JPH0245554A - Resin composition for semiconductor sealing use - Google Patents

Resin composition for semiconductor sealing use

Info

Publication number
JPH0245554A
JPH0245554A JP19618588A JP19618588A JPH0245554A JP H0245554 A JPH0245554 A JP H0245554A JP 19618588 A JP19618588 A JP 19618588A JP 19618588 A JP19618588 A JP 19618588A JP H0245554 A JPH0245554 A JP H0245554A
Authority
JP
Japan
Prior art keywords
resin
pts
aralkyl resin
resin composition
resins
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19618588A
Other languages
Japanese (ja)
Inventor
Koichi Machida
町田 貢一
Mikio Kitahara
北原 幹夫
Takayuki Kubo
久保 隆幸
Motoyuki Torikai
基之 鳥飼
Kotaro Asahina
浩太郎 朝比奈
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Toatsu Chemicals Inc
Original Assignee
Mitsui Toatsu Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Toatsu Chemicals Inc filed Critical Mitsui Toatsu Chemicals Inc
Priority to JP19618588A priority Critical patent/JPH0245554A/en
Publication of JPH0245554A publication Critical patent/JPH0245554A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)

Abstract

PURPOSE:To obtain the title composition low in both stress and thermal expansion coefficient, outstanding in e.g., heat shock resistance without impairing heat resistance, thus suitable for sealing electronic parts such as semiconductors by curing reaction between a polymaleimide compound having specific structure and a specific aralkyl resin. CONSTITUTION:The objective composition can be obtained by blending (A) 100 pts.wt. of a polymaleimide compound of the formula (n is 0-10) with (B) 10-500 pts.wt. of a phenol aralkyl resin and/or resorcin aralkyl resin. When said composition is to be cured, it is preferable that 0.1-10 pts.wt. of a phosphine be used as a curing promoter based on a total of 100 pts.wt. of the components A and B.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、低応力、低熱膨張率で、なおかつ耐熱性を損
なうことなく、耐熱衝撃性、半田耐熱性に優れた、高信
頌性を要求される半導体等電子部品の封止用に適した半
導体封止用樹脂組成物に関するものである。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention provides high reliability, low stress, low coefficient of thermal expansion, and excellent thermal shock resistance and soldering heat resistance without impairing heat resistance. The present invention relates to a semiconductor encapsulating resin composition suitable for encapsulating required electronic components such as semiconductors.

〔従来の技術〕[Conventional technology]

近年、半導体を封止する方法としてエポキシ樹脂に代表
される熱硬化性樹脂を使用したいわゆるプラスチック封
止が原料の低廉、大量生産に適するといった経済的利点
をいかして広く実用化されている。特に多官能エポキシ
樹脂、ノボラック型フェノール樹脂、無機質充填材を主
成分とした樹脂組成物が耐熱性、成形性、電気時性に優
れているため封止樹脂の主流となっている。
In recent years, so-called plastic encapsulation using thermosetting resins such as epoxy resins has been widely put into practical use as a method for encapsulating semiconductors, taking advantage of economic advantages such as low raw material costs and suitability for mass production. In particular, resin compositions containing polyfunctional epoxy resins, novolac type phenolic resins, and inorganic fillers as main components have become mainstream as sealing resins because they have excellent heat resistance, moldability, and electrical resistance.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

一方、半導体チップの高集積化が進み、それに伴いチッ
プサイズが大型化してきた。またパッケージの形状は基
板への高密度実装化、表面実装化に伴い、チップの大型
化とは逆にフラットパッケージに見られる如く小型化・
薄型化の傾向にある。このため従来の封止樹脂では見ら
れなかった不良現象が派生するようになった。すなわち
、封止樹脂とチップの熱膨張率の差に起因゛する樹脂の
応力がチップの大型化、樹脂層の1肉化のため、熱衝撃
によりパンシベーション膜のクラック、アルミ配線のズ
レあるいは封止樹脂のクラックといった破壊現象を引き
起こし、又表面実装化に伴いパッケージそのものが半田
浴温度にさらされるため、パッケージ内の水分が急、激
に膨張し、パンケージにクラックといった破壊現象を引
き起こし、半導体の耐湿性を低下させ、ひいては信頬性
を低下させる原因となっている。従って、封止樹脂とし
てはこの応力の小さく、半田耐熱性の優れた封止樹脂の
開発が望まれている。
On the other hand, as semiconductor chips have become more highly integrated, their chip sizes have become larger. In addition, the shape of packages has become smaller and smaller, as seen in flat packages, as opposed to larger chips due to higher density mounting on substrates and surface mounting.
There is a trend toward thinner products. For this reason, defective phenomena that were not observed with conventional sealing resins have been introduced. In other words, stress in the resin due to the difference in thermal expansion coefficient between the sealing resin and the chip increases the size of the chip and makes the resin layer thinner, causing cracks in the pansivation film, misalignment of the aluminum wiring, or sealing due to thermal shock. In addition, as the package itself is exposed to the temperature of the solder bath due to surface mounting, the moisture inside the package expands suddenly and violently, causing damage to the pan cage and causing damage to the semiconductor. This causes a decrease in moisture resistance and, in turn, a decrease in cheek confidence. Therefore, it is desired to develop a sealing resin that has less stress and excellent solder heat resistance.

応力を小さくする方法としては、樹脂の熱膨張率を小さ
くしてチップのそれとの差を小さくする事が考えられる
が、樹脂の熱膨張率とチップのそれとの差は大きく、こ
れを縮めるためには熱膨張率の小さい無機質充填材を樹
脂中に多量に使用しなければならないが、現在すでにか
なり多量の無機質充填材が使用されていて、更にこれを
増量する事は成形性の悪化の原因となる。一方、樹脂の
弾性率を下げて応力を小さくするという目的で可望材を
添加したり、可撓性を存したエポキシ樹脂あるいはフェ
ノール樹脂を用いたりする事が試みられたが、この方法
により得られた硬化物は耐熱性の点で問題があった。
One possible way to reduce stress is to reduce the coefficient of thermal expansion of the resin to reduce the difference between it and that of the chip, but the difference between the coefficient of thermal expansion of the resin and that of the chip is large, so in order to reduce this requires the use of a large amount of inorganic filler with a low coefficient of thermal expansion in the resin, but currently a considerable amount of inorganic filler is already being used, and further increasing this amount may cause deterioration of moldability. Become. On the other hand, attempts have been made to add flexible materials for the purpose of lowering the elastic modulus of the resin and reducing stress, or to use flexible epoxy resins or phenolic resins. The cured product had a problem in heat resistance.

また特開昭58−108220に代表される如くゴム粒
子を封止樹脂中に分散させる事により耐熱性を保持しつ
つ、耐クランク性を付与する方法等も発明されているが
、半田浴の如き封止樹脂のガラス転移温度を超える高温
における耐衝撃性に劣る等いくつかの問題点があった。
In addition, as exemplified by JP-A-58-108220, methods have been invented to provide crank resistance while maintaining heat resistance by dispersing rubber particles in a sealing resin. There were several problems such as poor impact resistance at high temperatures exceeding the glass transition temperature of the sealing resin.

本発明は、高集積回路等の高い信顧性を要求される半導
体の封止用樹脂に対して要求されている、応力が小さく
耐熱衝撃性、更に半田耐熱性等に優れた半導体封止用樹
脂組成物を提供することを目的とする。
The present invention is designed for semiconductor encapsulation that has low stress, thermal shock resistance, and excellent solder heat resistance, which is required for semiconductor encapsulation resins that require high reliability such as highly integrated circuits. The purpose is to provide a resin composition.

〔課題を解決する為の手段〕[Means to solve problems]

本発明者等は種々検討した結果、特定の構造を有するポ
リマレイミド化合物と特定のアラルキル樹脂を硬化反応
せしめたものが、応力を小さくし、耐衝撃性に優れた樹
脂を提供することを見出し、本発明に達した。
As a result of various studies, the present inventors discovered that a curing reaction between a polymaleimide compound having a specific structure and a specific aralkyl resin reduces stress and provides a resin with excellent impact resistance. The present invention has been achieved.

即ち本発明は、−形式(1) %式%) また必要に応して(1)以外のマレイミド化合物を併用
してもよい。
That is, in the present invention, a maleimide compound other than (1) may be used in combination if necessary.

本発明に用いるアラルキル樹脂は活性OH基を2ヶ以上
有し、かつ分子構造中に (nはO〜10である) にて表されるポリマレイミド化合物と、フェノールアラ
ルギル樹脂およびまたはレゾルシンアラルキル樹脂を必
須成分とする半導体封止用樹脂組成物である。
The aralkyl resin used in the present invention has two or more active OH groups and is a polymaleimide compound represented by (n is O to 10) in the molecular structure, and a phenol aralgyl resin and/or a resorcin aralkyl resin. This is a resin composition for semiconductor encapsulation which has as an essential component.

前記−形式(I)で表されるポリマレイミド化合物は通
常公知の方法により一般式(II)で表されるポリアミ
ン化合物と無水マレイン酸を縮合・脱水反応させて容易
に製造できる。
The polymaleimide compound represented by the above-mentioned formula (I) can be easily produced by a condensation/dehydration reaction between a polyamine compound represented by the general formula (II) and maleic anhydride by a commonly known method.

Ri    R4 を繰り返し単位として有する。フェノールアラルギル樹
脂はアラルキルエーテルとフェノールを反応させた樹脂
で、具体的にはザイロツクXL−225(三井東圧化学
■、軟化点85°C−405°C)が挙げられる。又本
発明に用いるレゾルシンアラルキル樹脂はアラルキルエ
ーテルとレゾルシンを反応させた樹脂で、具体的にはレ
ゾルシンザイロノク(三井東圧化学■、軟化点85°C
〜105°C)が挙げられる。
It has Ri R4 as a repeating unit. The phenolic aralgyl resin is a resin made by reacting an aralkyl ether with phenol, and a specific example thereof is Zylock XL-225 (Mitsui Toatsu Chemical Co., Ltd., softening point: 85° C.-405° C.). In addition, the resorcin aralkyl resin used in the present invention is a resin made by reacting an aralkyl ether with resorcin, and specifically, resorcin zyronok (Mitsui Toatsu Chemical ■, softening point 85°C)
~105°C).

これらアラルキル樹脂の使用量は、通常ビスマレイミド
化合物100重量部に対して10〜500重量部の範囲
である。
The amount of these aralkyl resins used is usually in the range of 10 to 500 parts by weight per 100 parts by weight of the bismaleimide compound.

本発明において樹脂組成物を通常のように配合、混練さ
せてもよいし、ビスマレイミド化合物をフェノールアラ
ルキル樹脂およびまたはレゾルシンアラルキル樹脂に予
め溶解させておいてもよく、また両者を反応させたプレ
ポリマーを使用してもよい。特にプレポリマーを使用す
る場合が成形性、硬化性の点で優れている。
In the present invention, the resin composition may be blended and kneaded in the usual manner, the bismaleimide compound may be dissolved in advance in the phenol aralkyl resin and/or the resorcin aralkyl resin, or a prepolymer made by reacting both. may be used. In particular, when a prepolymer is used, it is excellent in terms of moldability and curability.

本発明において、樹脂組成物を硬化せしめるにあたって
は硬化促進剤としてホスフィン類を用いると良い。ホス
フィン類としては、例えばトリフェニルホスフィン、ト
リー4−メチルフェニルホスフィン、トリー4−メトキ
シフェニルホスフィン、トリブチルホスフィン、トリオ
クチルホスフィン、トリー2−ンアノエチルホスフィン
などをあげることができる。
In the present invention, when curing the resin composition, it is preferable to use phosphines as a curing accelerator. Examples of the phosphine include triphenylphosphine, tri-4-methylphenylphosphine, tri-4-methoxyphenylphosphine, tributylphosphine, trioctylphosphine, tri-2-aneanoethylphosphine, and the like.

ホスフィン類の使用量はポリマレイミド化合物とフェノ
ールアラルキル樹脂およびまたはレゾルシンアラルキル
樹脂の総量100重世部に対し0.1〜10重量部が好
ましい。
The amount of phosphines used is preferably 0.1 to 10 parts by weight based on 100 parts by weight of the total amount of the polymaleimide compound, phenol aralkyl resin and/or resorcin aralkyl resin.

又必要に応じて有機過酸化物やアゾ化合物を併用するこ
ともできる。有機過酸化物としては、ジー1−ブチルパ
ーオキシイド、t−ブチルクミルパーオキサイド、ジク
ミルパーオキサイド、1.3ビス−(t−ブチルパーオ
キシ−イソプロピル)ベンゼン、1,1−ジ−t−ブチ
ルパーオキシ−33,5−トリメチルシクロベキサン、
1.1−ジし一ブチルパーオキシシクロヘキサンなどの
ジアルキルパーオキサイド、t−ブチルパーベンゾエー
トなどのアルキルパーエステルをあげることができる。
Further, an organic peroxide or an azo compound can be used in combination if necessary. Examples of organic peroxides include di-1-butyl peroxide, t-butylcumyl peroxide, dicumyl peroxide, 1.3bis-(t-butylperoxy-isopropyl)benzene, 1,1-di-t -butylperoxy-33,5-trimethylcyclobexane,
Examples include dialkyl peroxides such as 1.1-di-butylperoxycyclohexane and alkyl peresters such as t-butyl perbenzoate.

アゾ化合物としてはアゾビスイソブチロニトリル、アゾ
ビスジメチルバレロニトリル等を挙げることができる。
Examples of the azo compound include azobisisobutyronitrile and azobisdimethylvaleronitrile.

有機過酸化物やアブ化合物の添加量は、ビスマレイミド
樹脂100重量部に対し0.1〜5重量部が好ましい。
The amount of the organic peroxide or ab compound added is preferably 0.1 to 5 parts by weight per 100 parts by weight of the bismaleimide resin.

さらに必要に応じてイミダゾール類、3級アミン類、4
級アンモニウム塩、打機金属化合物、トリス(3,6−
シオキソヘプチル)アミンに代表されるトリス(ポリオ
キサアルキル)アミン類等の硬化促進剤を併用すること
もできる。特にマレイミド化合物とフェノール類とのプ
レポリマーを使用するときはトリス(ポリオキサアルキ
ル)アミン類が好ましい。
Furthermore, imidazoles, tertiary amines,
grade ammonium salt, metal compound, tris(3,6-
A curing accelerator such as tris(polyoxaalkyl)amines represented by thioxoheptyl)amine can also be used in combination. Particularly when using a prepolymer of a maleimide compound and a phenol, tris(polyoxaalkyl)amines are preferred.

本発明の組成物は前述のものの外、必要に応じてエポキ
シ樹脂、フェノールアラルキル樹脂またはレゾルシンア
ラルキル樹脂以外のフェノール樹脂、各種アミン類、各
種反応性希釈剤、シリコーンオイル、充填剤、シランカ
ップリング剤、離型剤、着色剤、難燃剤などを配合し、
混合、混練し成形材料とする。
In addition to the above-mentioned compositions, the composition of the present invention may optionally include epoxy resins, phenol aralkyl resins or phenolic resins other than resorcin aralkyl resins, various amines, various reactive diluents, silicone oil, fillers, and silane coupling agents. , mold release agent, coloring agent, flame retardant, etc.
Mix and knead to make a molding material.

〔実施例〕〔Example〕

実施例I〜2 第1表に示す配合で、ポリマレイミド化合物、フェノー
ルアラルキル樹脂、レゾルシンアラルキル樹脂、硬化促
進剤、有機過酸化物、シリカ粉末、シランカップリング
剤、ワックス、着色剤、難燃剤を配合し、ロール混練し
て成形材料を得た。
Examples I to 2 A polymaleimide compound, a phenol aralkyl resin, a resorcin aralkyl resin, a curing accelerator, an organic peroxide, a silica powder, a silane coupling agent, a wax, a coloring agent, and a flame retardant were added in the formulation shown in Table 1. The mixture was blended and kneaded with rolls to obtain a molding material.

比較例1〜3 第1表に示す配合で、ポリマレイミド化合物、フェノー
ル樹脂等を実施例と同様に配合混練し成形材料を得た。
Comparative Examples 1 to 3 Molding materials were obtained by blending and kneading a polymaleimide compound, a phenol resin, etc. in the same manner as in the examples, using the formulations shown in Table 1.

比較例4 第1表に示す配合で、エポキシ樹脂、ノボラック型フェ
ノール樹脂を実、隔測と同様に配合、混練し成形材料を
得た。
Comparative Example 4 A molding material was obtained by blending and kneading an epoxy resin and a novolac type phenol resin in the same manner as in the actual and remote measurements using the formulation shown in Table 1.

各成形材料を用い、トランスファー成形(180’C,
30Kg/cffl  3分間)により、試験用の10
0ビンフラツトパンケージ(20mm X 30mn 
X 2.5mm 、 12mm X 12mmの試験用
素子搭載)及び物性測定用の試験片を成形し、180°
Cで6時間後硬化した。
Using each molding material, transfer molding (180'C,
30Kg/cffl for 3 minutes), the test 10
0 bin flat pan cage (20mm x 30mm
x 2.5mm x 12mm x 12mm) and a test piece for physical property measurement was molded and
It was post-cured at C for 6 hours.

試験結果を第2表に示す。The test results are shown in Table 2.

〔発明の効果〕〔Effect of the invention〕

実施例及び比較例にて説明した如く、本発明による半導
体封止用樹脂組成物は、従来主として用いられて来た多
官能エポキシ樹脂、ノボラックフェノール樹脂を主成分
とした封止樹脂に比較してガラス転位温度が高く、低熱
膨張であるまた、本発明の組合せ以外のポリマレイミド
化合物とフェノール樹脂を主成分とした封止樹脂に比較
して、吸水率が小さく、可撓性に富み、低応力化されて
おり、本発明の示例のみが12mm×12mrnという
厳しい半田体熱性にすぐれている。
As explained in the Examples and Comparative Examples, the resin composition for semiconductor encapsulation according to the present invention has superior performance compared to encapsulation resins mainly composed of polyfunctional epoxy resins and novolac phenol resins that have been mainly used in the past. It has a high glass transition temperature and low thermal expansion. It also has a low water absorption rate, high flexibility, and low stress compared to sealing resins that are mainly composed of polymaleimide compounds and phenolic resins other than the combination of the present invention. Only the example of the present invention has excellent solder body heat resistance, which is severe at 12 mm x 12 mrn.

本発明の樹脂組成物を集積度の高い大型の半導体装置、
あるいは表面実装用半導体装置の封正に用いた場合、優
れた信輔性を得ることが出来、工業的に有益な発明であ
る。
A large semiconductor device with a high degree of integration, using the resin composition of the present invention,
Alternatively, when used for sealing a surface-mounted semiconductor device, excellent reliability can be obtained, making it an industrially useful invention.

特許出願人  三井東圧化学株式会社Patent applicant: Mitsui Toatsu Chemical Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] (1)一般式( I ) ▲数式、化学式、表等があります▼( I ) (nは0〜10である) にて表されるポリマレイミド化合物と、フェノールアラ
ルキル樹脂およびまたはレゾルシンアラルキル樹脂を必
須成分とする半導体封止用樹脂組成物。
(1) General formula (I) ▲There are mathematical formulas, chemical formulas, tables, etc.▼(I) (n is 0 to 10) A polymaleimide compound represented by (n is 0 to 10) and a phenol aralkyl resin and or a resorcin aralkyl resin are required. A resin composition for semiconductor encapsulation as an ingredient.
JP19618588A 1988-08-08 1988-08-08 Resin composition for semiconductor sealing use Pending JPH0245554A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19618588A JPH0245554A (en) 1988-08-08 1988-08-08 Resin composition for semiconductor sealing use

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19618588A JPH0245554A (en) 1988-08-08 1988-08-08 Resin composition for semiconductor sealing use

Publications (1)

Publication Number Publication Date
JPH0245554A true JPH0245554A (en) 1990-02-15

Family

ID=16353608

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19618588A Pending JPH0245554A (en) 1988-08-08 1988-08-08 Resin composition for semiconductor sealing use

Country Status (1)

Country Link
JP (1) JPH0245554A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5266654A (en) * 1990-08-13 1993-11-30 Mitsui Toatsu Chemicals, Incorporated Resin composition
US5697868A (en) * 1994-06-01 1997-12-16 Fanuc Ltd. Planetary speed reduction gear
US7597643B2 (en) 2006-06-30 2009-10-06 Im Corporation Gear device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5266654A (en) * 1990-08-13 1993-11-30 Mitsui Toatsu Chemicals, Incorporated Resin composition
US5697868A (en) * 1994-06-01 1997-12-16 Fanuc Ltd. Planetary speed reduction gear
US7597643B2 (en) 2006-06-30 2009-10-06 Im Corporation Gear device

Similar Documents

Publication Publication Date Title
US5349029A (en) Epoxy resin compositions with improved heat resistance
US4876298A (en) Epoxy resin composition
JPH0245554A (en) Resin composition for semiconductor sealing use
JPH01105562A (en) Resin-sealed semiconductor device
JPH09235353A (en) Resin composition for semiconductor sealing use
JPS63349A (en) Epoxy resin composition for use in sealing semiconductor
JPH0243205A (en) Sealing resin composition for semiconductor
KR100529258B1 (en) Epoxy Molding Compound for Excapsulation of Semiconductor
JP2872701B2 (en) Method for producing resin for semiconductor encapsulation
JPH02175709A (en) Resin composition for semiconductor sealing
JPH01213336A (en) Resin composition for sealing semiconductor
JPH02202910A (en) Sealing resin composition
JPH01254735A (en) Resin composition for sealing semiconductor
JPH07118505A (en) Epoxy resin composition
JPH01245017A (en) Resin composition for sealing semiconductor
JPH01213335A (en) Resin composition for sealing semiconductor
KR100565421B1 (en) Epoxy molding composition for semiconductor encapsulant
KR910010051B1 (en) Thermosetting resin composition for encapsulating semiconductor parts
KR940004855B1 (en) Epoxy resin composition for encapsulating semiconductor
JPH03223324A (en) Resin composition for sealing semiconductor
JPH02212552A (en) Resin composition for semiconductor sealing
JPH0321637A (en) Resin for sealing
JPH03277653A (en) Epoxy resin composition
JP2857216B2 (en) Method for producing resin for semiconductor encapsulation
JP2912469B2 (en) Resin composition