JPH0321637A - Resin for sealing - Google Patents

Resin for sealing

Info

Publication number
JPH0321637A
JPH0321637A JP15567189A JP15567189A JPH0321637A JP H0321637 A JPH0321637 A JP H0321637A JP 15567189 A JP15567189 A JP 15567189A JP 15567189 A JP15567189 A JP 15567189A JP H0321637 A JPH0321637 A JP H0321637A
Authority
JP
Japan
Prior art keywords
resin
bismaleimide
group
weight
formulas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15567189A
Other languages
Japanese (ja)
Inventor
Kenichi Suzuki
憲一 鈴木
Hisafumi Enoki
尚史 榎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Bakelite Co Ltd
Original Assignee
Sumitomo Bakelite Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Bakelite Co Ltd filed Critical Sumitomo Bakelite Co Ltd
Priority to JP15567189A priority Critical patent/JPH0321637A/en
Publication of JPH0321637A publication Critical patent/JPH0321637A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a semiconductor-sealing resin having high glass transition point and excellent moisture resistance, compatibility and low-stress characteristics by reacting a bismaleimide with a diaminopolysiloxane in the presence of polyfunctional polyallylphenols. CONSTITUTION:The objective resin can be produced by reacting (A) 100 pts.wt. of a bismaleimide of formula I (R1 is bivalent aromatic group) (e.g. N,N'-m- phenylenebismaleimide) with (B) 5-50 pts.wt. of a diaminopolysiloxane of formula II (R2 is alkylene or phenylene; R3 and R4 are alkyl or phenyl; n is 1-100) in the presence of a polyfunctional polyallylphenol of formula III [R5 is -O-, -CH2-, group of formula IV, -SO2- or -C(O)-; n is 0-10] preferably at 100-200 deg.C.

Description

【発明の詳細な説明】 (発明の利用分野) 本発明はガラス転移点(以下Tgという)が高く、耐湿
性、相溶性に優れ、かつ低応力特性に優れた半導体封止
用樹脂に関するものである。
[Detailed Description of the Invention] (Field of Application of the Invention) The present invention relates to a resin for semiconductor encapsulation that has a high glass transition point (hereinafter referred to as Tg), excellent moisture resistance, compatibility, and low stress properties. be.

(従来技術) 近年IC%LSI,}ランジスター、ダイオードなどの
半導体素子や電子回路等の封止には特性、コスト等の点
からエボキシ樹脂組戊物が多量に、かつ最も一般的に用
いられている。
(Prior art) In recent years, epoxy resin composites have been used in large quantities and most commonly for encapsulating semiconductor elements such as transistors and diodes, electronic circuits, etc. due to their characteristics, cost, etc. ing.

しかし、電子部品の量産性指向、高集積化や表面実装化
の方向に進んで来ておりこれに伴い封止樹脂に対する要
求は厳しくなってきている。
However, as electronic components are becoming more mass-producible, more highly integrated, and more surface-mounted, demands on sealing resins are becoming more severe.

の薄肉化や表面実装時における半田浸漬(200〜30
0℃)によって装置にクラックが発生し易くなっており
信頼性向上のために半導体封止用樹脂としては低応力特
性と耐熱性が強く望まれている。
Solder immersion (200 to 30
0° C.), cracks are likely to occur in devices, and in order to improve reliability, it is strongly desired that resins for semiconductor encapsulation have low stress characteristics and heat resistance.

半導体封止用樹脂としては現在エポキシ樹脂が主流であ
るが耐湿性、低応力特性の点で未だ満足されるものは得
られていない。
Currently, epoxy resins are the mainstream resin for semiconductor encapsulation, but no resin has yet been found that is satisfactory in terms of moisture resistance and low stress properties.

これらに対処するためにエポキシ系樹脂においてはシリ
コーン化合物等の添加やシリコーン変性エボキシ樹脂の
利用によって低応力特性をもたせる試みがなされている
が、耐熱性という点ではエボキシ樹脂を用いているかぎ
り、改良に限界があり、表面実装時の半田浸漬後の信頼
性の高いものが得られていない。
To deal with these problems, attempts have been made to make epoxy resins have low stress characteristics by adding silicone compounds or using silicone-modified epoxy resins, but in terms of heat resistance, as long as epoxy resins are used, there are no improvements. There are limits to this, and high reliability after solder immersion during surface mounting has not been achieved.

これらの半田耐熱性に対処するには樹脂特性として低応
力であり、かつTgが高く半田浴温度以上であることが
望まれている. エボキシ樹脂に変わる高耐熱性を有する樹脂としてはマ
レイミド樹脂が注目されてきているが、低応力特性に劣
り、堅くて脆いという欠点がある。
In order to deal with these solder heat resistance, it is desired that the resin properties be low stress and high Tg that is higher than the solder bath temperature. Maleimide resins have been attracting attention as a resin with high heat resistance to replace epoxy resins, but they have the drawbacks of poor low stress properties, hardness, and brittleness.

ポリアミノマレイミド樹脂においては堅くて脆いという
欠点は改良されて来ているが、低応力特性の面では未だ
不十分である。
Although the drawbacks of polyaminomaleimide resins such as hardness and brittleness have been improved, they are still insufficient in terms of low stress properties.

ポリマレイミドとアノレケニノレフェノーノレ類まI二
はアルケニル7エノールエーテル類などを重合触媒存在
下で反応させる例(特開昭52−994.特開昭58−
117219号公報)もあるが、ポリアミノマレイミド
樹脂と同様に低応力特性に劣る欠点がある。
Example of reacting polymaleimide with anolephenols or alkenyl 7-enol ethers in the presence of a polymerization catalyst (JP-A-52-994; JP-A-Sho 58-
117219), but like polyaminomaleimide resins, they have the disadvantage of poor low stress properties.

ポリアミノマレイミド樹脂を含むマレイミド樹脂の低応
力特性の改善策として各種シリコーン化合物の添加が試
みられているが相溶性が著しく劣り、相分離して、均質
な樹脂が得られない。
Attempts have been made to add various silicone compounds as a measure to improve the low stress properties of maleimide resins including polyaminomaleimide resins, but the compatibility is extremely poor and phase separation occurs, making it impossible to obtain homogeneous resins.

とくに、シリコーンオイルを用いた場合にはオイルのブ
リードが生じるためにロール滑り、金型汚れを起こして
しまう。又シリコーンゴムを用いI;場合には接着性が
低下してしまう。
In particular, when silicone oil is used, oil bleeds, resulting in roll slippage and mold staining. Also, if silicone rubber is used, the adhesion will decrease.

又相溶性を向上させるために末端に−OH基、一〇〇H
I基等の反応性基を持ったシリコーン化合物を添加する
例(Brit UK PAT2018802(1984
).FR2544325,特開昭57−90827.5
6−20023.57−90012.58−74749
号公報)もあるが成形時にガスが発生し7クレを生じた
り、耐熱性や耐湿性の低下を招き満足のいく性能を発揮
できていない。
In order to improve compatibility, -OH group and 100H are added at the terminal.
Example of adding a silicone compound having a reactive group such as an I group (Brit UK PAT2018802 (1984)
). FR2544325, JP-A-57-90827.5
6-20023.57-90012.58-74749
However, gas is generated during molding, resulting in cracking and deterioration of heat resistance and moisture resistance, resulting in unsatisfactory performance.

又、ビスマレイミドとジアミンとアミノ基含有ポリシロ
キサンとを溶液中で反応させる例(特開昭62−246
933号公報)も試みられている。
Also, an example of reacting bismaleimide, diamine, and amino group-containing polysiloxane in a solution (Japanese Patent Application Laid-Open No. 62-246
No. 933) has also been attempted.

しかし、無溶媒ではアミ7基含有ポリシロキサンとビス
マレイミド、ジアミンとの相溶性が悪く、均質な樹脂が
得られていない。
However, in the absence of a solvent, the compatibility of the polysiloxane containing amide 7 groups with bismaleimide and diamine is poor, and a homogeneous resin cannot be obtained.

溶剤を用いると相溶性は向上するが、反応終了時に溶剤
を完全に除去することは困難で、そのために貯蔵安定性
が低下したり、成形時にガス、7クレなどが発生して、
実用上問題点が多く残る。
The use of a solvent improves compatibility, but it is difficult to completely remove the solvent at the end of the reaction, resulting in decreased storage stability and the generation of gas, chloride, etc. during molding.
Many practical problems remain.

(発明の目的) 本発明の目的とするところは相溶性が良く、一般の特性
を低下させることなく、耐湿性、低応力特性に優れ、か
つ高耐熱性を有し、半田浸漬後の信頼性に非常に優れた
半導体封止用樹脂を提供することにある。
(Objective of the Invention) The object of the present invention is to have good compatibility, excellent moisture resistance and low stress characteristics, high heat resistance, and high reliability after soldering immersion without deteriorating general characteristics. An object of the present invention is to provide a resin for semiconductor encapsulation that is extremely excellent in semiconductor encapsulation.

(発明の構1.) 本発明は下記式CI)で示されるビスマレイミドと、下
記式(n)で示されるジアミノポリシロキサンとを、 下記式〔■〕で示される多官能性ポリアリルフェノール
類の存在下に反応させてなる封止用樹脂である。
(Structure 1 of the invention) The present invention combines a bismaleimide represented by the following formula CI) and a diamino polysiloxane represented by the following formula (n) into a polyfunctional polyallylphenol represented by the following formula [■] It is a sealing resin made by reacting in the presence of.

(作用) 本発明において用いられるビスマレイミド樹脂は下記式
(I)で表される。
(Function) The bismaleimide resin used in the present invention is represented by the following formula (I).

R1:2価の芳香族基 具体例としては、N,N’−m−フエニレンビスマレイ
ミド、N,N’−p−7エニレンビスマレイミ}’、N
.N’−+m一トルイレンビスマレイミド、N,N’−
4.4’−ビフエニレンビスマレイミド、N.N’−4
.4’−(3.3’−ジメチルービフエニレン〕ビスマ
レイミド、N,N’−4.4’−(3.3′−ジメチル
ジフエニルメタン〕ビスマレイミド、N.N’−4.4
’−(3.3’−ジエチルジフエニルメタン〕ビスマレ
イミド、N,N’−4.4’−ジフエニルメタンビスマ
レイミト、N,N′−4.4′−ジフエニルプロノくン
ビスマレイミF、N,N’−4.4’−シフエニルエー
テルビスマレイミド, N,N’−3.3’−ジフエニ
ルスルホンビスマレイミド、N,N’−4.4’−ジフ
エニルスルホンビスマレイミドなどを挙げることができ
る。これらは2種以上含まれていても何ら差し支えない
R1: Divalent aromatic group Specific examples include N,N'-m-phenylenebismaleimide, N,N'-p-7enylenebismaleimide}', N
.. N'-+m-toluylene bismaleimide, N,N'-
4.4'-biphenylene bismaleimide, N. N'-4
.. 4'-(3.3'-dimethyl-biphenylene]bismaleimide, N,N'-4.4'-(3.3'-dimethyldiphenylmethane)bismaleimide, N.N'-4.4
'-(3.3'-diethyldiphenylmethane]bismaleimide, N,N'-4.4'-diphenylmethane bismaleimide, N,N'-4.4'-diphenylprono-bismaleimide F, N, Examples include N'-4,4'-cyphenyl ether bismaleimide, N,N'-3,3'-diphenylsulfone bismaleimide, N,N'-4,4'-diphenylsulfone bismaleimide, and the like. Yes, there is no problem even if two or more of these are included.

本発明に用いられるジアミノポリシロキサンは下記式(
II)で示されるポリシロキサンであり、その重合度n
は1〜100の範囲のものである。
The diamino polysiloxane used in the present invention has the following formula (
II), whose degree of polymerization is n
ranges from 1 to 100.

R2:アルキレン基または7エニレン基R3.R4:ア
ルキル基またはフエニル基重合度が100以上の場合、
相溶性が低下してしまう。ジアミノポリシロキサンはビ
スマレイミド100重量部に対し5〜50重量部が好ま
しい。
R2: alkylene group or 7-enylene group R3. R4: when the alkyl group or phenyl group polymerization degree is 100 or more,
Compatibility will decrease. Diaminopolysiloxane is preferably used in an amount of 5 to 50 parts by weight per 100 parts by weight of bismaleimide.

5重量部以下では硬化樹脂の低応力効果が低下し、又、
50重量部以上であれば相溶性が悪化し、強度が低下す
る。
If it is less than 5 parts by weight, the low stress effect of the cured resin decreases, and
If it is 50 parts by weight or more, the compatibility will deteriorate and the strength will decrease.

多官能性ボリアリルフェノール類は下記式(III)で
示され、その重合度mはO−toの範囲である。
The polyfunctional polyarylphenol is represented by the following formula (III), and its degree of polymerization m is in the range of O-to.

0 SO2  1−と一〇一 重合度mがlO以上の場合は、融点が高く、作業性が悪
くなって、硬化樹脂の強度が低下する。
0 SO2 1- and 101 When the degree of polymerization m is greater than 1O, the melting point is high, the workability is poor, and the strength of the cured resin is reduced.

多官能性ポリアリルフェノール類はビスマレイミド10
0重量部に対し、5〜50重量部が好ましい。5重量部
以下であれば相溶性が低下し、また50重量部以上であ
れば硬化樹脂の耐熱性が低下する。
Polyfunctional polyallylphenol is bismaleimide 10
It is preferably 5 to 50 parts by weight relative to 0 parts by weight. If it is less than 5 parts by weight, the compatibility will decrease, and if it is more than 50 parts by weight, the heat resistance of the cured resin will decrease.

ビスマレイミド(A)とジアミノポリシロキサン(B)
の反応方法は、多官能性ポリアリルフェノール類(C)
の共存下でlOO〜200℃の任意の温度で行い、反応
の終点は、反応した樹脂の冷却時の融点が50〜120
℃の範囲となるまで反応させる。
Bismaleimide (A) and diaminopolysiloxane (B)
The reaction method for polyfunctional polyallylphenols (C)
The end point of the reaction is when the melting point of the reacted resin upon cooling is 50 to 120°C.
Allow the reaction to occur within the range of ℃.

又、得られt;樹脂を用いて戊形材料化するには硬化促
進剤、エポキシ樹脂、無機充填材、滑剤、難燃剤、離型
剤、シランカップリング剤等を適宜配合添加し、加熱混
練することによって材料化できる。
In addition, in order to make a molded material using resin, a curing accelerator, epoxy resin, inorganic filler, lubricant, flame retardant, mold release agent, silane coupling agent, etc. are appropriately mixed and added, and the mixture is heated and kneaded. It can be made into a material by doing this.

本発明の半導体封止用樹脂組戒物を戊形材料として製造
する一般的な方法としては、これらの必須戊分に各種添
加剤を加えて均一に混合した組戊物を二一グー、熱ロー
ル等により混練処理を行い、冷却後粉砕して成形材料と
する。
A general method for manufacturing the semiconductor encapsulating resin composition of the present invention as a molded material is to add various additives to these essential ingredients and mix them uniformly, then heat the composite for 21 minutes. The mixture is kneaded using rolls, etc., cooled, and then pulverized to form a molding material.

得られた戊形材料を半導体の封止用としてもちいれば高
Tgであり、しかも低応力特性に優れ、非常に信頼性の
高い半導体封止用樹脂組放物を得ることができる。
If the obtained hollow material is used for encapsulating a semiconductor, it is possible to obtain a resin assembly for semiconductor encapsulation which has a high Tg, excellent low stress characteristics, and is extremely reliable.

(実施例) 実施例1〜3 第1表に示す配合でジアミノポリシロキサンとo,o’
−ジアリルビス7エノールAとを加熱して溶解し、これ
にN.N’−4.4’−ジフエニルメタンビスマレイミ
ドを添加し、20分間反応させ、融点が60〜80℃の
均質なシリコーン変性マレイミド樹脂得た。
(Example) Examples 1 to 3 Diaminopolysiloxane and o, o' in the formulation shown in Table 1
- diallylbis7enol A is heated and dissolved, and N. N'-4.4'-diphenylmethane bismaleimide was added and reacted for 20 minutes to obtain a homogeneous silicone-modified maleimide resin with a melting point of 60 to 80°C.

比較例1〜5 第1表に示す配合で実施例と同様に反応させた。Comparative examples 1 to 5 The reaction was carried out in the same manner as in the examples using the formulations shown in Table 1.

比較例1.3.5は相溶性が悪く、均質な樹脂が得られ
なかった。
Comparative Examples 1.3.5 had poor compatibility, and a homogeneous resin could not be obtained.

実施例4〜6 第2表に示すように実施例1〜3で得たシリコーン変性
マレイミド樹脂にシリカ粉末、硬化促進剤、アミノシラ
ン、着色剤および離型剤を配合し、熱ロールで混練し戊
形材料を得た。
Examples 4 to 6 As shown in Table 2, silica powder, curing accelerator, aminosilane, coloring agent, and mold release agent were blended with the silicone-modified maleimide resin obtained in Examples 1 to 3, and the mixture was kneaded with a hot roll and then rolled. The shaped material was obtained.

得られた成形材料をトランスファー戊形によりl80℃
,3分で或形し7クレの無い光沢の有る戒形品が得られ
た。この戊形品をさらに180℃.8時間後硬化を行い
特性を評価した。結果を第2表に示す。
The obtained molding material was heated to 180°C by transfer molding.
, a glossy precept-shaped article with no scratches was obtained after being shaped in 3 minutes. This molded product was further heated to 180℃. After curing for 8 hours, the properties were evaluated. The results are shown in Table 2.

比較例6.7 比較例2,比較例4の樹脂を第2表に示す配合で同様に
戊形して特性を評価した。結果を第1表に示す。
Comparative Example 6.7 The resins of Comparative Examples 2 and 4 were molded in the same manner as shown in Table 2 and their properties were evaluated. The results are shown in Table 1.

実施例1〜3の樹脂を用いた実施例4〜6の戊形材料は
常温での曲げ弾性率が小さく、低応力で、内部応力も小
さい。しかも、ガラス転移点温度が高く、250℃での
曲げ強度も大きく、耐熱性、耐半田クランク性に優れて
いる。
The shaped materials of Examples 4 to 6 using the resins of Examples 1 to 3 have a small bending modulus at room temperature, low stress, and small internal stress. Moreover, it has a high glass transition temperature, high bending strength at 250°C, and excellent heat resistance and solder crank resistance.

(以 下 余 白) (発明の効果) 本発明による半導体封止用樹脂組或物を用いた硬化物は
高Tgであり、耐湿性及び熱時の強度に優れているため
封止体の耐半田クラツク性が良く、かつ低応力であり耐
ヒートサイクル性にも優れており、半導体封止用樹脂組
戒物として非常に信頼性の高い優れたものである。
(Margins below) (Effects of the invention) The cured product using the resin composition for semiconductor encapsulation according to the present invention has a high Tg and is excellent in moisture resistance and strength under heat, so that the durability of the encapsulated body is improved. It has good solder cracking properties, low stress, and excellent heat cycle resistance, making it an excellent and highly reliable resin composite for semiconductor encapsulation.

Claims (1)

【特許請求の範囲】[Claims] (1)(A)下記式〔 I 〕で示されるビスマレイミド
100重量部 ▲数式、化学式、表等があります▼・・・・・〔 I 〕 R_1:2価の芳香族基 (B)下記式〔II〕で示されるジアミノポリシロキサン
5〜50重量部 ▲数式、化学式、表等があります▼・・・・・〔II〕 R_2:アルキレン基又はフェニレン基 R_3、R_4:アルキル基又はフェニル基n:1〜1
00の整数 (C)下記式〔III〕で示される多官能ポリアリルフェ
ノール類5〜50重量部 ▲数式、化学式、表等があります▼・・・・・〔III〕 R_5:▲数式、化学式、表等があります▼ n:0〜10の整数 の(A)と(B)とを(C)の共存下で反応させてなる
封止用樹脂。
(1) (A) 100 parts by weight of bismaleimide represented by the following formula [I] ▲ Numerical formulas, chemical formulas, tables, etc. are available▼・・・・・・[I] R_1: Divalent aromatic group (B) The following formula 5 to 50 parts by weight of diamino polysiloxane represented by [II] ▲ Numerical formulas, chemical formulas, tables, etc. are available ▼... [II] R_2: Alkylene group or phenylene group R_3, R_4: Alkyl group or phenyl group n: 1-1
Integer of 00 (C) 5 to 50 parts by weight of polyfunctional polyallylphenols represented by the following formula [III] ▲ Numerical formulas, chemical formulas, tables, etc. are available ▼ ... [III] R_5: ▲ Numerical formulas, chemical formulas, There are tables, etc. ▼ n: A sealing resin made by reacting (A) and (B), an integer between 0 and 10, in the coexistence of (C).
JP15567189A 1989-06-20 1989-06-20 Resin for sealing Pending JPH0321637A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15567189A JPH0321637A (en) 1989-06-20 1989-06-20 Resin for sealing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15567189A JPH0321637A (en) 1989-06-20 1989-06-20 Resin for sealing

Publications (1)

Publication Number Publication Date
JPH0321637A true JPH0321637A (en) 1991-01-30

Family

ID=15611040

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15567189A Pending JPH0321637A (en) 1989-06-20 1989-06-20 Resin for sealing

Country Status (1)

Country Link
JP (1) JPH0321637A (en)

Similar Documents

Publication Publication Date Title
KR950005314B1 (en) Thermosetting resin composition
US5182351A (en) Thermosetting resin compositions
US4876298A (en) Epoxy resin composition
JPS62254454A (en) Semiconductor device
JPH0321637A (en) Resin for sealing
JPH044213A (en) Production of resin for sealing semiconductor
JPH0356533A (en) Production of resin for sealing
JP2837503B2 (en) Resin composition for semiconductor encapsulation
JPH0245554A (en) Resin composition for semiconductor sealing use
JPH02155950A (en) Sealing resin composition
JPH0326712A (en) Production of sealing resin
JPH04117458A (en) Resin composition for semiconductor sealing
JPH03738A (en) Sealing resin
JPH02222419A (en) Silicone-modified maleimide resin and composition thereof
JPH044214A (en) Production of resin for sealing semiconductor
JP2857216B2 (en) Method for producing resin for semiconductor encapsulation
JPH02202910A (en) Sealing resin composition
JPH02102217A (en) Epoxy resin composition
JP2857217B2 (en) Method for producing resin for semiconductor encapsulation
JPH0413755A (en) Resin composition for sealing semiconductor
JPH02117959A (en) Sealing resin composition
JPH02281016A (en) Silicone-modified maleimide resin
JPH02187461A (en) Resin composition for sealing use
JPH03121111A (en) Resin composition for semiconductor sealing
JPH03121109A (en) Resin composition for semiconductor sealing