JP2823654B2 - Resin composition for semiconductor encapsulation - Google Patents

Resin composition for semiconductor encapsulation

Info

Publication number
JP2823654B2
JP2823654B2 JP11690890A JP11690890A JP2823654B2 JP 2823654 B2 JP2823654 B2 JP 2823654B2 JP 11690890 A JP11690890 A JP 11690890A JP 11690890 A JP11690890 A JP 11690890A JP 2823654 B2 JP2823654 B2 JP 2823654B2
Authority
JP
Japan
Prior art keywords
resin
semiconductor encapsulation
resin composition
propargyl
polysiloxane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP11690890A
Other languages
Japanese (ja)
Other versions
JPH0415217A (en
Inventor
光 大久保
憲一 鈴木
尚史 榎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Bakelite Co Ltd
Original Assignee
Sumitomo Bakelite Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Bakelite Co Ltd filed Critical Sumitomo Bakelite Co Ltd
Priority to JP11690890A priority Critical patent/JP2823654B2/en
Publication of JPH0415217A publication Critical patent/JPH0415217A/en
Application granted granted Critical
Publication of JP2823654B2 publication Critical patent/JP2823654B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Epoxy Resins (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明はガラス転移点(以下Tgという)が高く、耐湿
性、相溶性に優れ、かつ低応力特性に優れた半導体封止
用樹脂組成物に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a resin composition for semiconductor encapsulation having a high glass transition point (hereinafter referred to as Tg), excellent moisture resistance, excellent compatibility, and excellent low stress characteristics. It is about.

(従来技術) 近年IC、LSI、トランジスター、ダイオードなどの半
導体素子や電子回路等の封止には特性、コスト等の点か
らエポキシ樹脂組成物が一般的に用いられている。
(Prior Art) In recent years, epoxy resin compositions are generally used for sealing semiconductor elements such as ICs, LSIs, transistors, diodes, and the like, electronic circuits, and the like, from the viewpoint of characteristics, cost, and the like.

しかし、電子部品の量産性指向、高集積化や表面実装
化の方向に進んで来ておりこれに伴い封止樹脂に対する
要求は厳しくなってきている。
However, the trend toward mass production of electronic components, high integration, and surface mounting has been progressing, and accordingly, the demand for sealing resin has become strict.

特に高集積化に伴うチップの大型化、パッケージの薄
肉化や表面実装時における半田浸漬(200〜300℃)によ
つて装置にクラックが発生し易くなっており、、信頼性
向上のために半導体封止用樹脂としては低応力特性と耐
熱性が強く望まれている。
In particular, cracks are likely to occur in the equipment due to chip enlargement due to high integration, thinning of packages and solder immersion (200 to 300 ° C) during surface mounting, and semiconductors are required to improve reliability. As a sealing resin, low stress characteristics and heat resistance are strongly desired.

半導体封止用樹脂としては現在エポキシ樹脂が主流で
あるが、耐熱性という点ではエポキシ樹脂を用いている
限り改良に限界があり、表面実装時の半田浸漬後の信頼
性の高いものが得られていない。
Epoxy resin is currently the mainstream resin for semiconductor encapsulation, but in terms of heat resistance, improvement is limited as long as epoxy resin is used, and a highly reliable resin after solder immersion during surface mounting can be obtained. Not.

これらの半田耐熱性に対処するには樹脂特性として低
応力であり、かつTgが高く半田浴温度以上であることが
望まれている。
In order to cope with these solder heat resistances, it is desired that the resin has low stress, high Tg, and a temperature higher than the solder bath temperature.

エポキシ樹脂に代わる高耐熱性を有する樹脂としては
マレイミド樹脂が注目されてきているが、ビスマレイミ
ドと芳香族ジアミンとの反応によって得られるアミン変
性マレイミド樹脂は、乾燥時の耐熱性には優れている
が、吸水率が大きく、吸湿時の半田浸漬でクラックを発
生し、信頼性に乏しい欠点がある。
As a resin having high heat resistance in place of an epoxy resin, a maleimide resin has been attracting attention, but an amine-modified maleimide resin obtained by a reaction between a bismaleimide and an aromatic diamine has excellent heat resistance during drying. However, there is a disadvantage that the water absorption is large, cracks are generated by solder immersion during moisture absorption, and the reliability is poor.

マレイミド樹脂としては、この他に、ポリマレイミド
とアルケニルフェノール類またはアルケニルフェニルエ
ーテル類などを重合触媒存在下で反応させる例(特開昭
52−994、58−117219、61−95012、62−11716、63−230
728号公報)もあるが、アミン変性マレイミド樹脂と同
様に硬化物は堅いため、低応力特性に劣る欠点がある。
Other examples of the maleimide resin include an example in which a polymaleimide is reacted with an alkenylphenol or an alkenylphenyl ether in the presence of a polymerization catalyst (Japanese Patent Application Laid-Open No.
52-994, 58-117219, 61-95012, 62-11716, 63-230
No. 728), but there is a drawback that the cured product is inferior in low stress characteristics because the cured product is hard like the amine-modified maleimide resin.

低応力特性の改善策として各種シリコーン化合物の添
加が試みられているが、相溶性が著しく劣り、強度が低
下し、吸水率が大きくて、耐湿性、信頼性に欠け、実用
上問題点が多く残る。
Attempts have been made to add various silicone compounds to improve low-stress properties, but compatibility is remarkably poor, strength is reduced, water absorption is large, moisture resistance and reliability are poor, and there are many practical problems. Remains.

(発明が解決しようとする課題) 本発明の目的とするところは相溶性が良く、一般の特
性を低下させることなく、耐湿性、低応力特性に優れ、
かつ高耐熱性を有し、半田浸漬後の信頼性に非常に優れ
た半導体封止用樹脂組成物を提供することにある。
(Problems to be Solved by the Invention) The object of the present invention is to have good compatibility, without deteriorating general properties, excellent in moisture resistance and low stress properties,
Another object of the present invention is to provide a resin composition for semiconductor encapsulation which has high heat resistance and very excellent reliability after solder immersion.

(課題を解決するための手段) 本発明は、(A)下記式〔I〕又は/及び〔II〕で示
されるプロパルギル及びグリシジルエーテル化樹脂と、 (R1:−H又は−CH3の中からそれぞれ独立に選択された
基 0<a,b<100、0≦c<100かつa+b+c=100 a,b,cは各構造単位の百分率を示す。) (0<d,e<100、0≦f<100かつd+e+f=100 d,e,fは各構造単位の百分率を示す。) (B)下記式〔III〕で示されるポリシロキサンと、 (X:−H、CH2 3NH2−CH=CH2又は−CH2−CH=CH2 R2:−CH3又はXの中からそれぞれ独立に選択された基 n:1〜100) (C)エポキシ樹脂用硬化剤とを含有することを特徴と
する半導体封止用樹脂組成物である。
(Means for Solving the Problems) The present invention provides (A) a propargyl and glycidyl etherified resin represented by the following formula [I] or / and [II]: (R 1 : a group independently selected from -H or -CH 3 0 <a, b <100, 0 ≦ c <100 and a + b + c = 100 a, b, c represents the percentage of each structural unit .) (0 <d, e <100, 0 ≦ f <100 and d + e + f = 100 d, e, f indicate the percentage of each structural unit.) (B) Polysiloxane represented by the following formula [III]; (X: -H, CH 2 3 NH 2, -CH = CH 2 or -CH 2 -CH = CH 2 R 2 : -CH 3 , Or a group n: 1 to 100 independently selected from X) (C) a resin composition for semiconductor encapsulation, which comprises (C) a curing agent for an epoxy resin.

(作用) 本発明において用いられるプロパルギル及びグリシジ
ルエーテル化樹脂は、フェノール性水酸基を有する樹
脂、具体的にはフェノール樹脂、フェノール・芳香族炭
化水素樹脂、例えばフェノール変性キシレン樹脂(三菱
瓦斯化学(株)製ニカノールP−100など)やフェノー
ルアラルキル樹脂(三井東圧(株)製ミレックスXL−22
5など)、ビニルフェノール樹脂(丸善石油化学(株)
製マルカリンカーMなど)又はビニルフェノール・スチ
レン共重合樹脂(丸善石油化学(株)マルカリンカーCS
Tなど)を、塩化プロパルギル及び塩化グリシジルと反
応させ、プロパルギル及びグリシジルエーテル化したも
ので、下記式〔I〕又は〔II〕で示されるものである。
(Action) The propargyl and glycidyl etherified resins used in the present invention are resins having a phenolic hydroxyl group, specifically, phenol resins, phenol / aromatic hydrocarbon resins, for example, phenol-modified xylene resins (Mitsubishi Gas Chemical Co., Ltd.) Nikonol P-100, etc.) and phenol aralkyl resin (Mirex XL-22, Mitsui Toatsu Co., Ltd.)
5), vinylphenol resin (Maruzen Petrochemical Co., Ltd.)
Marukalinker M, etc.) or vinyl phenol / styrene copolymer resin (Maruzerin Kagaku Co., Ltd. Marukalinker CS)
T) is reacted with propargyl chloride and glycidyl chloride to form propargyl and glycidyl ether, and is represented by the following formula [I] or [II].

(R1:−H又は−CH3の中からそれぞれ独立に選択された
基) a,b,c及びd,e,fは、それぞれ〔I〕及び〔II〕式にお
ける各構造単位の百分率(%)を示し、樹脂中にそれぞ
れの構造単位をもつ部分が全体として〔I〕式ではa,b,
c、〔II〕式ではd,e,fの比で存在しているものである。
そして、 0<a,b<100、0≦c<100かつa+b+c=100 0<d,e<100、0≦f<100かつd+e+f=100 である。好ましくは、30≦a,b≦90、10≦b,e≦50、0≦
c,f≦50が良い。
(R 1 : a group independently selected from —H or —CH 3 ) a, b, c and d, e, f indicate the percentage (%) of each structural unit in the formulas [I] and [II], respectively, and the portion having each structural unit in the resin as a whole [I] In the formula, a, b,
c and [II] exist in the ratio of d, e, f.
0 <a, b <100, 0 ≦ c <100 and a + b + c = 100 0 <d, e <100, 0 ≦ f <100 and d + e + f = 100. Preferably, 30 ≦ a, b ≦ 90, 10 ≦ b, e ≦ 50, 0 ≦
c, f ≦ 50 is good.

a,b成分は、耐熱性、靭性、耐湿性、信頼性などの特
性に効果があり、少な過ぎるとこれらの特徴が薄れる。
また逆に多過ぎると、硬化性が悪くなる。
The components a and b are effective in properties such as heat resistance, toughness, moisture resistance, and reliability. If the content is too small, these characteristics are weakened.
Conversely, if the amount is too large, the curability deteriorates.

b,e成分は、硬化性、成形性の向上に効果があるが、
多過ぎると耐熱性、耐湿性、信頼性が悪化する。
The b and e components are effective in improving curability and moldability,
If the amount is too large, heat resistance, moisture resistance and reliability deteriorate.

c,f成分は、a,d成分の特徴である耐湿性、信頼性など
の特性を更に向上させる効果がある。しかし多過ぎる
と、硬化性、成形性が著しく悪化する。
The c and f components have the effect of further improving the characteristics of the a and d components such as moisture resistance and reliability. However, if the amount is too large, the curability and the moldability are significantly deteriorated.

本発明において用いられるポリシロキサンは、分子内
に2個以上の反応性の基を有するもので、下記式〔II
I〕で示され、その重合度nは1〜100の範囲のものであ
る。
The polysiloxane used in the present invention has two or more reactive groups in the molecule, and has the following formula [II
And the degree of polymerization n is in the range of 1 to 100.

(X:−H、CH2 3NH2−CH=CH2又は−CH2−CH=CH2 R2:−CH3又はXの中からそれぞれ独立に選択された基 n:1〜100) 重合度が100より大きい場合、相溶性が低下してしま
う。
(X: -H, CH 2 3 NH 2, -CH = CH 2 or -CH 2 -CH = CH 2 R 2 : -CH 3 , Or a group independently selected from X: n: 1 to 100) When the degree of polymerization is larger than 100, the compatibility is reduced.

ポリシロキサンは、プロパルギル及びグリシジルエー
テル化樹脂100重量部に対し、2〜100重量部が良い。少
な過ぎると、低応力特性が得られない。多過ぎると、機
械強度、Tgが下がり、半田浸漬時にクラックを発生す
る。
The polysiloxane is preferably 2 to 100 parts by weight based on 100 parts by weight of propargyl and glycidyl etherified resin. If the amount is too small, low stress characteristics cannot be obtained. If it is too large, the mechanical strength and Tg decrease, and cracks occur during solder immersion.

ポリシロキサンは、プロパルギル及びグリシジルエー
テル化樹脂又はエポキシ樹脂用硬化剤と、必要に応じて
触媒を用い、融点が50〜120℃の範囲となるまで予め反
応させておくことが望ましい。上記反応の触媒は得に限
定されるものではないが、一例を示すと、〔III〕式に
おけるXが−Hの場合は、ヒドロシリル基とオレフィン
との反応に使用される触媒である塩化白金酸などを用い
ることができ、Xが の場合は、エポキシ基とフェノールとの反応に使用され
る触媒である3級アミン類、イミダゾール類、ホスフィ
ン類などを用いることができ、Xが−CH=CH2、−CH2
CH=CH2の場合は、有機化酸化物を用いることができ
る。XがCH2 3NH2の場合は、特に触媒を用いなくて
も加熱によって反応させることができる。
It is desirable that the polysiloxane be reacted in advance with a propargyl and a curing agent for glycidyl etherified resin or epoxy resin, using a catalyst if necessary, until the melting point is in the range of 50 to 120 ° C. The catalyst for the above reaction is not particularly limited, but as an example, when X in the formula (III) is -H, chloroplatinic acid which is a catalyst used for the reaction between a hydrosilyl group and an olefin Can be used, and X is In the case of, tertiary amines, imidazoles, phosphines and the like, which are catalysts used for the reaction between the epoxy group and phenol, can be used, and X is -CH = CH 2 , -CH 2-
For CH = CH 2, it may be an organic peroxide. When X is CH 2 3 NH 2, the reaction can be carried out by heating without using a catalyst.

本発明において用いられるエポキシ樹脂用硬化剤は、
通常エポキシ樹脂封止材料に使用されるものでよい。例
えば、フェノール樹脂を挙げることができる。この他、
ビス(4−シアネートフェニル)メタン、ビス(3,5−
ジメチル−4−シアネートフェニル)メタン、2,2−ビ
ス(4−シアネートフェニル)プロパンなどのポリシア
ネート類も用いることができる。
The epoxy resin curing agent used in the present invention,
What is usually used for an epoxy resin sealing material may be used. For example, a phenol resin can be used. In addition,
Bis (4-cyanatephenyl) methane, bis (3,5-
Polycyanates such as dimethyl-4-cyanatephenyl) methane and 2,2-bis (4-cyanatephenyl) propane can also be used.

エポキシ樹脂用硬化剤の量は、樹脂中のエポキシ当量
に応じて適宜決められる。また必要に応じて、3級アミ
ン類、イミダゾール類、ホスフィン類、有機過酸化物な
どの硬化促進剤を併用することもできる。
The amount of the curing agent for an epoxy resin is appropriately determined according to the epoxy equivalent in the resin. If necessary, curing accelerators such as tertiary amines, imidazoles, phosphines, and organic peroxides can be used in combination.

本発明の半導体封止用樹脂組成物を用いて成形材料化
するには硬化促進剤、無機充填材、滑剤、難燃剤、離型
剤、シランカップリング剤等を必要に応じて適宜配合添
加し、加熱混練することによって材料化できる。
In order to form a molding material using the resin composition for semiconductor encapsulation of the present invention, a curing accelerator, an inorganic filler, a lubricant, a flame retardant, a release agent, a silane coupling agent, etc. are appropriately added as needed. It can be made into a material by heating and kneading.

(実施例) [プロパルギル及びグリシジルエーテル化樹脂の合成] 合成例1〜3 撹拌装置、還流冷却器、温度計及び滴下ロートを付け
た反応容器に、第1表の処方に従って、水酸化カリウム
と、水/アセトン(1/1)の混合溶媒を入れて溶解さ
せ、これにフェノール樹脂、フェノール・芳香族炭化水
素樹脂、又はビニルフェノール樹脂を添加し、溶解させ
た。
(Example) [Synthesis of propargyl and glycidyl etherified resin] Synthesis Examples 1 to 3 A reaction vessel equipped with a stirrer, a reflux condenser, a thermometer, and a dropping funnel was mixed with potassium hydroxide according to the formulation in Table 1; A mixed solvent of water / acetone (1/1) was added and dissolved, and a phenol resin, a phenol / aromatic hydrocarbon resin, or a vinyl phenol resin was added and dissolved therein.

この溶液を加熱し、塩化プロパルギルと塩化グリシジ
ルを滴下して、50℃〜還流下3時間反応させた。その
後、塩酸で中和して、アセトンを留去し、トルエン1リ
ットルを添加した。分液ロートに移し、水洗を3回行
い、エバポレーターで溶媒を除去した。
This solution was heated, propargyl chloride and glycidyl chloride were added dropwise, and the mixture was reacted at 50 ° C. to reflux for 3 hours. Thereafter, the mixture was neutralized with hydrochloric acid, acetone was distilled off, and 1 liter of toluene was added. It was transferred to a separating funnel, washed three times with water, and the solvent was removed with an evaporator.

得られた樹脂の組成物を第1表に示した。 The composition of the obtained resin is shown in Table 1.

実施例1〜2 撹拌装置、還流冷却器及び温度計を付けた反応容器
に、合成例1又は合成例2のプロパルギル及びグリシジ
ルエーテル化樹脂とトルエンを第2表の処方に従って入
れ、均一に溶解してから、塩化白金酸溶液を添加した。
これにジヒドロポリシロキサン又はジアミノポリシロキ
サンを加え、80℃で2時間反応させた。その後、還流冷
却器を減圧上流装置に代えて溶媒を除去し、更に減圧下
(約20mmHg)180℃で4時間反応させた。得られたポリ
シロキサン変性樹脂は、均質で、融点を第2表に示し
た。
Examples 1-2 In a reaction vessel equipped with a stirrer, a reflux condenser and a thermometer, the propargyl and glycidyl etherified resin of Synthesis Example 1 or Synthesis Example 2 and toluene were charged according to the formulation in Table 2 and uniformly dissolved. Then, the chloroplatinic acid solution was added.
Dihydropolysiloxane or diaminopolysiloxane was added thereto and reacted at 80 ° C. for 2 hours. Thereafter, the reflux condenser was replaced with a reduced pressure upstream device to remove the solvent, and further reacted at 180 ° C. under reduced pressure (about 20 mmHg) for 4 hours. The resulting polysiloxane-modified resin was homogeneous and the melting points are shown in Table 2.

実施例3 撹拌装置、減圧蒸留装置及び温度計を付けた反応容器
に、フェノール樹脂とトリフェニルホスフィンとを第2
表の処方に従って入れ、加熱して均一に溶解させた。こ
れにジグリシジルポリシロキサンを添加し、減圧下(約
20mmHg)180℃で3時間反応させた。得られたポリシロ
キサン変性フェノール樹脂は、均質で、融点を第2表に
示した。
Example 3 A phenol resin and triphenylphosphine were added to a reaction vessel equipped with a stirrer, a vacuum distillation apparatus and a thermometer in a second vessel.
It was added according to the recipe in the table, and heated to dissolve uniformly. Diglycidyl polysiloxane is added to this, and under reduced pressure (about
The reaction was performed at 180 ° C. for 3 hours. The resulting polysiloxane-modified phenolic resin was homogeneous and the melting points are shown in Table 2.

実施例4〜6 第3表に示す配合に従って、樹脂に、硬化剤、シリカ
粉末、硬化促進剤、アミノシラン、着色剤および離型剤
を加え、熱ロールで混練して成形材料を得た。得られた
成形材料をトランスファー成形により180℃,3分で成形
しフクレの無い光沢の有る成形品が得られた。この成形
品をさらに180℃、8時間後硬化を行い特性を評価し
た。結果を第3表に示す。
Examples 4 to 6 According to the composition shown in Table 3, a curing agent, a silica powder, a curing accelerator, an aminosilane, a coloring agent and a release agent were added to the resin, and kneaded with a hot roll to obtain a molding material. The resulting molding material was molded by transfer molding at 180 ° C. for 3 minutes to obtain a glossy molded product without blisters. This molded article was further cured at 180 ° C. for 8 hours, and the characteristics were evaluated. The results are shown in Table 3.

実施例4〜6の成形材料は、常温での曲げ弾性率が小
さく、低応力で、内部応力も小さい。しかも、ガラス転
移温度が高く、260℃での曲げ強度も大きく、耐熱性、
耐半田クラック性に優れ、吸水率も小さい。
The molding materials of Examples 4 to 6 have low flexural modulus at room temperature, low stress, and low internal stress. Moreover, the glass transition temperature is high, the bending strength at 260 ° C is large,
Excellent solder crack resistance and low water absorption.

比較例1 ポリシロキサンを加えずに合成例1のプロパルギル及
びグリシジルエーテル化樹脂を用い、実施例4と同様に
行った。成形品の外観、曲げ強度、耐熱性は良好である
が、曲げ弾性率が大きく、耐半田クラック性は充分でな
い。
Comparative Example 1 The procedure of Example 4 was repeated except that the propargyl and glycidyl etherified resin of Synthesis Example 1 were used without adding polysiloxane. The appearance, bending strength and heat resistance of the molded product are good, but the bending elastic modulus is large and the solder crack resistance is not sufficient.

比較例2 樹脂成分としてエポキシ樹脂を用い、第3表に示す配
合で実施例4と同様に行った。耐熱性が劣るため、耐半
田クラック性が非常に悪い。
Comparative Example 2 An epoxy resin was used as a resin component, and the same procedure as in Example 4 was performed with the composition shown in Table 3. Due to poor heat resistance, solder crack resistance is very poor.

比較例3 樹脂成分としてマレイミド樹脂を用い、第3表に示す
配合で実施例4と同様に行った。耐熱性は優れている
が、曲げ弾性率と吸水率が大きく、耐半田クラック性は
充分でない。
Comparative Example 3 Using a maleimide resin as a resin component, the same procedure as in Example 4 was performed with the composition shown in Table 3. Although the heat resistance is excellent, the flexural modulus and the water absorption are large, and the solder crack resistance is not sufficient.

比較例4 樹脂成分としてマレイミド樹脂を用い、ポリシロキサ
ンを加え、第3表に示す配合で実施例4と同様に行っ
た。マレイミド樹脂とポリシロキサンの相溶性が悪く、
成形品の外観は良くなかった。吸水率は大きく、耐半田
クラック性も不良であった。
Comparative Example 4 A maleimide resin was used as a resin component, and polysiloxane was added. Poor compatibility between maleimide resin and polysiloxane,
The appearance of the molded article was not good. The water absorption was large and the solder crack resistance was poor.

(発明の効果) 本発明による半導体封止用樹脂を用いた組成物の硬化
物は高Tgであり、耐湿性及び熱時の強度に優れているた
め封止体の耐半田クラック性が良く、かつ低応力であり
耐ヒートサイクル性にも優れており、半導体封止用樹脂
組成物として非常に信頼性の高い優れたものである。
(Effect of the Invention) The cured product of the composition using the resin for semiconductor encapsulation according to the present invention has a high Tg, and has excellent moisture resistance and strength at the time of heating, so that the sealing body has good solder crack resistance, In addition, it has low stress and excellent heat cycle resistance, and is a highly reliable and excellent resin composition for semiconductor encapsulation.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI // C08F 299/00 (56)参考文献 特開 平2−227423(JP,A) 特開 平2−208314(JP,A) 特開 平2−3411(JP,A) (58)調査した分野(Int.Cl.6,DB名) C08L 63/00 - 63/10 C08L 83/04 - 83/06 C08G 59/20 H01L 23/29──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 6 Identification symbol FI // C08F 299/00 (56) References JP-A-2-227423 (JP, A) JP-A-2-208314 (JP, A JP-A-2-3411 (JP, A) (58) Fields investigated (Int. Cl. 6 , DB name) C08L 63/00-63/10 C08L 83/04-83/06 C08G 59/20 H01L 23 / 29

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】(A)下記式〔I〕又は/及び〔II〕で示
されるプロパルギル及びグリシジルエーテル化樹脂と、 (R1:−H又は−CH3の中からそれぞれ独立に選択された
基 0<a,b<100、0≦c<100かつa+b+c=100 a,b,cは各構造単位の百分率を示す。) (0<d,e<100、0≦f<100かつd+e+f=100 d,e,fは各構造単位の百分率を示す。) (B)下記式〔III〕で示されるポリシロキサンと、 (X:−H、CH2 3NH2−CH=CH2又は−CH2−CH=CH2 R2:−CH3又はXの中からそれぞれ独立に選択された基 n:1〜100) (C)エポキシ樹脂用硬化剤とを含有することを特徴と
する半導体封止用樹脂組成物。
(A) a propargyl and glycidyl etherified resin represented by the following formula [I] and / or [II]: (R 1 : a group independently selected from -H or -CH 3 0 <a, b <100, 0 ≦ c <100 and a + b + c = 100 a, b, c represents the percentage of each structural unit .) (0 <d, e <100, 0 ≦ f <100 and d + e + f = 100 d, e, f indicate the percentage of each structural unit.) (B) Polysiloxane represented by the following formula [III]; (X: -H, CH 2 3 NH 2, -CH = CH 2 or -CH 2 -CH = CH 2 R 2 : -CH 3 , Or a group n: 1 to 100 independently selected from X) (C) a resin composition for semiconductor encapsulation, comprising: a curing agent for an epoxy resin.
JP11690890A 1990-05-08 1990-05-08 Resin composition for semiconductor encapsulation Expired - Lifetime JP2823654B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11690890A JP2823654B2 (en) 1990-05-08 1990-05-08 Resin composition for semiconductor encapsulation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11690890A JP2823654B2 (en) 1990-05-08 1990-05-08 Resin composition for semiconductor encapsulation

Publications (2)

Publication Number Publication Date
JPH0415217A JPH0415217A (en) 1992-01-20
JP2823654B2 true JP2823654B2 (en) 1998-11-11

Family

ID=14698624

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11690890A Expired - Lifetime JP2823654B2 (en) 1990-05-08 1990-05-08 Resin composition for semiconductor encapsulation

Country Status (1)

Country Link
JP (1) JP2823654B2 (en)

Also Published As

Publication number Publication date
JPH0415217A (en) 1992-01-20

Similar Documents

Publication Publication Date Title
EP0428871B1 (en) Epoxy resin composition for semiconductor sealing
JPH0627180B2 (en) Epoxy resin composition and semiconductor device
JPS62212417A (en) Epoxy resin composition
JP2823653B2 (en) Resin composition for semiconductor encapsulation
JP2823654B2 (en) Resin composition for semiconductor encapsulation
JP2837503B2 (en) Resin composition for semiconductor encapsulation
JPH03277619A (en) Epoxy resin composition for sealing semiconductor
JP2003020337A (en) Bisnadimide-polysiloxane alternating copolymer or its derivative and epoxy resin composition for electronic material containing the same
JP2823652B2 (en) Resin composition for semiconductor encapsulation
JPH044213A (en) Production of resin for sealing semiconductor
JP2857217B2 (en) Method for producing resin for semiconductor encapsulation
JPH04117458A (en) Resin composition for semiconductor sealing
JP2857216B2 (en) Method for producing resin for semiconductor encapsulation
JP3201485B2 (en) Resin composition for semiconductor encapsulation
JP2703045B2 (en) Epoxy resin composition
JP2872701B2 (en) Method for producing resin for semiconductor encapsulation
JP3201484B2 (en) Resin composition for semiconductor encapsulation
JPH0413755A (en) Resin composition for sealing semiconductor
JPH0413754A (en) Resin composition for sealing semiconductor
JPH05331354A (en) Thermoplastic resin composition and electronic component sealed therewith
JP2703043B2 (en) Epoxy resin composition
JPH0493313A (en) Resin composition for semiconductor sealing
JPH04145129A (en) Silicone-modified propargyl resin composition and resin composition containing the same for sealing semiconductor
JPH0366722A (en) Epoxy resin composition for sealing semiconductor
JPH0493345A (en) Resin composition for sealing semiconductor