JP2857216B2 - Method for producing resin for semiconductor encapsulation - Google Patents

Method for producing resin for semiconductor encapsulation

Info

Publication number
JP2857216B2
JP2857216B2 JP2092128A JP9212890A JP2857216B2 JP 2857216 B2 JP2857216 B2 JP 2857216B2 JP 2092128 A JP2092128 A JP 2092128A JP 9212890 A JP9212890 A JP 9212890A JP 2857216 B2 JP2857216 B2 JP 2857216B2
Authority
JP
Japan
Prior art keywords
resin
group
reaction
allylated
phenol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2092128A
Other languages
Japanese (ja)
Other versions
JPH03290421A (en
Inventor
光 大久保
憲一 鈴木
尚史 榎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Bakelite Co Ltd
Original Assignee
Sumitomo Bakelite Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Bakelite Co Ltd filed Critical Sumitomo Bakelite Co Ltd
Priority to JP2092128A priority Critical patent/JP2857216B2/en
Publication of JPH03290421A publication Critical patent/JPH03290421A/en
Application granted granted Critical
Publication of JP2857216B2 publication Critical patent/JP2857216B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Macromonomer-Based Addition Polymer (AREA)
  • Silicon Polymers (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)
  • Encapsulation Of And Coatings For Semiconductor Or Solid State Devices (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明はガラス転移点(以下Tgという)が高く、耐湿
性、相溶性に優れ、かつ低応力特性に優れた半導体封止
用樹脂の製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Industrial application field) The present invention is to produce a resin for semiconductor encapsulation having a high glass transition point (hereinafter referred to as Tg), excellent moisture resistance, excellent compatibility, and excellent low stress characteristics. It is about the method.

(従来技術) 近年IC、LSI、トランジスター、ダイオードなどの半
導体素子や電子回路等の封止には特性、コスト等の点か
らエポキシ樹脂組成物が一般的に用いられている。
(Prior Art) In recent years, epoxy resin compositions are generally used for sealing semiconductor elements such as ICs, LSIs, transistors, diodes, and the like, electronic circuits, and the like, from the viewpoint of characteristics, cost, and the like.

しかし、電子部品の量産性指向、高集積化や表面実装
化の方向に進んで来ておりこれに伴い封止樹脂に対する
要求は厳しくなってきている。
However, the trend toward mass production of electronic components, high integration, and surface mounting has been progressing, and accordingly, the demand for sealing resin has become strict.

特に高集積化に伴うチップの大型化、パッケージの薄
肉化や表面実装時における半田浸漬(200〜300℃)によ
つて装置にクラックが発生し易くなっており、信頼性向
上のために半導体封止用樹脂としては低応力特性と耐熱
性が強く望まれている。
In particular, cracks are likely to occur in the equipment due to the increase in size of chips due to high integration, thinning of packages, and solder immersion (200 to 300 ° C) during surface mounting. Low stress characteristics and heat resistance are strongly desired as a stopping resin.

半導体封止用樹脂としては現在エポキシ樹脂が主流で
あるが、耐熱性という点ではエポキシ樹脂を用いている
限り改良に限界があり、表面実装時の半田浸漬後の信頼
性の高いものが得られていない。
Epoxy resin is currently the mainstream resin for semiconductor encapsulation, but in terms of heat resistance, improvement is limited as long as epoxy resin is used, and a highly reliable resin after solder immersion during surface mounting can be obtained. Not.

これらの半田耐熱性に対処するには樹脂特性として低
応力であり、かつTgが高く半田浴温度以上であることが
望まれている。
In order to cope with these solder heat resistances, it is desired that the resin has low stress, high Tg, and a temperature higher than the solder bath temperature.

エポキシ樹脂に変わる高耐熱性を有する樹脂としては
マレイミド樹脂が注目されてきているが、ビスマレイミ
ドと芳香族ジアミンとの反応によって得られるアミン変
性マレイミド樹脂は、乾燥時の耐熱性には優れている
が、吸水率が大きく、吸湿時の半田浸漬でクラックを発
生し、信頼性に乏しい欠点がある。
As a resin having high heat resistance instead of an epoxy resin, a maleimide resin has been attracting attention, but an amine-modified maleimide resin obtained by a reaction between a bismaleimide and an aromatic diamine has excellent heat resistance during drying. However, there is a disadvantage that the water absorption is large, cracks are generated by solder immersion during moisture absorption, and the reliability is poor.

マレイミド樹脂としては、この他に、ポリマレイミド
とアルケニルフェノール類またはアルケニルフェニルエ
ーテル類などを重合触媒存在下で反応される例(特開昭
52−994、58−117219、61−95012、62−11716、63−230
728号公報)もあるが、アミン変性マレイミド樹脂と同
様に硬化物は堅いため、低応力特性に劣る欠点がある。
Other examples of the maleimide resin include an example in which a polymaleimide is reacted with an alkenyl phenol or an alkenyl phenyl ether in the presence of a polymerization catalyst (Japanese Unexamined Patent Application Publication No.
52-994, 58-117219, 61-95012, 62-11716, 63-230
No. 728), but there is a drawback that the cured product is inferior in low stress characteristics because the cured product is hard like the amine-modified maleimide resin.

低応力特性の改善策して各種シリコーン化合物の添加
が試みられているが、相溶性が著しく劣り、強度が低下
し、吸水率が大きくて、耐湿性、信頼性に欠け、実用上
問題点が多く残る。
Attempts have been made to add various silicone compounds to improve low-stress properties, but compatibility is remarkably poor, strength is reduced, water absorption is large, moisture resistance and reliability are lacking, and there are practical problems. Many remain.

(発明が解決しようとする課題) 本発明の目的とするところは相溶性が良く、一般の特
性を低下させることなく、耐湿性、低応力特性に優れ、
かつ高耐熱性を有し、半田浸漬後の信頼性に非常に優れ
た半導体封止用樹脂の製造方法を提供することにある。
(Problems to be Solved by the Invention) The object of the present invention is to have good compatibility, without deteriorating general properties, excellent in moisture resistance and low stress properties,
Another object of the present invention is to provide a method for producing a resin for semiconductor encapsulation, which has high heat resistance and very excellent reliability after solder immersion.

(課題を解決するための手段) 本発明は、(A)ポリマレイミド100重量部と、
(B)下記式〔I〕で示されるジヒドロ・ポリシロキサ
ンと、 (R1、R2:炭素数1〜4のアルキル基又はフェニル基 n:1〜100) 下記式〔II〕で示されるアリル化フェノール・芳香族
炭化水素樹脂とを (R3、R4:−H又はメチル基 0<a,b,c,d<100かつa+b+c+d=100 10≦a≦70、10≦b≦40、10≦d≦70 a,b,c,dは各構造単位の百分率を示す。) アリル基/ヒドロシリル基(Si−H)の比が2/1〜10/1
で、ヒドロシリル基の反応率が80%以上になるまで反応
させて得られるアリル化ポリシロキサン30〜300重量部
とを、生成樹脂の融点が50〜120℃になるまで反応させ
ることを特徴とする半導体封止用樹脂の製造方法であ
る。
(Means for Solving the Problems) The present invention provides (A) 100 parts by weight of polymaleimide,
(B) a dihydropolysiloxane represented by the following formula [I]; (R 1 , R 2 : alkyl group having 1 to 4 carbon atoms or phenyl group n: 1 to 100) Allylated phenol / aromatic hydrocarbon resin represented by the following formula [II] (R 3 , R 4 : -H or methyl group 0 <a, b, c, d <100 and a + b + c + d = 100 10 ≦ a ≦ 70, 10 ≦ b ≦ 40, 10 ≦ d ≦ 70 a, b, c, d indicates the percentage of each structural unit.) The ratio of allyl group / hydrosilyl group (Si-H) is 2/1 to 10/1.
And reacting 30 to 300 parts by weight of an allylated polysiloxane obtained by reacting until the reaction rate of the hydrosilyl group becomes 80% or more, until the melting point of the produced resin becomes 50 to 120 ° C. This is a method for producing a resin for semiconductor encapsulation.

(作用) 本発明において用いられるポリマレイミドの具体例と
しては、N,N′−m−フェニレンビスマレイミド、N,N′
−p−フェニレンビスマレイミド、N,N′−m−トルイ
レンビスマレイミド、N,N′−4,4′−ビフェニレンビス
マレイミド、N,N′−4,4′−〔3,3′−ジメチル−ビフ
ェニレン〕ビスマレイミド、N,N′−4,4′−〔3,3′−
ジメチルジフェニルメタン〕ビスマレイミド、N,N′−
4,4′−〔3,3′−ジエチルジフェニルメタン〕ビスマレ
イミド、N,N′−4,4′−ジフェニルメタンビスマレイミ
ド、N,N′−4,4′−ジフェニルプロパンビスマレイミ
ド、N,N′−4,4′−ジフェニルエーテルビスマレイミ
ド、N,N′−3,3′−ジフェニルスルホンビスマレイミ
ド、N,N′−4,4′−ジフェニルスルホンビスマレイミ
ド、一般式〔III〕又は〔IV〕で示される多官能マレイ
ミドなどを挙げることができる。これらは2種以上含ま
れていても何ら差し支えない。
(Function) Specific examples of the polymaleimide used in the present invention include N, N'-m-phenylenebismaleimide, N, N '
-P-phenylenebismaleimide, N, N'-m-toluylenebismaleimide, N, N'-4,4'-biphenylenebismaleimide, N, N'-4,4 '-[3,3'-dimethyl -Biphenylene] bismaleimide, N, N'-4,4 '-[3,3'-
Dimethyldiphenylmethane] bismaleimide, N, N'-
4,4 '-[3,3'-diethyldiphenylmethane] bismaleimide, N, N'-4,4'-diphenylmethanebismaleimide, N, N'-4,4'-diphenylpropanebismaleimide, N, N'-4,4'-diphenylether bismaleimide, N, N'-3,3'-diphenylsulfonebismaleimide, N, N'-4,4'-diphenylsulfonebismaleimide, of the general formula (III) or (IV) And the like. These may be contained in two or more kinds.

本発明に用いられるジヒドロ・ポリシロキサンは下記
式〔I〕で示されるポリシロキサンであり、その重合度
nは1〜100の範囲のものである。
The dihydropolysiloxane used in the present invention is a polysiloxane represented by the following formula [I], and the degree of polymerization n is in the range of 1 to 100.

(R1、R2:炭素数1〜4のアルキル基又はフェニル基) 重合度が100より大きい場合、相溶性が低下してしま
う。なお、アリル基との反応において、ゲル化させない
範囲で、3官能以上のポリヒドロ・ポリシロキサンを併
用しても構わない。
(R 1 , R 2 : alkyl group having 1 to 4 carbon atoms or phenyl group) When the degree of polymerization is larger than 100, the compatibility is reduced. In the reaction with the allyl group, a polyhydro-polysiloxane having three or more functional groups may be used in combination as long as gelling does not occur.

アリル化フェノール・芳香族炭化水素樹脂は、トルエ
ン樹脂、キシレン樹脂又はキシリレン・ジアルキルエー
テルとフェノール又はフェノール樹脂とを反応させて得
られるフェノール・芳香族炭化水素樹脂、例えば、フェ
ノール変性キシレン樹脂(三菱瓦斯化学(株)製ニカノ
ールP−100など)やフェノールアラルキル樹脂(三井
東圧(株)製ミレックスΧL−225など)を、塩化アリ
ル又は臭化アリルと反応させ、アリル化したもので、下
記式〔II〕で示されるもので、樹脂中にそれぞれの構造
単位をもつ部分が全体としてa,b,c,dの比で存在してい
るものである。
The allylated phenol / aromatic hydrocarbon resin is a phenol / aromatic hydrocarbon resin obtained by reacting toluene resin, xylene resin or xylylene / dialkyl ether with phenol or phenol resin, for example, phenol-modified xylene resin (Mitsubishi Gas) Nikanol P-100 (manufactured by Chemical Co., Ltd.) or phenol aralkyl resin (Mirex @ L-225 manufactured by Mitsui Toatsu Co., Ltd.) is reacted with allyl chloride or allyl bromide to obtain an allylic compound. II], in which a portion having each structural unit in the resin exists as a whole in the ratio of a, b, c, d.

(R3、R4:−H又はメチル基 0<a,b,c,d<100かつa+b+c+d=100 a,b,c,dは、各構造単位の百分率(%)を示す) 好ましくは、10≦a≦70、10≦b≦40、10≦d≦70が
良い。
(R 3 , R 4 : -H or a methyl group 0 <a, b, c, d <100 and a + b + c + d = 100 a, b, c, d indicate the percentage (%) of each structural unit) 10 ≦ a ≦ 70, 10 ≦ b ≦ 40 and 10 ≦ d ≦ 70 are good.

a成分は、熱時強度の向上と吸水率を下げるのに効果
があるが、ポリマレイミドとの樹脂生成反応において
は、殆ど反応しないため、多過ぎると樹脂が固形化せ
ず、相溶性、作業性が悪化する。
The component a is effective for improving the strength at heat and reducing the water absorption, but hardly reacts in the resin-forming reaction with the polymaleimide. The sex worsens.

b成分は、ポリマレイミドとの樹脂生成反応において
マレイミド基と反応し、ポリマレイミドとポリシロキサ
ンとの相溶性を改善する重要な成分である。しかし、多
過ぎると硬化物中にフェノール性水酸基が増えるため、
吸水率が大きくなって好ましくない。
The component b is an important component that reacts with a maleimide group in a resin-forming reaction with the polymaleimide to improve the compatibility between the polymaleimide and the polysiloxane. However, if too much, the phenolic hydroxyl group in the cured product increases,
The water absorption is increased, which is not preferable.

d成分は、吸水率を下げ、信頼性の向上に著しい効果
がある。しかし、多過ぎると樹脂生成反応及び硬化反応
における反応性が悪化して封止材料に適さない。
The d component has a significant effect of lowering the water absorption and improving the reliability. However, when the amount is too large, the reactivity in the resin generation reaction and the curing reaction deteriorates, and the resin is not suitable for a sealing material.

ジヒドロ・ポリシロキサンとアリル化フェノール・芳
香族炭化水素樹脂との反応におけるアリル基/ヒドロシ
リル基(Si−H)の比が、2/1〜10/1が良い。アリル基
が少な過ぎると、ポリマレイミドとの相溶性、成形性、
硬化物の機械強度が悪化する。多過ぎると、逆にポリシ
ロキサンが減るので、低応力特性が改善されない。
The ratio of allyl group / hydrosilyl group (Si-H) in the reaction between dihydropolysiloxane and allylated phenol / aromatic hydrocarbon resin is preferably 2/1 to 10/1. If there are too few allyl groups, compatibility with polymaleimide, moldability,
The mechanical strength of the cured product deteriorates. If it is too large, on the contrary, the amount of polysiloxane is reduced, so that the low stress characteristics are not improved.

反応条件は、特に限定されるものではないが、一例を
示すと、塩化白金酸存在下、トルエン溶媒中で90℃〜還
流温度で反応させ、反応後塩化白金酸を水/トルエンに
よる抽出洗浄で除去し、トルエンを留去してアリル化ポ
リシロキサンを得る。反応は、ヒドロシリル基(Si−
H)の反応率が80%以上になるまで行うのが良い。反応
率が80%未満の場合は、成形品に遊離のポリシロキサン
成分が滲み出し、外観を悪化させたり金型くもりが発生
する。
The reaction conditions are not particularly limited, but as an example, in the presence of chloroplatinic acid, the reaction is carried out at 90 ° C. to reflux temperature in a toluene solvent. After the reaction, chloroplatinic acid is extracted and washed with water / toluene. After removal, the toluene is distilled off to obtain an allylated polysiloxane. The reaction is carried out using a hydrosilyl group (Si-
The reaction is preferably performed until the reaction rate of H) becomes 80% or more. If the reaction rate is less than 80%, the free polysiloxane component oozes out into the molded product, deteriorating the appearance and causing mold fogging.

ポリマレイミドとアリル化ポリシロキサンとの反応
は、反応条件を特に限定するものではないが、一例を示
すと、アリル化ポリシロキサンを130〜150℃に加熱し、
これにポリマレイミドを添加して行う。アリル化ポリシ
ロキサンの量は、ポリマレイミド100重量部に対し、30
〜300重量部が良い。少な過ぎると低応力特性が得られ
ない。多過ぎると機械強度、Tgが下がり、半田浸漬時に
クラックを発生する。反応の終点は、得られた樹脂の融
点が50〜120℃の範囲となるまで反応させる。なお、反
応の終点を確認するには、反応系より少量の樹脂を取り
出し、冷却し、融点を測定し、確認する。
The reaction between the polymaleimide and the allylated polysiloxane is not particularly limited to the reaction conditions, but as an example, the allylated polysiloxane is heated to 130 to 150 ° C.,
This is carried out by adding a polymaleimide. The amount of the allylated polysiloxane is 30 parts per 100 parts by weight of the polymaleimide.
~ 300 parts by weight is good. If the amount is too small, low stress characteristics cannot be obtained. If too large, the mechanical strength and Tg decrease, and cracks occur during solder immersion. The reaction is terminated until the obtained resin has a melting point in the range of 50 to 120 ° C. In order to confirm the end point of the reaction, a small amount of the resin is taken out of the reaction system, cooled, and the melting point is measured and confirmed.

又、得られた樹脂を用いて成形材料化するには硬化促
進剤、エポキシ樹脂、無機充填剤、滑剤、難燃剤、離型
剤、シランカップリング剤等を必要に応じて適宜配合添
加し、加熱混練することによって材料化できる。
In addition, in order to form a molding material using the obtained resin, a curing accelerator, an epoxy resin, an inorganic filler, a lubricant, a flame retardant, a release agent, a silane coupling agent, and the like are appropriately compounded and added as necessary, It can be made into a material by heating and kneading.

本発明の半導体封止用樹脂組成物を成形材料として製
造する一般的な方法としては、これらの必須成分に各種
添加剤を加えて均一に混合した組成物をニーダー、熱ロ
ール等により混練処理を行い、冷却後粉砕して成形材料
とする。
As a general method of producing the resin composition for semiconductor encapsulation of the present invention as a molding material, a composition obtained by adding various additives to these essential components and uniformly mixing them is kneaded by a kneader, a hot roll, or the like. Then, after cooling, it is pulverized into a molding material.

得られた成形材料を半導体の封止用として用いれば高
Tgであり、しかも低応力特性に優れ、非常に信頼性の高
い半導体封止用樹脂組成物を得ることができる。
If the obtained molding material is used for sealing semiconductors,
It is possible to obtain a highly reliable resin composition for semiconductor encapsulation which is Tg and has excellent low stress characteristics.

(実施例) [アリル化フェノール・芳香族炭化水素樹脂の合成] 合成例1 撹拌装置、還流冷却器、温度計及び滴下ロートを付け
た反応容器に、第1表の処方に従って、水酸化カリウム
と、水/アセトン(1/1)の混合溶媒を入れて溶解さ
せ、これにフェノール変性キシレン樹脂を添加し、溶解
させた。
(Example) [Synthesis of Allylated Phenol / Aromatic Hydrocarbon Resin] Synthesis Example 1 Potassium hydroxide was added to a reaction vessel equipped with a stirrer, a reflux condenser, a thermometer and a dropping funnel according to the recipe in Table 1. , A mixed solvent of water / acetone (1/1) was added and dissolved, and a phenol-modified xylene resin was added and dissolved therein.

この溶液を加熱し、臭化アリルを添加して、還流下3
時間反応させた。その後、塩酸で中和して、アセトンと
未反応の臭化アリルを留去し、トルエン1リットルを添
加した。分液ロートに移し、水洗を3回行い、エバポレ
ーターで溶媒を除去した。
The solution is heated, allyl bromide is added and refluxed for 3 hours.
Allowed to react for hours. Thereafter, the mixture was neutralized with hydrochloric acid to distill off unreacted allyl bromide with acetone, and 1 liter of toluene was added. It was transferred to a separating funnel, washed three times with water, and the solvent was removed with an evaporator.

更に、175℃、4時間加熱処理をして、アリル化フェ
ノール芳香族炭化水素樹脂を得た。生成物の組成は第1
表に示した。
Further, heat treatment was performed at 175 ° C. for 4 hours to obtain an allylated phenol aromatic hydrocarbon resin. The composition of the product is first
It is shown in the table.

参考例1 合成例1のフェノール変性キシレン樹脂を、フェノー
ル樹脂に置き換えて、同様に反応させたものである。
Reference Example 1 A phenol-modified xylene resin of Synthesis Example 1 was replaced with a phenol resin and reacted similarly.

実施例1〜2 撹拌装置、還流冷却器及び温度計を付けた反応容器
に、合成例1のアリル化フェノール・芳香族炭化水素樹
脂とトルエンを第2表の処方に従って入れ、均一に溶解
してから、塩化白金酸イソプロパノール溶液を添加し
た。これにジヒドロポリシロキサンを加え、90℃で2時
間反応させた。反応後、分液ロートに移し、水洗を3回
行い、エバポレーターで溶媒を除去して、アリル化ポリ
シロキサンを得た。ヒドロシリル基の反応率はいずれも
80%以上である。
Examples 1-2 In a reaction vessel equipped with a stirrer, a reflux condenser and a thermometer, the allylated phenol / aromatic hydrocarbon resin of Synthesis Example 1 and toluene were charged according to the formulation in Table 2 and uniformly dissolved. Was added to a solution of chloroplatinic acid in isopropanol. Dihydropolysiloxane was added thereto and reacted at 90 ° C. for 2 hours. After the reaction, the mixture was transferred to a separating funnel, washed three times with water, and the solvent was removed with an evaporator to obtain an allylated polysiloxane. The reaction rates of all hydrosilyl groups are
80% or more.

次に、撹拌装置、減圧蒸留装置及び温度計を付けた反
応容器に、得られたアリル化ポリシロキサンを第3表の
処方に従って入れ、130℃に加熱してから、ポリマレイ
ミドを加え、減圧下(約20mmHg)で反応させた。得られ
たシリコーン変性マレイミド樹脂は、均質で、融点を第
3表に示した。
Next, the obtained allylated polysiloxane was placed in a reaction vessel equipped with a stirrer, a vacuum distillation apparatus, and a thermometer according to the recipe in Table 3, heated to 130 ° C, and then polymaleimide was added. (About 20 mmHg). The obtained silicone-modified maleimide resin was homogeneous and the melting points are shown in Table 3.

比較例1 実施例1のアリル化フェノール芳香族炭化水素樹脂を
減らし、ジヒドロポリシロキサンの量を増やして、実施
例1と同様に反応させた。得られたシリコーン変性マレ
イミド樹脂は、第3表に示したように不均質で、油状の
シリコーン成分が滲み出していた。
Comparative Example 1 The reaction was carried out in the same manner as in Example 1 except that the amount of the allylated phenol aromatic hydrocarbon resin in Example 1 was reduced and the amount of dihydropolysiloxane was increased. As shown in Table 3, the obtained silicone-modified maleimide resin had a heterogeneous and oily silicone component oozing out.

比較例2 重合度(n)の大きいジヒドロポリシロキサンを用い
て、同様に反応させた。相溶性が非常に悪く、得られた
シリコーン変性マレイミド樹脂は不均質で、油状のシリ
コーン成分の滲み出しもあった。
Comparative Example 2 The same reaction was carried out using dihydropolysiloxane having a large degree of polymerization (n). The compatibility was very poor, and the obtained silicone-modified maleimide resin was heterogeneous, and the oily silicone component also bleed out.

比較例3 参考例1を用いて、実施例1と同様に反応させた。Comparative Example 3 Using Reference Example 1, the reaction was carried out in the same manner as in Example 1.

実施例3〜4 第4表に示す配合に従って、実施例1〜2で得たシリ
コーン変性マレイミド樹脂に、シリカ粉末、硬化促進
剤、アミノシラン、着色剤および離型剤を加え、熱ロー
ルで混練して成形材料を得た。得られた成形材料をトラ
ンスファー成形により180℃,3分で成形しフクレの無い
光沢の有る成形品が得られた。この成形品をさらに180
℃、8時間後硬化を行い特性を評価した。結果を第4表
に示す。
Examples 3 to 4 According to the composition shown in Table 4, to the silicone-modified maleimide resin obtained in Examples 1 and 2, silica powder, a curing accelerator, an aminosilane, a colorant and a release agent were added, and kneaded with a hot roll. Thus, a molding material was obtained. The resulting molding material was molded by transfer molding at 180 ° C. for 3 minutes to obtain a glossy molded product without blisters. 180 more
After curing for 8 hours at ℃, properties were evaluated. The results are shown in Table 4.

実施例1〜2の樹脂を用いた実施例3〜4の成形材料
は、シリコーンを含まない比較例8に比べ常温での曲げ
弾性率が小さく、低応力で、内部応力も小さい。しか
も、ガラス転移点温度が高く、260℃での曲げ強度も大
きく、耐熱性、耐半田クラック性に優れ、吸水性も小さ
い。
The molding materials of Examples 3 and 4 using the resins of Examples 1 and 2 have lower flexural modulus at room temperature, lower stress and lower internal stress than Comparative Example 8 containing no silicone. Moreover, the glass transition temperature is high, the bending strength at 260 ° C. is large, the heat resistance, the solder crack resistance is excellent, and the water absorption is small.

比較例5〜8 実施例3〜4と比較のため、第4表に示す配合で同様
に成形材料を作成し成形した。
Comparative Examples 5 to 8 For comparison with Examples 3 and 4, molding materials were prepared and molded in the same manner as shown in Table 4.

比較例5は、比較例1の樹脂(アリル基/ヒドロシリ
ル基=1/1)を用いたものであるが、金型くもりなどが
あって成形性及び成形品の外観が悪く、曲げ強度も低
い。
Comparative Example 5 uses the resin of Comparative Example 1 (allyl group / hydrosilyl group = 1/1), but has poor moldability and poor appearance of the molded product due to mold clouding and low bending strength. .

比較例6は、参考例1の芳香族炭化水素を含まないフ
ェノール樹脂 を用いたもので、曲げ強度は大きく、ガラス転移温度は
高いが、吸水率が大きいため、耐半田クラック性は充分
ではない。
Comparative Example 6 is a phenol resin containing no aromatic hydrocarbon of Reference Example 1. The material has a high bending strength and a high glass transition temperature, but has a large water absorption, so that the solder crack resistance is not sufficient.

比較例7は、実施例3とほぼ同じ組成であるが、単に
配合時に混ぜたものである。比較例5と同様に成形品の
外観が悪く、曲げ強度が低い。
Comparative Example 7 has substantially the same composition as Example 3, but is simply mixed at the time of compounding. As in Comparative Example 5, the appearance of the molded product was poor and the bending strength was low.

比較例8は、ポリシロキサンを含まないものである。
成形品の外観、曲げ強度、ガラス転移温度は比較例6と
同様に良好であるが、曲げ弾性率と吸水率が大きいた
め、耐半田クラック性は充分でない。
Comparative Example 8 does not contain polysiloxane.
Although the appearance, bending strength, and glass transition temperature of the molded product are as good as Comparative Example 6, the solder crack resistance is not sufficient because the bending elastic modulus and water absorption are large.

(発明の効果) 本発明の製造方法による半導体封止用樹脂を用いた成
形物は高Tgであり、耐湿性及び熱時の強度に優れている
ため封止体の耐半田クラック性が良く、かつ低応力であ
り耐ヒートサイクル性にも優れており、半導体封止用樹
脂組成物として非常に信頼性の高い優れたものである。
(Effect of the Invention) A molded article using the resin for semiconductor encapsulation according to the production method of the present invention has a high Tg, and has excellent moisture resistance and strength when heated, so that the solder crack resistance of the sealed body is good, In addition, it has low stress and excellent heat cycle resistance, and is a highly reliable and excellent resin composition for semiconductor encapsulation.

フロントページの続き (51)Int.Cl.6 識別記号 FI H01L 23/31 (58)調査した分野(Int.Cl.6,DB名) C08L 61/00 - 61/18 C08L 65/00 - 65/04 C08L 83/00 - 83/16 H01L 21/56,23/30Continued on the front page (51) Int.Cl. 6 identification code FI H01L 23/31 (58) Fields investigated (Int.Cl. 6 , DB name) C08L 61/00-61/18 C08L 65/00-65 / 04 C08L 83/00-83/16 H01L 21 / 56,23 / 30

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】(A)ポリマレイミド100重量部と、 (B)下記式[I]で示されるジヒドロ・ポリシロキサ
ンと、 (R1、R2:炭素数1〜4のアルキル基又はフェニル基 n:1〜100) 下記式[II]で示されるアリル化フェノール・芳香族炭
化水素樹脂とを (R3、R4:−H又はメチル基 0<a,b,c,d<100かつa+b+c+d=100 10≦a≦70、10≦b≦40、10≦d≦70 a,b,c,dは各構造単位の百分率を示す。) アリル基/ヒドロシリル基(Si−H)の比が2/1〜10/1
で、ヒドロシリル基の反応率が80%以上になるまで反応
させて得られるアリル化ポリシロキサン30〜300重量部
とを、生成樹脂の融点が50〜120℃になるまで反応させ
ることを特徴とする半導体封止用樹脂の製造方法。
(1) 100 parts by weight of a polymaleimide; (B) a dihydropolysiloxane represented by the following formula [I]: (R 1 , R 2 : alkyl group having 1 to 4 carbon atoms or phenyl group n: 1 to 100) Allylated phenol / aromatic hydrocarbon resin represented by the following formula [II] (R 3 , R 4 : -H or methyl group 0 <a, b, c, d <100 and a + b + c + d = 100 10 ≦ a ≦ 70, 10 ≦ b ≦ 40, 10 ≦ d ≦ 70 a, b, c, d indicates the percentage of each structural unit.) The ratio of allyl group / hydrosilyl group (Si-H) is 2/1 to 10/1.
Wherein 30 to 300 parts by weight of an allylated polysiloxane obtained by reacting until the conversion of the hydrosilyl group becomes 80% or more is reacted until the melting point of the produced resin becomes 50 to 120 ° C. A method for producing a resin for semiconductor encapsulation.
JP2092128A 1990-04-09 1990-04-09 Method for producing resin for semiconductor encapsulation Expired - Lifetime JP2857216B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2092128A JP2857216B2 (en) 1990-04-09 1990-04-09 Method for producing resin for semiconductor encapsulation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2092128A JP2857216B2 (en) 1990-04-09 1990-04-09 Method for producing resin for semiconductor encapsulation

Publications (2)

Publication Number Publication Date
JPH03290421A JPH03290421A (en) 1991-12-20
JP2857216B2 true JP2857216B2 (en) 1999-02-17

Family

ID=14045800

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2092128A Expired - Lifetime JP2857216B2 (en) 1990-04-09 1990-04-09 Method for producing resin for semiconductor encapsulation

Country Status (1)

Country Link
JP (1) JP2857216B2 (en)

Also Published As

Publication number Publication date
JPH03290421A (en) 1991-12-20

Similar Documents

Publication Publication Date Title
US6162878A (en) Semiconductor encapsulating epoxy resin composition and semiconductor device
JPS62212417A (en) Epoxy resin composition
JP2837503B2 (en) Resin composition for semiconductor encapsulation
JP2857216B2 (en) Method for producing resin for semiconductor encapsulation
JPH044213A (en) Production of resin for sealing semiconductor
JP3824066B2 (en) Epoxy resin composition for semiconductor encapsulation and semiconductor device
JP2857217B2 (en) Method for producing resin for semiconductor encapsulation
JP3268818B2 (en) Semiconductor sealing composition
JP2823653B2 (en) Resin composition for semiconductor encapsulation
JPH06256364A (en) Organic silicon compound, its production and resin composition containing the same
JPH0379657A (en) Preparation of epoxy resin composition
JPH04117458A (en) Resin composition for semiconductor sealing
JP2823652B2 (en) Resin composition for semiconductor encapsulation
JP2872701B2 (en) Method for producing resin for semiconductor encapsulation
JP3201485B2 (en) Resin composition for semiconductor encapsulation
JP2823654B2 (en) Resin composition for semiconductor encapsulation
JP3201484B2 (en) Resin composition for semiconductor encapsulation
JPH0493345A (en) Resin composition for sealing semiconductor
JP2703045B2 (en) Epoxy resin composition
JPH044214A (en) Production of resin for sealing semiconductor
JP2703043B2 (en) Epoxy resin composition
JP2591124B2 (en) Epoxy resin composition for sealing
JPH0413755A (en) Resin composition for sealing semiconductor
JPH05331354A (en) Thermoplastic resin composition and electronic component sealed therewith
JPH06128357A (en) Semiconductor device