JP2823652B2 - Resin composition for semiconductor encapsulation - Google Patents

Resin composition for semiconductor encapsulation

Info

Publication number
JP2823652B2
JP2823652B2 JP11506490A JP11506490A JP2823652B2 JP 2823652 B2 JP2823652 B2 JP 2823652B2 JP 11506490 A JP11506490 A JP 11506490A JP 11506490 A JP11506490 A JP 11506490A JP 2823652 B2 JP2823652 B2 JP 2823652B2
Authority
JP
Japan
Prior art keywords
resin
propargyl
semiconductor encapsulation
resin composition
polysiloxane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP11506490A
Other languages
Japanese (ja)
Other versions
JPH0413714A (en
Inventor
尚史 榎
憲一 鈴木
光 大久保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Bakelite Co Ltd
Original Assignee
Sumitomo Bakelite Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Bakelite Co Ltd filed Critical Sumitomo Bakelite Co Ltd
Priority to JP11506490A priority Critical patent/JP2823652B2/en
Publication of JPH0413714A publication Critical patent/JPH0413714A/en
Application granted granted Critical
Publication of JP2823652B2 publication Critical patent/JP2823652B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Macromonomer-Based Addition Polymer (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Epoxy Resins (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明はガラス転移点(以下Tgという)が高く、耐湿
性、相溶性に優れ、かつ低応力特性に優れた半導体封止
用樹脂組成物に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a resin composition for semiconductor encapsulation having a high glass transition point (hereinafter referred to as Tg), excellent moisture resistance, excellent compatibility, and excellent low stress characteristics. It is about.

(従来技術) 近年IC、LSI、トランジスター、ダイオードなどの半
導体素子や電子回路等の封止には特性、コスト等の点か
らエポキシ樹脂組成物が一般的に用いられている。
(Prior Art) In recent years, epoxy resin compositions are generally used for sealing semiconductor elements such as ICs, LSIs, transistors, diodes, and the like, electronic circuits, and the like, from the viewpoint of characteristics, cost, and the like.

しかし、電子部品の量産性指向、高集積化や表面実装
化の方向に進んで来ておりこれに伴い封止樹脂に対する
要求は厳しくなってきている。
However, the trend toward mass production of electronic components, high integration, and surface mounting has been progressing, and accordingly, the demand for sealing resin has become strict.

特に高集積化に伴うチップの大型化、パッケージの薄
肉化や表面実装時における半田浸漬(200〜300℃)によ
つて装置にクラックが発生し易くなっており、信頼性向
上のために半導体封止用樹脂としては低応力特性と耐熱
性が強く望まれている。
In particular, cracks are likely to occur in the equipment due to the increase in size of chips due to high integration, thinning of packages, and solder immersion (200 to 300 ° C) during surface mounting. Low stress characteristics and heat resistance are strongly desired as a stopping resin.

半導体封止用樹脂としては現在エポキシ樹脂が主流で
あるが、耐熱性という点ではエポキシ樹脂を用いている
限り改良に限界があり、表面実装時の半田浸漬後の信頼
性の高いものが得られていない。
Epoxy resin is currently the mainstream resin for semiconductor encapsulation, but in terms of heat resistance, improvement is limited as long as epoxy resin is used, and a highly reliable resin after solder immersion during surface mounting can be obtained. Not.

これらの半田耐熱性に対処するには樹脂特性として低
応力であり、かつTgが高く半田浴温度以上であることが
望まれている。
In order to cope with these solder heat resistances, it is desired that the resin has low stress, high Tg, and a temperature higher than the solder bath temperature.

エポキシ樹脂に代わる高耐熱性を有する樹脂としては
マレイミド樹脂が注目されてきているが、ビスマレイミ
ドと芳香族ジアミンとの反応によって得られるアミン変
性マレイミド樹脂は、乾燥時の耐熱性には優れている
が、吸水率が大きく、吸湿時の半田浸漬でクラックを発
生し、信頼性に乏しい欠点がある。
As a resin having high heat resistance in place of an epoxy resin, a maleimide resin has been attracting attention, but an amine-modified maleimide resin obtained by a reaction between a bismaleimide and an aromatic diamine has excellent heat resistance during drying. However, there is a disadvantage that the water absorption is large, cracks are generated by solder immersion during moisture absorption, and the reliability is poor.

マレイミド樹脂としては、この他に、ポリマレイミド
とアルケニルフェノール類またはアルケニルフェニルエ
ーテル類などを重合触媒存在下で反応させる例(特開昭
52−994、58−117219、61−95012、62−11716、63−230
728号公報)もあるが、アミン変性マレイミド樹脂と同
様に硬化物は堅いため、低応力特性に劣る欠点がある。
Other examples of the maleimide resin include an example in which a polymaleimide is reacted with an alkenylphenol or an alkenylphenyl ether in the presence of a polymerization catalyst (Japanese Patent Application Laid-Open No.
52-994, 58-117219, 61-95012, 62-11716, 63-230
No. 728), but there is a drawback that the cured product is inferior in low stress characteristics because the cured product is hard like the amine-modified maleimide resin.

低応力特性の改善策として各種シリコーン化合物の添
加が試みられているが、相溶性が著しく劣り、強度が低
下し、吸水率が大きくて、耐湿性、信頼性に欠け、実用
上問題点が多く残る。
Attempts have been made to add various silicone compounds to improve low-stress properties, but compatibility is remarkably poor, strength is reduced, water absorption is large, moisture resistance and reliability are poor, and there are many practical problems. Remains.

(発明が解決しようとする課題) 本発明の目的とするところは相溶性が良く、一般の特
性を低下させることなく、耐湿性、低応力特性に優れ、
かつ高耐熱性を有し、半田浸漬後の信頼性に非常に優れ
た半導体封止用樹脂組成物を提供することにある。
(Problems to be Solved by the Invention) The object of the present invention is to have good compatibility, without deteriorating general properties, excellent in moisture resistance and low stress properties,
Another object of the present invention is to provide a resin composition for semiconductor encapsulation which has high heat resistance and very excellent reliability after solder immersion.

(課題を解決するための手段) 本発明は、 (1)(A)下記式〔I〕又は/及び下記式〔II〕で示
されるプロパルギルエーテル化樹脂と、 (R1:−H又は−CH3の中からそれぞれ独立に選択された
基 0<a<100、0≦b,c<100かつa+b+c=100 a,b,cは各構造単位の百分率を示す。) (0<d<100、0≦e,f<100 かつd+e+f=100 d,e,fは各構造単位の百分率を示す。) (B)下記式〔III〕で示されるポリシロキサンと、 (X:−H、CH2 3NH2−CH=CH2又は−CH2−CH=CH2 又はXの中からそれぞれ独立に選択された基 n:1〜100) (C)エポキシ樹脂とを含有することを特徴とする半導
体封止用樹脂組成物である。
(Means for Solving the Problems) The present invention provides: (1) (A) a propargyl etherified resin represented by the following formula [I] or / and the following formula [II]; (R 1 : a group independently selected from —H or —CH 3 0 <a <100, 0 ≦ b, c <100 and a + b + c = 100 a, b, c represents the percentage of each structural unit .) (0 <d <100, 0 ≦ e, f <100 and d + e + f = 100 d, e, f indicate the percentage of each structural unit.) (B) a polysiloxane represented by the following formula [III]; (X: -H, CH 2 3 NH 2, -CH = CH 2 or -CH 2 -CH = CH 2 Or a group n: 1 to 100 independently selected from X) (C) an epoxy resin.

(作用) 本発明において用いられるプロパルギルエーテル化樹
脂は、フェノール性水酸基を有する樹脂、具体的にはフ
ェノール樹脂、フェノール・芳香族炭化水素樹脂、例え
ばフェノール変性キシレン樹脂(三菱瓦斯化学(株)製
ニカノールP−100など)やフェノールアラルキル樹脂
(三井東圧(株)製ミレックスXL−225など)、ビニル
フェノール樹脂(丸善石油化学(株)製マルカリンカー
Mなど)又はビニルフェノール・スチレン共重合樹脂
(丸善石油化学(株)製マルカリンカーCSTなど)を、
塩化プロパルギル又は臭化プロパルギルと反応させ、プ
ロパルギルエーテル化したもので、下記式〔I〕又は
〔II〕で示されるものである。
(Function) The propargyl etherified resin used in the present invention is a resin having a phenolic hydroxyl group, specifically, a phenol resin, a phenol / aromatic hydrocarbon resin, for example, a phenol-modified xylene resin (Nicanol manufactured by Mitsubishi Gas Chemical Co., Ltd.) P-100), phenol aralkyl resin (Mirex XL-225, manufactured by Mitsui Toatsu Co., Ltd.), vinyl phenol resin (Marcalinker M, manufactured by Maruzen Petrochemical Co., Ltd.), or vinylphenol / styrene copolymer resin (Maruzen) Petrochemical Co., Ltd. Marca Linker CST, etc.)
Propargyl chloride or propargyl bromide is reacted with propargyl ether to give propargyl ether, which is represented by the following formula [I] or [II].

(R1:−H又は−CH3の中からそれぞれ独立に選択された
基) a,b,c及びd,e,fは、それぞれ〔I〕及び〔II〕式にお
ける各構造単位の百分率(%)を示し、樹脂中にそれぞ
れの構造単位をもつ部分が全体として〔I〕式ではa,b,
c、〔II〕式ではd,e,fの比で存在しているものである。
そして、 0<a<100、0≦b,c<100かつa+b+c=100 0<d<100、0≦e,f<100かつd+e+f=100 である。好ましくは、30≦a、d≦90、10≦c,f≦70が
良い。
(R 1 : a group independently selected from —H or —CH 3 ) a, b, c and d, e, f indicate the percentage (%) of each structural unit in the formulas [I] and [II], respectively, and the portion having each structural unit in the resin as a whole [I] In the formula, a, b,
c and [II] exist in the ratio of d, e, f.
0 <a <100, 0 ≦ b, c <100 and a + b + c = 100 0 <d <100, 0 ≦ e, f <100 and d + e + f = 100. Preferably, 30 ≦ a, d ≦ 90, 10 ≦ c, f ≦ 70.

a又はd成分は、耐熱性、靭性、硬化性の向上に効果
があり、少な過ぎると上記の特性が低下する。また多過
ぎると、逆にc又はf成分が少なくなるので、c又はf
成分の更に加算される特性効果が薄れる。
The component a or d is effective in improving heat resistance, toughness, and curability, and when the content is too small, the above-described characteristics are deteriorated. On the other hand, if the amount is too large, the c or f component decreases, so that c or f
The characteristic effects of the components being added are diminished.

c又はf成分は、耐湿性、低吸水、信頼性などの特性
を更に向上させる効果がある。しかし多過ぎると、逆に
a又はd成分が少なくなり、耐熱性、靭性、硬化性が低
下する。
The component c or f has the effect of further improving properties such as moisture resistance, low water absorption, and reliability. However, if it is too large, on the other hand, the amount of the a or d component decreases, and heat resistance, toughness, and curability decrease.

本発明において用いられるポリシロキサンは、分子内
に2個以上の反応性の基を有するもので、下記式〔II
I〕で示され、その重合度nは1〜100の範囲のものであ
る。
The polysiloxane used in the present invention has two or more reactive groups in the molecule, and has the following formula [II
And the degree of polymerization n is in the range of 1 to 100.

(X:−H、CH2 3NH2−CH=CH2又は−CH2−CH=CH2 又はXの中からそれぞれ独立に選択された基 n:1〜100) 重合度が100より大きい場合、相溶性が低下してしま
う。
(X: -H, CH 2 3 NH 2, -CH = CH 2 or -CH 2 -CH = CH 2 Or a group independently selected from X: n: 1 to 100) When the degree of polymerization is larger than 100, the compatibility is reduced.

ポリシロキサンは、プロパルギルエーテル化樹脂100
重量部に対し、2〜100重量部が良い。少な過ぎると、
低応力特性が得られない。多過ぎると、機械強度、Tgが
下がり、半田浸漬時にクラックを発生する。
Polysiloxane is a propargyl etherified resin 100
The amount is preferably 2 to 100 parts by weight based on parts by weight. If too little,
Low stress characteristics cannot be obtained. If it is too large, the mechanical strength and Tg decrease, and cracks occur during solder immersion.

プロパルギルエーテル化樹脂とポリシロキサンは予め
必要に応じて触媒を用い、融点が50〜120℃の範囲とな
るまで反応させておくことが望ましい。上記反応の触媒
は特に限定されるものではないが、一例を示すと、〔II
I〕式におけるXが−Hの場合は、ヒドロシリル基とオ
レフィンとの反応に使用される触媒である塩化白金酸な
どを用いることができ、Xが の場合は、エポキシ基とフェノールとの反応に使用され
る触媒である3級アミン類、イミダゾール類、ホスフィ
ン類などを用いることができ、Xが−CH=CH2、−CH2
CH=CH2の場合は、有機化酸化物を用いることができ
る。XがCH2 3NH2の場合は、特に触媒を用いなくて
も加熱によって反応させることができる。
It is desirable that the propargyl etherified resin and the polysiloxane are reacted in advance by using a catalyst as needed, until the melting point is in the range of 50 to 120 ° C. The catalyst for the above reaction is not particularly limited, but as an example, [II
When X in the formula [I] is -H, chloroplatinic acid or the like, which is a catalyst used for the reaction between a hydrosilyl group and an olefin, can be used. For the tertiary amine is a catalyst used for the reaction of epoxy groups with phenolic, imidazoles, and the like can be used phosphines, X is -CH = CH 2, -CH 2 -
For CH = CH 2, it may be an organic peroxide. When X is CH 2 3 NH 2, the reaction can be carried out by heating without using a catalyst.

エポキシ樹脂としては、分子内に少なくとも2個以上
のエポキシ基を有するもので、例えば、ビスフェノール
A系エポキシ樹脂、ビスフェノールF系エポキシ樹脂、
臭素化エポキシ樹脂、フェノール・ノボラック系エポキ
シ樹脂、クレゾールノボラック系エポキシ樹脂、その他
の多官能エポキシ樹脂を用いることができる。
As the epoxy resin, those having at least two or more epoxy groups in the molecule, for example, bisphenol A epoxy resin, bisphenol F epoxy resin,
Brominated epoxy resins, phenol novolak epoxy resins, cresol novolak epoxy resins, and other polyfunctional epoxy resins can be used.

エポキシ樹脂を配合することによって、作業性、相溶
性、硬化性がより向上するが、多過ぎると耐熱性、耐半
田クラック性が悪化するので、好ましくは、プロパルギ
ルエーテル化樹脂100重量部に対し、2〜200重量部、更
に好ましくは10〜100重量部が良い。
By mixing the epoxy resin, workability, compatibility, curability is further improved, but too much heat resistance, solder crack resistance is deteriorated, preferably, based on 100 parts by weight of propargyl etherified resin, The amount is preferably 2 to 200 parts by weight, more preferably 10 to 100 parts by weight.

本発明の半導体封止用樹脂組成物を用いて成形材料化
するには硬化促進剤、無機充填材、滑剤、難燃剤、離型
剤、シランカップリング剤等を必要に応じて適宜配合添
加し、加熱混練することによって材料化できる。
In order to form a molding material using the resin composition for semiconductor encapsulation of the present invention, a curing accelerator, an inorganic filler, a lubricant, a flame retardant, a release agent, a silane coupling agent, etc. are appropriately added as needed. It can be made into a material by heating and kneading.

(実施例) [プロパルギルエーテル化物の合成] 合成例1〜3 撹拌装置、還流冷却器、温度計及び滴下ロートを付け
た反応容器に、第1表の処方に従って、水酸化カリウム
と、水/アセトン(1/1)の混合溶媒を入れて溶解さ
せ、これにフェノール・芳香族炭化水素樹脂、ビニルフ
ェノール・スチレン共重合樹脂又はフェノール樹脂を添
加し、溶解させた。この溶液を加熱し、塩化プロパルギ
ルを滴下して、還流下3時間反応させた。その後、塩酸
で中和して、アセトンと未反応の塩化プロパルギルを留
去し、トルエン1リットルを添加した。分液ロートに移
し、水洗を3回行い、エバポレーターで溶媒を除去し
た。
(Example) [Synthesis of propargyl etherified product] Synthesis Examples 1 to 3 In a reaction vessel equipped with a stirrer, a reflux condenser, a thermometer, and a dropping funnel, potassium hydroxide, water / acetone were added according to the formulation in Table 1. A mixed solvent of (1/1) was added and dissolved, and a phenol / aromatic hydrocarbon resin, a vinylphenol / styrene copolymer resin or a phenol resin was added and dissolved. The solution was heated, propargyl chloride was added dropwise, and the mixture was reacted under reflux for 3 hours. Thereafter, the mixture was neutralized with hydrochloric acid, propargyl chloride unreacted with acetone was distilled off, and 1 liter of toluene was added. It was transferred to a separating funnel, washed three times with water, and the solvent was removed with an evaporator.

得られた樹脂のプロパルギルエーテル化率(フェノー
ル性水酸基の反応率)を第1表に示した。
The propargyl etherification rate (reaction rate of phenolic hydroxyl groups) of the obtained resin is shown in Table 1.

実施例1〜2 撹拌装置、還流冷却器及び温度計を付けた反応容器
に、合成例1又は合成例2のプロパルギルエーテル化樹
脂とトルエンを第2表の処方に従って入れ、均一に溶解
してから、塩化白金酸溶液を添加した。これにジヒドロ
ポリシロキサンを加え、80℃で2時間反応させた。その
後、還流冷却器を減圧蒸留装置に代えて溶媒を除去し、
更に減圧下(約20mmHg)180℃で4時間反応させた。得
られたポリシロキサン変性プロパルギルエーテル化樹脂
は、均質で、融点を第2表に示した。
Examples 1-2 In a reaction vessel equipped with a stirrer, a reflux condenser and a thermometer, the propargyl etherified resin of Synthesis Example 1 or Synthesis Example 2 and toluene were charged according to the formulation in Table 2 and uniformly dissolved. , A chloroplatinic acid solution was added. Dihydropolysiloxane was added thereto and reacted at 80 ° C. for 2 hours. Thereafter, the reflux condenser was replaced with a vacuum distillation apparatus to remove the solvent,
Further, the reaction was carried out at 180 ° C. for 4 hours under reduced pressure (about 20 mmHg). The resulting polysiloxane-modified propargyl etherified resin was homogeneous and the melting points are shown in Table 2.

実施例3 撹拌装置、減圧蒸留装置及び温度計を付けた反応容器
に、合成例3のプロパルギルエーテル化樹脂とジアミノ
ポリシロキサンとを第2表の処方に従って、減圧下(約
20mmHg)180℃で6時間反応させた。得られたポリシロ
キサン変性プロパルギルエーテル化樹脂は、均質で、融
点を第2表に示した。
Example 3 In a reaction vessel equipped with a stirrer, a vacuum distillation apparatus and a thermometer, the propargyl etherified resin of Synthesis Example 3 and diaminopolysiloxane were added under reduced pressure (about
The reaction was performed at 180 ° C. for 6 hours. The resulting polysiloxane-modified propargyl etherified resin was homogeneous and the melting points are shown in Table 2.

実施例4〜6 第3表に示す配合に従って、実施例1〜3で得たポリ
シロキサン変性プロパルギルエーテル化樹脂に、エポキ
シ樹脂、エポキシ樹脂硬化剤、硬化促進剤、シリカ粉
末、アミノシラン、着色剤および離型剤を加え、熱ロー
ルで混練して成形材料を得た。得られた成形材料をトラ
ンスファー成形により180℃,3分で成形しフクレの無い
光沢の有る成形品が得られた。この成形品をさらに180
℃、8時間後硬化を行い特性を評価した。結果を第3表
に示す。
Examples 4 to 6 According to the composition shown in Table 3, the polysiloxane-modified propargyl etherified resin obtained in Examples 1 to 3 was added to an epoxy resin, an epoxy resin curing agent, a curing accelerator, silica powder, aminosilane, a colorant, A release agent was added and kneaded with a hot roll to obtain a molding material. The resulting molding material was molded by transfer molding at 180 ° C. for 3 minutes to obtain a glossy molded product without blisters. 180 more
After curing for 8 hours at ℃, properties were evaluated. The results are shown in Table 3.

実施例1〜3の樹脂を用いた実施例4〜6の成形材料
は、シリコーンを含まない比較例1に比べ常温での曲げ
弾性率が小さく、低応力で、内部応力も小さい。しか
も、ガラス転移温度が高く、260℃での曲げ強度も大き
く、耐熱性、耐半田クラック性に優れ、吸水率も小さ
い。
The molding materials of Examples 4 to 6 using the resins of Examples 1 to 3 have lower flexural modulus at room temperature, lower stress, and lower internal stress than Comparative Example 1 containing no silicone. Moreover, the glass transition temperature is high, the bending strength at 260 ° C. is large, the heat resistance, the solder crack resistance is excellent, and the water absorption is small.

比較例1 ポリシロキサンを含まない合成例1のプロパルギルエ
ーテル化樹脂を用い、実施例4と同様に行った。成形品
の外観、曲げ強度、耐熱性は良好であるが、曲げ弾性率
が大きく、耐半田クラック性は充分でない。
Comparative Example 1 The procedure of Example 4 was repeated except that the propargyl etherified resin of Synthesis Example 1 containing no polysiloxane was used. The appearance, bending strength and heat resistance of the molded product are good, but the bending elastic modulus is large and the solder crack resistance is not sufficient.

比較例2 エポキシ樹脂を用い、実施例4と同様に行った。耐熱
性が劣るため、耐半田クラック性が非常に悪い。
Comparative example 2 It carried out similarly to Example 4 using epoxy resin. Due to poor heat resistance, solder crack resistance is very poor.

比較例3 マレイミド樹脂を用い、実施例4と同様に行った。耐
熱性は優れているが、曲げ弾性率と吸水率が大きく、耐
半田クラック性は充分でない。
Comparative example 3 It carried out similarly to Example 4 using the maleimide resin. Although the heat resistance is excellent, the flexural modulus and the water absorption are large, and the solder crack resistance is not sufficient.

比較例4 マレイミド樹脂にポリシロキサンを配合して、実施例
4と同様に行った。マレイミド樹脂とポリシロキサンの
相溶性が悪く、成形品の外観は良くなかった。吸水率は
大きく、耐半田クラック性も不良であった。
Comparative Example 4 The same procedure as in Example 4 was carried out except that polysiloxane was mixed with the maleimide resin. The compatibility between the maleimide resin and the polysiloxane was poor, and the appearance of the molded article was not good. The water absorption was large and the solder crack resistance was poor.

(発明の効果) 本発明による半導体封止用樹脂を用いた組成物の硬化
物は高Tgであり、耐湿性及び熱時の強度に優れているた
め封止体の耐半田クラック性が良く、かつ低応力であり
耐ヒートサイクル性にも優れており、半導体封止用樹脂
組成物として非常に信頼性の高い優れたものである。
(Effect of the Invention) The cured product of the composition using the resin for semiconductor encapsulation according to the present invention has a high Tg, and has excellent moisture resistance and strength at the time of heating, so that the sealing body has good solder crack resistance, In addition, it has low stress and excellent heat cycle resistance, and is a highly reliable and excellent resin composition for semiconductor encapsulation.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI H01L 23/29 C08F 299/00 23/31 H01L 23/30 R // C08F 299/00 (56)参考文献 特開 平3−215517(JP,A) 特開 平1−276652(JP,A) 特開 昭64−40518(JP,A) (58)調査した分野(Int.Cl.6,DB名) C08L 63/00 - 63/10 C08L 61/14 C08L 83/04 - 83/06 C08G 59/40 C08G 59/62 H01L 23/29──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 6 Identification symbol FI H01L 23/29 C08F 299/00 23/31 H01L 23/30 R // C08F 299/00 (56) References JP-A-3-3 215517 (JP, A) JP-A-1-276652 (JP, A) JP-A-64-40518 (JP, A) (58) Fields investigated (Int. Cl. 6 , DB name) C08L 63/00-63 / 10 C08L 61/14 C08L 83/04-83/06 C08G 59/40 C08G 59/62 H01L 23/29

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】(A)下記式〔I〕又は/及び下記式〔I
I〕で示されるプロパルギルエーテル化樹脂と、 (R1:−H又は−CH3の中からそれぞれ独立に選択された
基 0<a<100、0≦b,c<100かつa+b+c=100 a,b,cは各構造単位の百分率を示す。) (0<d<100、0≦e,f<100 かつd+e+f=100 d,e,fは各構造単位の百分率を示す。) (B)下記式〔III〕で示されるポリシロキサンと、 (X:−H、CH2 3NH2−CH=CH2又は−CH2−CH=CH2 又はXの中からそれぞれ独立に選択された基 n:1〜100) (C)エポキシ樹脂と を含有することを特徴とする半導体封止用樹脂組成物。
(A) The following formula [I] and / or the following formula [I
I) a propargyl etherified resin represented by (R 1 : a group independently selected from —H or —CH 3 0 <a <100, 0 ≦ b, c <100 and a + b + c = 100 a, b, c represents the percentage of each structural unit .) (0 <d <100, 0 ≦ e, f <100 and d + e + f = 100 d, e, f indicate the percentage of each structural unit.) (B) a polysiloxane represented by the following formula [III]; (X: -H, CH 2 3 NH 2, -CH = CH 2 or -CH 2 -CH = CH 2 Or a group independently selected from X: n: 1 to 100) (C) an epoxy resin.
JP11506490A 1990-05-02 1990-05-02 Resin composition for semiconductor encapsulation Expired - Lifetime JP2823652B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11506490A JP2823652B2 (en) 1990-05-02 1990-05-02 Resin composition for semiconductor encapsulation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11506490A JP2823652B2 (en) 1990-05-02 1990-05-02 Resin composition for semiconductor encapsulation

Publications (2)

Publication Number Publication Date
JPH0413714A JPH0413714A (en) 1992-01-17
JP2823652B2 true JP2823652B2 (en) 1998-11-11

Family

ID=14653285

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11506490A Expired - Lifetime JP2823652B2 (en) 1990-05-02 1990-05-02 Resin composition for semiconductor encapsulation

Country Status (1)

Country Link
JP (1) JP2823652B2 (en)

Also Published As

Publication number Publication date
JPH0413714A (en) 1992-01-17

Similar Documents

Publication Publication Date Title
EP0428871B1 (en) Epoxy resin composition for semiconductor sealing
JPS62212417A (en) Epoxy resin composition
JP2823653B2 (en) Resin composition for semiconductor encapsulation
JP2823652B2 (en) Resin composition for semiconductor encapsulation
JP2837503B2 (en) Resin composition for semiconductor encapsulation
JP2823654B2 (en) Resin composition for semiconductor encapsulation
JP2003020337A (en) Bisnadimide-polysiloxane alternating copolymer or its derivative and epoxy resin composition for electronic material containing the same
JPH044213A (en) Production of resin for sealing semiconductor
JP2857217B2 (en) Method for producing resin for semiconductor encapsulation
JP2857216B2 (en) Method for producing resin for semiconductor encapsulation
JPH04117458A (en) Resin composition for semiconductor sealing
JP3201485B2 (en) Resin composition for semiconductor encapsulation
JPH05132539A (en) Epoxy resin composition
JP2703045B2 (en) Epoxy resin composition
JP2872701B2 (en) Method for producing resin for semiconductor encapsulation
JP3201484B2 (en) Resin composition for semiconductor encapsulation
JPH0413755A (en) Resin composition for sealing semiconductor
JPH02302426A (en) Epoxy resin composition
JPH0493313A (en) Resin composition for semiconductor sealing
JPH0493345A (en) Resin composition for sealing semiconductor
JPH05331354A (en) Thermoplastic resin composition and electronic component sealed therewith
JPH0413754A (en) Resin composition for sealing semiconductor
JP2703043B2 (en) Epoxy resin composition
JPH04185643A (en) Resin composition for semiconductor sealing
JPH0366722A (en) Epoxy resin composition for sealing semiconductor