬化物は堅いた
め、低応力特性に劣る欠点がある。
Other maleimide resins include examples in which polymaleimide and alkenyl phenols or alkenyl phenyl ethers are reacted in the presence of a polymerization catalyst (Japanese Patent Application Laid-Open No.
2-994.58-117219.61-95012.
62-11716.63-230728), but like the amine-modified maleimide resin, the cured product is hard, so it has the disadvantage of poor low stress properties.

低応力特性の改善策として各種シリコーン化合物の添加
が試みられているが、相溶性が著しく劣り、強度が低下
し、吸水率が大きくて、耐湿性、信頼性に欠け、実用上
問題点が多く残る。
Attempts have been made to add various silicone compounds as a measure to improve low-stress properties, but they have significantly poor compatibility, reduced strength, high water absorption, lack moisture resistance and reliability, and have many practical problems. remain.

(発明が解決しようとする課題) 本発明の目的とするところは相溶性が良く、般の特性を
低下させることなく、耐湿性、低応力特性に優れ、かつ
高耐熱性を有し、半田浸漬後の信頼性に非常に優れた半
導体封止用樹脂の製造方法を提供することにある。
(Problems to be Solved by the Invention) The object of the present invention is to have good compatibility, excellent moisture resistance, low stress characteristics, and high heat resistance without deteriorating general characteristics, and to have solder immersion resistance. It is an object of the present invention to provide a method for producing a resin for semiconductor encapsulation that has excellent subsequent reliability.

(課題を解決するための手段) 本発明は、(A)ポリマレイミド100重量部と、(B
)下記式(I)で示されるジグリシジルポリシロキサン
と、下記式(II )で示されるジアミノポリシロキサ
ンとを、 (R□:アルキレン基又はフェニレン基R2、R3:ア
ルキル基又はフェニル基n、n’=1〜100の整数) モル比が1.2:1〜0.8:lで、下記式(III)
の組成で示されるアリル化フェノール樹脂10〜70重
量%の存在下に、 (0<a、b、c<100かツa+ b + c =1
00a、b、cは各組成の百分率を示す。)・・・(I
) 反応率が80%以上になるまで、反応させて得られるポ
リシロキサンのワニス10〜100重量部とを、生成樹
脂の融点が50〜120°Cとなるまで反応させること
を特徴とする半導体封止用樹脂の製造方法である。
(Means for Solving the Problems) The present invention comprises (A) 100 parts by weight of polymaleimide, and (B)
) A diglycidyl polysiloxane represented by the following formula (I) and a diamino polysiloxane represented by the following formula (II), (R□: alkylene group or phenylene group R2, R3: alkyl group or phenyl group n, n ' = integer of 1 to 100) molar ratio is 1.2:1 to 0.8:l, and the following formula (III)
In the presence of 10 to 70% by weight of an allylated phenolic resin having the composition (0<a, b, c<100, a+b+c=1
00a, b, and c indicate the percentage of each composition. )...(I
) A semiconductor encapsulation characterized by reacting 10 to 100 parts by weight of a polysiloxane varnish obtained by the reaction until the reaction rate reaches 80% or more, and until the melting point of the resulting resin reaches 50 to 120°C. This is a method for producing a stopper resin.

(作用) 本発明において用いられるポリマレイミドの具体例とし
ては、N 、 N’−m−フェニレンビスマレイミド、
N、N’−p−フェニレンビスマレイミド、N、N′−
m−トルイレンビスマレイミド、N、N′−4,4′−
ビフェニレンビスマレイミド、N、N’−4,4’−(
3,3’−ジメチル−ビフェニレンビスマレイミド、N
、N’−4,4’−(3,3’−ジメチルジフェニルメ
タン〕ビスマレイミド、N、N’−4,4’−(3,3
’−ジエチルジフェニルメタン〕ビスマレイミド、N、
N′−4,4′−ジフェニルメタンビスマレイミド、N
、N’−4,4’−ジフェニルプロパンビスマレイミド
、N、N’−4,4’−ジフェニルエーテルビスマレイ
ミド、N、N’−3,3’−ジフェニルスルホンビスマ
レイミド、N、N’−4,4’−ジフェニルスルホンビ
スマレイミド、−船蔵(IV)又は(V)で示される多
官能マレイミドなどを挙げることができる。これらは2
種以上含まれていても何ら差し支えない。
(Function) Specific examples of the polymerimide used in the present invention include N, N'-m-phenylene bismaleimide,
N, N'-p-phenylene bismaleimide, N, N'-
m-Toluylene bismaleimide, N,N'-4,4'-
Biphenylene bismaleimide, N,N'-4,4'-(
3,3'-dimethyl-biphenylene bismaleimide, N
, N'-4,4'-(3,3'-dimethyldiphenylmethane) bismaleimide, N, N'-4,4'-(3,3
'-diethyldiphenylmethane]bismaleimide, N,
N'-4,4'-diphenylmethane bismaleimide, N
, N'-4,4'-diphenylpropane bismaleimide, N, N'-4,4'-diphenyl ether bismaleimide, N, N'-3,3'-diphenylsulfone bismaleimide, N, N'-4, Examples include 4'-diphenylsulfone bismaleimide, a polyfunctional maleimide represented by (IV) or (V), and the like. These are 2
There is no problem even if it contains more than one species.

(R5ニーH,アルキル基又はフェニル基0<i<10
) (0<j<10) 本発明に用いられるジグリシジルポリシロキサンは下記
式(I)で示されるポリシロキサンであり、その重合度
nは1〜100の範囲のものである。
(R5 knee H, alkyl group or phenyl group 0<i<10
) (0<j<10) The diglycidyl polysiloxane used in the present invention is a polysiloxane represented by the following formula (I), and its degree of polymerization n is in the range of 1 to 100.

・・・(I) R工としては炭素数1〜6のアルキレン基又はフェニレ
ン基が一般であり、R2、R3としては炭素数1〜4の
アルキル基又はフェニル基が一般である。
...(I) The R group is generally an alkylene group having 1 to 6 carbon atoms or a phenylene group, and R2 and R3 are generally an alkyl group having 1 to 4 carbon atoms or a phenyl group.

本発明に用いられるジアミノポリシロキサンは、下記式
〔!I〕に示されるポリシロキサンであり、その重合度
n′は1〜100の範囲のものである。
The diamino polysiloxane used in the present invention has the following formula [! I], and its degree of polymerization n' is in the range of 1 to 100.

R工、R2、R3は前記と同様である。R, R2, and R3 are the same as above.

これらの2官能ポリシロキサンの重合度nが100以上
となれば相溶性が非常に低下してしまう。
If the degree of polymerization n of these bifunctional polysiloxanes is 100 or more, the compatibility will be extremely reduced.

本発明に用いられるアリル化フェノール樹脂は、フェノ
ール樹脂を塩化アリル又は臭化アリルと反応させ、アリ
ル化したもので、下記式(III)の組成で示されるも
ので、樹脂中にそれぞれの構造をもつ部分が全体として
a、b、cの比で存在しているものである。
The allylated phenol resin used in the present invention is obtained by reacting a phenol resin with allyl chloride or allyl bromide to allylate it, and has the composition of the following formula (III), and has each structure in the resin. The total number of parts present in the ratio of a, b, and c.

(0<a、b、c<100かッa+b+c=100a、
b、cは、各組成の百分率(%)を示す)好ましくは、
20≦a≦80.10≦b≦50が良い。
(0<a, b, c<100k a+b+c=100a,
(b, c indicate the percentage (%) of each composition) Preferably,
20≦a≦80.10≦b≦50.

C成分は、熱時強度の向上と吸水率を下げるのに効果が
あるが、ポリマレイミドとの樹脂生成反応においては、
殆ど反応しないため、多過ぎると樹脂が固形化せず、相
溶性、作業性が悪化する。
Component C is effective in improving heat strength and lowering water absorption, but in the resin production reaction with polymaleimide,
Since there is almost no reaction, if the amount is too large, the resin will not solidify, resulting in poor compatibility and workability.

b成分は、ポリマレイミドとの樹脂生成反応においてマ
レイミド基と反応し、ポリマレイミドとポリシロキサン
との相溶性を改善する重要な成分である。しかし、多過
ぎると硬化物中にフェノール性水酸基が増えるため、吸
水率が大きくなって好ましくない。
Component b is an important component that reacts with maleimide groups in the resin production reaction with polymaleimide and improves the compatibility between polymaleimide and polysiloxane. However, if the amount is too large, the number of phenolic hydroxyl groups in the cured product increases, resulting in an increase in water absorption, which is not preferable.

C成分は、少ないほど好ましい。The smaller the C component, the better.

ジグリシジルポリシロキサンとジアミノポリシロキサン
との反応は、モル比が1.2:1〜0.8:1、好まし
くは1:1で、アリル化フェノール樹脂10〜70重量
%の存在下に50〜200°Cの温度で、反応率が80
%以上になるまで行うのが良い。ジグリシジルポリシロ
キサンが多過ぎると、ポリマレイミドとの相溶性が悪化
し、成形品の外観不良、機械強度の低下を招く。ジアミ
ノポリシロキサンが多過ぎると、成形材料の保存性が著
しく悪化し、吸水率も大きくなる。アリル化フェノール
樹脂は、ジグリシジルポリシロキサンとジアミノポリシ
ロキサンとの反応において優れた触奴として作用し、次
の段階でポリマレイミドと反応する。10重量%未満で
は、反応したポリシロキサンの粘度が増大し、取扱い作
業が困難になる。70重量%を越えると機械強度、Tg
、低応力特性の低下を招く。ジグリシジルポリシロキサ
ンとジアミノポリシロキサンとの反応率が80%未満で
は、ポリマレイミドとの相溶性が不充分で、成形材料の
保存性、成形品の外観、諸物性などに悪影響する。
The reaction between diglycidyl polysiloxane and diamino polysiloxane is carried out in a molar ratio of 1.2:1 to 0.8:1, preferably 1:1, in the presence of 10 to 70% by weight of an allylated phenolic resin. At a temperature of 200°C, the reaction rate is 80
It is better to do this until it reaches % or more. If the amount of diglycidyl polysiloxane is too large, the compatibility with the polymaleimide will deteriorate, leading to poor appearance and decreased mechanical strength of the molded product. If the amount of diaminopolysiloxane is too large, the storage stability of the molding material will be significantly deteriorated and the water absorption rate will also increase. The allylated phenolic resin acts as an excellent catalyst in the reaction of the diglycidylpolysiloxane with the diaminopolysiloxane and reacts with the polymaleimide in the next step. If it is less than 10% by weight, the viscosity of the reacted polysiloxane increases, making handling difficult. If it exceeds 70% by weight, the mechanical strength and Tg
, leading to a decrease in low stress properties. If the reaction rate between diglycidylpolysiloxane and diaminopolysiloxane is less than 80%, the compatibility with the polymaleimide will be insufficient, which will adversely affect the storage stability of the molding material, the appearance of the molded product, and various physical properties.

このようにして得たポリシロキサンワニス(B)とポリ
マレイミド(A)との反応は、反応条件を特に限定する
ものではないが、−例を示すと、(B)を130〜15
0℃に加熱し、これに(A)を添加して行うことができ
る。ポリマレイミド100重量部に対し、ポリシロキサ
ンワニスは10〜100重量部、好ましくは30〜90
重量部が良い。少な過ぎると低応力特性が得られない。
The reaction conditions for the reaction between the thus obtained polysiloxane varnish (B) and the polymaleimide (A) are not particularly limited.
This can be carried out by heating to 0° C. and adding (A) thereto. The amount of polysiloxane varnish is 10 to 100 parts by weight, preferably 30 to 90 parts by weight, per 100 parts by weight of polymaleimide.
Good weight section. If it is too small, low stress characteristics cannot be obtained.

多過ぎると機械強度、Tgが下がり、半田浸漬時にクラ
ックを発生する。
If it is too large, the mechanical strength and Tg will decrease and cracks will occur during solder immersion.

反応の終点は、得られた樹脂の融点が50〜120°C
となるまで行うことが好ましい。なお、反応の終点を確
認するには、反応系より少量の樹脂を取り出し、冷却し
、融点を測定し、確認する。
The end point of the reaction is when the melting point of the obtained resin is 50 to 120°C.
It is preferable to carry out the process until . In addition, in order to confirm the end point of the reaction, a small amount of resin is taken out from the reaction system, cooled, and the melting point is measured and confirmed.

得られた樹脂を用いて成形材料化するには、この樹脂に
、エポキシ樹脂、硬化促進剤、無機充填材、滑剤、難燃
剤、離型剤やシランカップリング剤等を必要に応じて適
宜配合添加し、均一に混合した組成物をニーダ−1熱ロ
ール等により混線処理を行い、冷却後粉砕して成形材料
とする。
In order to make a molding material using the obtained resin, epoxy resin, hardening accelerator, inorganic filler, lubricant, flame retardant, mold release agent, silane coupling agent, etc. are appropriately blended with this resin. The added and uniformly mixed composition is subjected to cross-crossing treatment using a kneader 1 heated roll or the like, cooled, and then pulverized to obtain a molding material.

得られた成形材料を半導体の封止用として用いれば高T
gであり、しかも低応力特性に優れ、非常に信頼性の高
い半導体封止用樹脂組成物を得ることができる。
If the obtained molding material is used for encapsulating semiconductors, high T
In addition, it is possible to obtain a resin composition for semiconductor encapsulation which has excellent low stress characteristics and is highly reliable.

[アリル化フェノール樹脂の合成] 合成例 撹拌装置、還流冷却器、温度計及び滴下ロートを付けた
反応容器に、水酸化カリウム76重量部と、水/アセト
ン(1/1)の混合溶媒500重量部とを入れて溶解さ
せ、これにフェノール樹脂PR−51470(住人デュ
レズ■製) 100重量部を添加し、溶解させた。
[Synthesis of allylated phenolic resin] Synthesis example In a reaction vessel equipped with a stirring device, reflux condenser, thermometer and dropping funnel, 76 parts by weight of potassium hydroxide and 500 parts by weight of a mixed solvent of water/acetone (1/1) were added. 100 parts by weight of a phenol resin PR-51470 (manufactured by Jujurez ■) was added and dissolved.

この溶液を加熱し、臭化アリル122重量部を添加して
、還流下3時間反応させた。その後、塩酸で中和して、
アセトンと未反応の臭化アリルを留去し、トルエン1リ
ツトルを添加した。分液ロートに移し、水洗を3回行い
、エバポレーターで溶媒を除去した。
This solution was heated, 122 parts by weight of allyl bromide was added, and the mixture was reacted under reflux for 3 hours. Then, neutralize with hydrochloric acid,
Acetone and unreacted allyl bromide were distilled off, and 1 liter of toluene was added. The mixture was transferred to a separating funnel, washed with water three times, and the solvent was removed using an evaporator.

更に、175°C52時間加熱処理をして、アリル化フ
ェノール樹脂を得た。生成物の組成は(実施例) 実施例1〜2 撹拌装置、減圧装置及び温度計を付けた反応容器に、ジ
グリシジルポリシロキサン、ジアミノポリシロキサン及
びアリル化フェノール樹脂を第1表の処方に従って入れ
減圧下(約20mmHg) 150°Cで、グリシジル
基の反応率が90%に達するまで反応させた。反応時間
は約30分であった。
Further, heat treatment was performed at 175° C. for 52 hours to obtain an allylated phenol resin. The composition of the product is (Example) Examples 1 to 2 Diglycidyl polysiloxane, diamino polysiloxane, and allylated phenolic resin were placed in a reaction vessel equipped with a stirring device, a pressure reduction device, and a thermometer according to the recipe in Table 1. The reaction was carried out under reduced pressure (approximately 20 mmHg) at 150°C until the reaction rate of glycidyl groups reached 90%. The reaction time was approximately 30 minutes.

これにポリマレイミドを加え、更に30分間反応させた
。得られたシリコーン変性マレイミド樹脂は均質で、融
点を第1表に示した。
Polymaleimide was added to this, and the mixture was reacted for an additional 30 minutes. The obtained silicone-modified maleimide resin was homogeneous and its melting point is shown in Table 1.

比較例1〜2 比較例1は、実施例1のモル比(ジグ「フシジルポリシ
ロキサン/ジアミノポリシロキサン)を173に、比較
例2は実施例1のアリル化フェノール樹脂を0,0′−
ジアリルビスフェノールAに置き換えて同様に反応させ
た。
Comparative Examples 1 to 2 In Comparative Example 1, the molar ratio (Jig "fucidyl polysiloxane/diaminopolysiloxane)" of Example 1 was set to 173, and in Comparative Example 2, the allylated phenol resin of Example 1 was set to 0,0'-
The reaction was carried out in the same manner except that diallylbisphenol A was used instead.

比較例3 実施例1のアリル化フェノール樹脂を、ビスフェノール
Aジアリルエーテルに置き換えて、同様に反応させた。
Comparative Example 3 The allylated phenol resin of Example 1 was replaced with bisphenol A diallyl ether, and the reaction was carried out in the same manner.

アリルエーテルとマレイミド基の反応が非常に遅くて、
得られた樹脂は不均質で液状成分が滲み出していた。な
お、更に高温(200°C)で反応させると、急激に発
熱してゲル化し、反応の調節が困難であった。
The reaction between allyl ether and maleimide group is very slow,
The resulting resin was heterogeneous and liquid components were exuding. Note that when the reaction was carried out at an even higher temperature (200°C), heat was rapidly generated and gelation occurred, making it difficult to control the reaction.

比較例4 参考例1のジグリシジルポリシロキサンの重合度(n)
を大きくして、同様に反応させた。ポリマレイミドとの
相溶性が悪く、油状のポリシロキサンが分離して滲み出
し、不均質であった。
Comparative Example 4 Degree of polymerization (n) of diglycidyl polysiloxane of Reference Example 1
was made larger and the reaction was similar. It had poor compatibility with polymaleimide, and the oily polysiloxane separated and oozed out, resulting in non-uniformity.

実施例3〜4 第2表に示すように、実施例1〜2で得たシリコーン変
性マレイミド樹脂に、シリカ粉末、硬化促進剤、アミノ
シラン、着色剤および離型剤を配合し、熱ロールで混練
して成形材料を得た。得られた成形材料をトランスファ
ー成形により180°C13分で成形しフクレの無い光
沢の有る成形品が得られた。この成形品をさらに180
°C18時間後硬化を行い特性を評価した。結果を第2
表に示す。
Examples 3-4 As shown in Table 2, the silicone-modified maleimide resin obtained in Examples 1-2 was blended with silica powder, a curing accelerator, an aminosilane, a coloring agent, and a mold release agent, and kneaded with a hot roll. A molding material was obtained. The obtained molding material was molded by transfer molding at 180° C. for 13 minutes to obtain a glossy molded product without blisters. Add this molded product to 180
After curing at °C for 18 hours, the properties were evaluated. Second result
Shown in the table.

実施例1〜2の樹脂を用いた実施例3〜4の成形材料は
、シリコーンを含まない比較例10に比べ常温での曲げ
弾性率が小さく、低応力で、内部応力も小さい。しかも
、ガラス転移温度が高く、260°Cでの曲げ強度も大
きく、耐熱性、耐半田クラック性に優れ、吸水率も小さ
い。
The molding materials of Examples 3 and 4 using the resins of Examples 1 and 2 have a lower flexural modulus at room temperature, lower stress, and lower internal stress than Comparative Example 10 that does not contain silicone. Moreover, it has a high glass transition temperature, high bending strength at 260°C, excellent heat resistance and solder crack resistance, and low water absorption.

比較例5〜10 実施例3〜4と比較のため、第2表に示す配合で同様に
成形材料を作成し成形した。
Comparative Examples 5-10 For comparison with Examples 3-4, molding materials were prepared and molded in the same manner as shown in Table 2.

比較例5は、比較例1のモル比(ジグリシジルポリシロ
キサン/ジアミノポリシロキサン)が1/3のシリコー
ン変性マレイミド樹脂を用いたものである。耐熱性が低
下し、吸水率も大きく、耐半田クラック性も良くない。
Comparative Example 5 uses a silicone-modified maleimide resin having a molar ratio (diglycidylpolysiloxane/diaminopolysiloxane) of 1/3 of Comparative Example 1. Heat resistance is reduced, water absorption is high, and solder crack resistance is also poor.

比較例6は、実施例1のアリル化フェノール樹脂を0.
0′−ジアリルビスフェノールAに置き換えて反応させ
た。比較例2のシリコーン変性マレイミド樹脂を用いた
In Comparative Example 6, the allylated phenol resin of Example 1 was added to 0.
The reaction was carried out by substituting 0'-diallylbisphenol A. The silicone-modified maleimide resin of Comparative Example 2 was used.

比較例5と同様に、耐熱性と吸水率が劣っている。Similar to Comparative Example 5, the heat resistance and water absorption rate are poor.

比較例7は、実施例1のアリル化フェノール樹脂をビス
フェノールA−ジアリルエーテルに置き換えて反応させ
た。比較例3のシリコーン変性マレイミド樹脂を用いた
In Comparative Example 7, the allylated phenol resin of Example 1 was replaced with bisphenol A-diallyl ether and the reaction was carried out. The silicone-modified maleimide resin of Comparative Example 3 was used.

形品の外観が悪く、金型くもりを生じ、吸水率も大きい
The appearance of the shaped product is poor, the mold becomes cloudy, and the water absorption rate is high.

比較例8は、実施例3とほぼ同じ組成であるが、単に配
合時に混ぜたものである。比較例7と同様に成形品の外
観が悪く、金型くもりを生じ、吸水率も大きい。
Comparative Example 8 has almost the same composition as Example 3, but was simply mixed at the time of blending. Similar to Comparative Example 7, the appearance of the molded product was poor, the mold was cloudy, and the water absorption rate was high.

比較例9は、重合度(n)の大きいポリシロキサンを用
いたものであるが、ポリマレイミドとの相溶性が悪く、
比較例7.8と同様に好ましい結果は得られなかった。
Comparative Example 9 uses polysiloxane with a high degree of polymerization (n), but has poor compatibility with polymaleimide.
Similar to Comparative Example 7.8, favorable results were not obtained.

比較例10は、ポリシロキサンを含まないものである。Comparative Example 10 does not contain polysiloxane.

成形品の外観、曲げ強度、耐熱性は良好であるが、吸水
率が大きく、耐半田クラック性は充分でない。
Although the appearance, bending strength, and heat resistance of the molded product are good, the water absorption rate is large and the solder crack resistance is insufficient.

(発明の効果) 本発明による半導体封止用樹脂を用いた組成物の硬化物
は高Tgであり、耐湿性及び熱時の強度に優れているた
め封止体の耐半田クラック性が良く、かつ低応力であり
耐ヒートサイクル性にも優れており、半導体封止用樹脂
組成物として非常に信頼性の高い優れたものである。
(Effects of the Invention) The cured product of the composition using the resin for semiconductor encapsulation according to the present invention has a high Tg and is excellent in moisture resistance and strength under heat, so that the encapsulated body has good solder crack resistance. It also has low stress and excellent heat cycle resistance, making it an excellent and highly reliable resin composition for semiconductor encapsulation.

Claims (1)

【特許請求の範囲】[Claims] (1)(A)ポリマレイミド100重量部と、(B)下
記式〔 I 〕で示されるジグリシジルポリシロキサンと
、下記式〔II〕で示されるジアミノポリシロキサンとを
、 ▲数式、化学式、表等があります▼ ・・・〔 I 〕 ▲数式、化学式、表等があります▼・・・〔II〕 (R_1:アルキレン基又はフェニレン基 R_2、R_3:アルキル基又はフェニル基n、n′:
1〜100の整数) モル比が1.2:1〜0.8:1で、下記式〔III〕の
組成で示されるアリル化フェノール樹脂10〜70重量
%の存在下に、 ▲数式、化学式、表等があります▼、▲数式、化学式、
表等があります▼、▲数式、化学式、表等があります▼
・・・〔III〕 (0<a、b、c<100かつa+b+c=100a、
b、cは各組成の百分率を示す。) 反応率が80%以上になるまで、反応させて得られるポ
リシロキサンのワニス10〜100重量部とを、生成樹
脂の融点が50〜120℃となるまで反応させることを
特徴とする半導体封止用樹脂の製造方法。
(1) (A) 100 parts by weight of polymaleimide, (B) diglycidylpolysiloxane represented by the following formula [I], and diaminopolysiloxane represented by the following formula [II], ▲Mathematical formula, chemical formula, table etc.▼ ・・・[I] ▲Mathematical formulas, chemical formulas, tables, etc.▼・・・[II] (R_1: Alkylene group or phenylene group R_2, R_3: Alkyl group or phenyl group n, n':
(an integer from 1 to 100) in the presence of 10 to 70% by weight of an allylated phenolic resin having a molar ratio of 1.2:1 to 0.8:1 and having a composition of the following formula [III], ▲Mathematical formula, chemical formula , tables, etc. ▼, ▲ mathematical formulas, chemical formulas,
There are tables, etc. ▼, ▲ There are mathematical formulas, chemical formulas, tables, etc. ▼
...[III] (0<a, b, c<100 and a+b+c=100a,
b and c indicate the percentage of each composition. ) Semiconductor encapsulation characterized by reacting 10 to 100 parts by weight of polysiloxane varnish obtained by the reaction until the reaction rate reaches 80% or more, and until the melting point of the resulting resin reaches 50 to 120°C. Method of manufacturing resin for use.
JP10544290A 1990-04-23 1990-04-23 Production of resin for sealing semiconductor Pending JPH044214A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10544290A JPH044214A (en) 1990-04-23 1990-04-23 Production of resin for sealing semiconductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10544290A JPH044214A (en) 1990-04-23 1990-04-23 Production of resin for sealing semiconductor

Publications (1)

Publication Number Publication Date
JPH044214A true JPH044214A (en) 1992-01-08

Family

ID=14407713

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10544290A Pending JPH044214A (en) 1990-04-23 1990-04-23 Production of resin for sealing semiconductor

Country Status (1)

Country Link
JP (1) JPH044214A (en)

Similar Documents

Publication Publication Date Title
JPH044213A (en) Production of resin for sealing semiconductor
JP2837503B2 (en) Resin composition for semiconductor encapsulation
JPH044214A (en) Production of resin for sealing semiconductor
JPH04117458A (en) Resin composition for semiconductor sealing
JP2872701B2 (en) Method for producing resin for semiconductor encapsulation
JP3201485B2 (en) Resin composition for semiconductor encapsulation
JP2857217B2 (en) Method for producing resin for semiconductor encapsulation
JP2857216B2 (en) Method for producing resin for semiconductor encapsulation
JP2823653B2 (en) Resin composition for semiconductor encapsulation
JP2825572B2 (en) Resin composition for semiconductor encapsulation
JP3201484B2 (en) Resin composition for semiconductor encapsulation
JPH02302426A (en) Epoxy resin composition
JP2823652B2 (en) Resin composition for semiconductor encapsulation
JPH02102217A (en) Epoxy resin composition
JP2823654B2 (en) Resin composition for semiconductor encapsulation
JPH0267312A (en) Epoxy resin composition
JPH0493345A (en) Resin composition for sealing semiconductor
JPH0326712A (en) Production of sealing resin
JPH04185643A (en) Resin composition for semiconductor sealing
JPH06128357A (en) Semiconductor device
JPH0413755A (en) Resin composition for sealing semiconductor
JPH0493313A (en) Resin composition for semiconductor sealing
JPH02222419A (en) Silicone-modified maleimide resin and composition thereof
JPH03738A (en) Sealing resin
JPH0321637A (en) Resin for sealing