JPH0356267B2 - - Google Patents

Info

Publication number
JPH0356267B2
JPH0356267B2 JP59082897A JP8289784A JPH0356267B2 JP H0356267 B2 JPH0356267 B2 JP H0356267B2 JP 59082897 A JP59082897 A JP 59082897A JP 8289784 A JP8289784 A JP 8289784A JP H0356267 B2 JPH0356267 B2 JP H0356267B2
Authority
JP
Japan
Prior art keywords
powder coating
mixture
powder
curing
aging
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59082897A
Other languages
Japanese (ja)
Other versions
JPS60226567A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP59082897A priority Critical patent/JPS60226567A/en
Publication of JPS60226567A publication Critical patent/JPS60226567A/en
Publication of JPH0356267B2 publication Critical patent/JPH0356267B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Paints Or Removers (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

産業上の利用分野 本発明は産業用の各種機材、工業用の各種製品
に塗装する粉体塗料の製造方法、特に短時間で硬
化する熱硬化性粉体塗料を容易に、かつ精度良く
製造する方法に関する。 従来技術 粉体塗料は熱硬化性樹脂、硬化剤、顔料あるい
は各種添加剤から構成される。これらの原料類は
通常エクストルーダなどにより溶融混合した後に
フレーク、ペレツト、粒状等とし、次いで粉砕機
にて所望の粒度に粉砕し粉体塗料としており、こ
の様な製造方法の例としては特開昭52−47031が
ある。 従来、粉体塗料の硬化を早めるには熱硬化性樹
脂と硬化剤の種類と量及び触媒の併用に依存して
いたが短時間で硬化する粉体塗料ほど製造が困難
であつた。なぜならば、エクストルーダを通過さ
せた際に熱硬化性樹脂および硬化剤は液化し顔料
の分散媒となるが加温によつて加えられた熱エネ
ルギーが多くなると硬化反応を開始するからであ
る。 このため短時間で硬化する粉体塗料程溶融混合
出来る温度、即ち分散媒になる熱硬化性樹脂、硬
化剤が溶融する温度である通常の80〜140℃に加
熱してエクストルーダで混合すると本来塗装後に
硬化すべき反応が起こる。この結果製造された粉
体塗料は焼付を行つてもメルトフローが起こらな
いために均一な塗膜にならず、ピンホールが発生
したり、更には被塗物と粉体塗膜の充分な密着性
が発揮出来ない等の欠陥が発生する。従つて通常
はTg点以上で反応があまり進まない温度の範囲
およそ80〜140℃で混合され塗装後に160〜220℃
で焼付硬化される。換言すればエクストルーダを
用いた従来の製法では80〜140℃に加温しても反
応が余り進まない原料しか使うことが出来なかつ
た。また、仮にこの方法により粉体塗料を製造で
きたとしても粉体塗料としての硬化反応を支配す
るゲルタイムの調整が困難であるため商業製品と
しての安定性に欠けていた。 例えばまず、顔料と樹脂分を100〜240℃で樹脂
の劣化しない範囲の比較的高い温度で予備混合し
て均一な混合物を作り、次いで硬化剤を加えた後
にゲル化の起りにくい130℃以下で混合製造する
例が特開昭54−137030に提案されているが、ゲル
化を起こさない粉体塗料の製造方法であつて、短
時間硬化型塗料の製造は難しい問題であつた。 発明の目的 本発明の目的は塗料の焼付エネルギーの節約及
び焼付時間の短縮である。 この焼付エネルギーの節約は粉体塗料の焼付を
行う炉の長さを短縮し、あるいは被塗物を搬送す
るコンベアのスピードアツプが可能になる等の効
果に直結する。また、熱容量の大きな被塗物が予
熱されている場合は、被塗物の保有する熱エネル
ギーだけで塗料を硬化させる可能性を追及する事
である。 本発明は前述のような短時間で硬化する熱硬化
性粉体塗料を容易に製造する方法を提供する事に
ある。 発明の構成 本発明は、熱硬化性粉体塗料の各構成成分を均
一に混合して第1混合物を製造し、次いで該第1
混合物を40〜80℃で保温熟成する2段工程からな
る事を特徴とする粉体塗料の製造方法である。 本発明の方法を適用しうる粉体塗料は従来公知
の熱硬化性樹脂、硬化剤、顔料あるいは各種添加
剤からなる。熱硬化性樹脂としては粉体塗料用に
通常用いられる常温では固体で、融点が80〜140
℃のアクリル樹脂、ポリエステル樹脂、エポキシ
樹脂等がある。エポキシ樹脂にはビスフエノール
A、ビスフエノールF等のビスフエノール類とエ
ピクロルヒドリン等のエピハロヒドリンの反応物
でエポキシ当量が400〜2000で数平均分子量が800
〜4400であるエポキシ樹脂、フエノール型あるい
はクレゾール型ノボラツク樹脂とエピクロルヒド
リンとの反応物でエポキシ当量が170〜240で数平
均分子量が300〜750のいわゆるエポキシフエノー
ルノボラツク樹脂の他にトリグリシジルイソシア
ヌレート、脂環式エポキシ樹脂等がある。 これらのエポキシ樹脂の硬化剤としてはジアミ
ノジフエニルメタン等の芳香族ジアミン、脂肪族
アミンと脂肪族ジカルボン酸の縮合物であるポリ
アミドアミン、ジシアンジアミド、イミダゾール
類等のアミン系の硬化剤、無水テトラヒドロフタ
ル酸、無水ベンゾフエノンテトラカルボン酸、無
水トリメリツト酸のような酸無水物、ドデカンジ
カルボン酸、セバシン酸、アジピン酸のような酸
硬化剤、フエノール樹脂、ビスフエノールA等の
フエノール系硬化剤等があげられる。 アクリル樹脂としては各種の(メタ)アクリレ
ート、(メタ)アクリル酸およびそのエステルの
一種以上からなる樹脂があり、この硬化剤として
はドデカンジカルボン酸、セバシン酸、イソフタ
ル酸等のジカルボン酸が使用される。 ポリエステル樹脂としては無水フタル酸、イソ
フタル酸、テレフタル酸、無水マレイン酸などの
多塩基酸とエチレングリコール、トリメチロール
プロパン等の多価アルコールを縮合した平均重合
度3〜50、軟化点60〜150℃の樹脂で硬化剤とし
てはイソホロンジイソシアネート、固形メラミン
樹脂、トリグリシジルイソシアヌレート等が使用
できる。 以上の熱硬化性樹脂に対して少量の熱可塑性樹
脂、例えば石油樹脂等を併用する事も出来る。 必要に応じて加えられる顔料としては酸化チタ
ン、黄色酸化鉄、赤色酸化鉄、酸化硅素、クレ
ー、タルク、硫酸バリウム、炭酸カルウム、マイ
カ等の無機顔料もしくは充填剤、アゾ系、アント
ラキノン系等の有機顔料等が用いられる。 そのほかに増量剤、流れ調整剤、補強剤等の各
種添加剤が用いられる。 本発明方法が主対象とする短時間硬化型の粉体
塗料としては、ビスフエノール系グリシジルエー
テル型エポキシ樹脂を主成分としてフエノール系
硬化剤を含む系が最適である。 上記の粉体塗料用の粉粒体状各原料は必要に応
じてニーダ等で予め攪拌し、次いでエクストルー
ダで溶融混合して粉体塗料用の第1混合物を得
る。 (以下溶融混合物と称する。) 溶融混合物はエクストルーダのダイからフレー
ク状、ペレツト状、粒状物として押出される。 本発明での第1混合物を製造する方法は、上記
溶融混合物だけでなく、溶融せずに樹脂、顔料、
各種添加剤等の各成分又はそれらの混合物を微細
に粉砕された状態で混合する粉末状の第1混合物
でも目的の粉体塗料が得られる(以下、粉末混合
物と称する)。 本発明で最も重要なのは第1混合物を40〜80℃
で保温熟成する工程である。 本発明は短時間で硬化する粉体塗料の原料であ
る熱硬化性樹脂、硬化剤、顔料あるいは各種添加
剤を硬化が進みにくい温度で均一な溶融混合物又
は粉末、混合物とした後、40〜80℃の保温熟成工
程の2段工程を採用する事により反応の程度を容
易に調整できる予備反応が可能である事を利用し
ている。 フレーク状、ペレツト状、粒状の溶融混合物を
予備反応させるには40℃以上の温度が必要であ
る。 40℃未満であると予備反応が進みにくく日数が
かかりすぎ、また80℃を越えると反応が進みすぎ
て塗装できない程度にゲル化したり塗膜の流動性
が低下する為に塗膜が凹凸になるなど仕上がり肌
が悪くなつたり密着性不良の原因などになりやす
い。 好ましい保温熟成温度は50〜60℃である。 40℃程度の場合は1週間程度の保温熟成期間が
必要であり、80℃近くでは8時間程度で所望の予
備反応が得られる。従つて、温度の選択は塗料の
反応速度と在庫管理ないしは保温熟成の保管スペ
ース等の点から適宜選択すればよい。 保温熟成にはフレーク状、ペレツト状、粒状、
粉末状の溶融混合物を段ボール等に入れた状態で
も良い。加温によりフレーク、ペレツト、粒、粉
末自体が融着する場合も有るので保温熟成温度は
溶融混合物のTg点によつて選択すれば良い。即
ち、Tg点の高い溶融混合物(50〜90℃)は予め
粉末状に粉砕をしてから50〜80℃で保温熟成する
ほうが一回の粉砕で済むので効率が良くまた経済
的である。しかし、Tg点が45〜50℃未満の溶融
混合物は粉末に近いほど保温熟成の工程で融着し
やすいのでフレーク状、ペレツト状にて50〜60℃
で保温熟成した後、希望するゲルタイムに到達し
た時点で粉砕するのが良い。前記したブロツキン
グの防止の点から粉体塗料としてのTg点は45〜
90℃が好ましい。 本発明方法で製造した粉体塗料は通常のように
静電粉体塗装、熱硬化して塗膜を形成する事も出
来る。この場合、保温熟成によつて硬化性が向上
しているので、硬化の為の熱エネルギーは一の製
法に基づいた粉体塗料の硬化条件である180〜200
℃×20分より短く、200℃×1〜3分で良い。 本発明方法で製造した粉体塗料を用いた最も効
果的な塗膜形成方法は粉体塗料の一般的な融点で
ある120〜260℃以上に被塗物を予熱しておいて塗
装を行い、硬化の為の焼付を特に行わず保持熱の
みで硬化する方法である。 以下実施例によつて更に具体的に説明をする。
Industrial Application Fields The present invention provides a method for manufacturing powder coatings for coating various industrial equipment and products, particularly for easily and accurately producing thermosetting powder coatings that harden in a short time. Regarding the method. PRIOR ART Powder coatings are composed of thermosetting resins, curing agents, pigments, or various additives. These raw materials are usually melted and mixed using an extruder, etc., then turned into flakes, pellets, granules, etc., and then ground to the desired particle size using a grinder to produce powder coatings. There is 52-47031. Conventionally, accelerating the curing of powder coatings relied on the type and amount of thermosetting resin and curing agent, as well as the combination of catalysts, but powder coatings that cured in a short time were more difficult to manufacture. This is because when passed through the extruder, the thermosetting resin and curing agent liquefy and become a dispersion medium for the pigment, but when the thermal energy applied by heating increases, the curing reaction starts. For this reason, powder coatings that harden in a short time can be melted and mixed at a temperature that is normally 80 to 140℃, which is the temperature at which the thermosetting resin and curing agent that becomes the dispersion medium are melted, and mixed with an extruder. A reaction takes place which must later be cured. Even if the powder coating produced as a result is baked, melt flow does not occur, so the coating film is not uniform, pinholes occur, and the powder coating film does not adhere well to the object to be coated. Defects such as inability to perform properly occur. Therefore, it is usually mixed at a temperature range above the Tg point at which the reaction does not proceed much, approximately 80 to 140℃, and after painting it is mixed at a temperature of 160 to 220℃.
Baked and hardened. In other words, conventional production methods using extruders can only use raw materials that do not undergo much reaction even when heated to 80 to 140°C. Furthermore, even if a powder coating could be produced by this method, it would lack stability as a commercial product because it is difficult to adjust the gel time that governs the curing reaction of the powder coating. For example, first, the pigment and resin are premixed at a relatively high temperature of 100 to 240℃, which is within the range where the resin does not deteriorate, to create a homogeneous mixture, and then, after adding the curing agent, the mixture is heated to 130℃ or lower, where gelation is unlikely to occur. An example of mixed production has been proposed in JP-A-54-137030, but it is a method for producing a powder coating that does not cause gelation, and the production of a short-curing coating has been a difficult problem. Object of the invention The object of the invention is to save energy and shorten the baking time of paints. This saving in baking energy is directly linked to effects such as shortening the length of the furnace for baking the powder coating, or increasing the speed of the conveyor that conveys the object to be coated. In addition, when an object to be coated with a large heat capacity is preheated, the possibility of curing the paint using only the thermal energy possessed by the object is to be investigated. The object of the present invention is to provide a method for easily producing a thermosetting powder coating that cures in a short time as described above. Structure of the Invention The present invention involves uniformly mixing each constituent component of a thermosetting powder coating to produce a first mixture, and then producing the first mixture.
This is a method for producing a powder coating, which is characterized by a two-step process of aging the mixture at 40 to 80°C. The powder coating material to which the method of the present invention can be applied comprises a conventionally known thermosetting resin, curing agent, pigment, or various additives. Thermosetting resins are usually used for powder coatings, are solid at room temperature, and have a melting point of 80 to 140.
℃ acrylic resin, polyester resin, epoxy resin, etc. Epoxy resin is a reaction product of bisphenols such as bisphenol A and bisphenol F and epihalohydrin such as epichlorohydrin, and has an epoxy equivalent of 400 to 2000 and a number average molecular weight of 800.
In addition to the so-called epoxyphenol novolak resin, which is a reaction product of phenol type or cresol type novolak resin and epichlorohydrin, which has an epoxy equivalent weight of 170 to 240 and a number average molecular weight of 300 to 750, triglycidyl isocyanurate, There are alicyclic epoxy resins, etc. Curing agents for these epoxy resins include aromatic diamines such as diaminodiphenylmethane, polyamidoamines which are condensates of aliphatic amines and aliphatic dicarboxylic acids, amine-based curing agents such as dicyandiamide, imidazoles, and anhydrous tetrahydrophthal. Acids, acid anhydrides such as benzophenonetetracarboxylic anhydride and trimellitic anhydride, acid curing agents such as dodecanedicarboxylic acid, sebacic acid and adipic acid, phenolic curing agents such as phenolic resins and bisphenol A, etc. can give. Acrylic resins include resins made of one or more of various (meth)acrylates, (meth)acrylic acids, and their esters, and dicarboxylic acids such as dodecanedicarboxylic acid, sebacic acid, and isophthalic acid are used as curing agents. . Polyester resins are made by condensing polybasic acids such as phthalic anhydride, isophthalic acid, terephthalic acid, and maleic anhydride with polyhydric alcohols such as ethylene glycol and trimethylolpropane, with an average degree of polymerization of 3 to 50 and a softening point of 60 to 150°C. As the curing agent for the resin, isophorone diisocyanate, solid melamine resin, triglycidyl isocyanurate, etc. can be used. It is also possible to use a small amount of thermoplastic resin, such as petroleum resin, in combination with the above thermosetting resin. Pigments that can be added as necessary include inorganic pigments or fillers such as titanium oxide, yellow iron oxide, red iron oxide, silicon oxide, clay, talc, barium sulfate, potassium carbonate, and mica, and organic pigments such as azo and anthraquinone. Pigments etc. are used. In addition, various additives such as fillers, flow control agents, and reinforcing agents are used. As the short-curing powder coating mainly targeted by the method of the present invention, a system containing a bisphenol-based glycidyl ether type epoxy resin as a main component and a phenol-based curing agent is most suitable. Each of the powdered and granular raw materials for the powder coating described above is stirred in advance using a kneader or the like as necessary, and then melted and mixed using an extruder to obtain a first mixture for the powder coating. (Hereinafter referred to as molten mixture.) The molten mixture is extruded from a die of an extruder in the form of flakes, pellets, or granules. The method for producing the first mixture according to the present invention includes not only the above-mentioned molten mixture but also resin, pigment,
The desired powder coating can also be obtained using a powdered first mixture in which each component such as various additives or a mixture thereof is mixed in a finely pulverized state (hereinafter referred to as a powder mixture). The most important thing in this invention is to heat the first mixture at 40 to 80°C.
This is the process of aging at a warm temperature. In the present invention, thermosetting resins, curing agents, pigments, and various additives, which are raw materials for powder coatings that harden in a short time, are made into a uniform molten mixture, powder, or mixture at a temperature that makes it difficult for hardening to proceed, and then By employing a two-stage heat-retaining aging process at 0.degree. C., it takes advantage of the possibility of a preliminary reaction that allows the degree of reaction to be easily adjusted. Temperatures above 40°C are required for pre-reaction of molten mixtures in the form of flakes, pellets and granules. If the temperature is below 40℃, the preliminary reaction will not proceed and it will take too many days, and if it exceeds 80℃, the reaction will proceed too much and it will gel to the extent that it cannot be painted or the fluidity of the coating will decrease, making the coating uneven. This can easily lead to poor finish on the skin or poor adhesion. A preferable thermal aging temperature is 50 to 60°C. When the temperature is around 40°C, a heat retention aging period of about one week is required, and when the temperature is around 80°C, the desired preliminary reaction can be obtained in about 8 hours. Therefore, the temperature may be appropriately selected from the viewpoints of the reaction rate of the coating material, inventory management, storage space for thermal aging, etc. For thermal aging, flakes, pellets, granules,
The powdered molten mixture may be placed in a cardboard box or the like. Since flakes, pellets, grains, and powders themselves may fuse together due to heating, the temperature for thermal aging may be selected depending on the Tg point of the molten mixture. That is, it is more efficient and economical to crush a molten mixture with a high Tg point (50 to 90°C) into a powder in advance and then heat-retain it at 50 to 80°C, since only one crushing is required. However, a molten mixture with a Tg point of less than 45-50°C is more likely to fuse during the thermal aging process as it is closer to powder, so it can be heated to 50-60°C in the form of flakes or pellets.
After aging at a warm temperature, it is best to crush it when the desired gel time is reached. From the viewpoint of preventing blocking mentioned above, the Tg point as a powder coating is 45~45.
90°C is preferred. The powder coating material produced by the method of the present invention can also be electrostatically powder coated and thermally cured to form a coating film in the usual manner. In this case, the curing properties have been improved by heat retention aging, so the thermal energy for curing is 180 to 200, which is the curing condition for powder coatings based on the first manufacturing method.
It should be shorter than 20 minutes at 200℃ and 1 to 3 minutes at 200℃. The most effective method for forming a coating film using the powder coating produced by the method of the present invention is to preheat the object to be coated above 120 to 260°C, which is the general melting point of powder coatings, and then apply the coating. This is a method in which the material is hardened using only retained heat without special baking for hardening. A more specific explanation will be given below with reference to Examples.

【表】 表1,2の塗料配合をニーダ、ヘンシエルミキ
サーで原料を予備混合した。 この予備混合物をブス社製コニーダにて押出
し、溶融混合された均一な塗料とした。 この溶融混合する時の容易さを混合性(*8)
として評価し、ゲル化せずに溶融混合され均一な
粉体塗料が得られたものを〇印、またゲル化して
コニーダから押しだし不可能なものを×印として
表3,4に示した。 次いで、溶融混合物をACM(細川鉄工所製粉砕
機)にて粉砕したのち保温熟成し熱硬化性樹脂と
硬化剤の前駆反応を起こさせ反応度を調整した粉
体塗料を得た。この保温熟成等の条件を表3,4
に示す。 得られた粉体塗料のTg点と200℃でのゲルタイ
ムを測定し、表5,6に示した。 この塗料を240℃に予熱した3.2mm厚で70×150
mmのテストピースに静電粉体塗装機で膜厚180〜
220μに塗装し、放冷したところテストピース熱
により硬化した塗膜が得られた。 この塗膜の性能を表5に示す。 次いで、製造例1Aと1B,3Aと3B,6Aと6Bを
用い0.8mm厚で70×150mmのテストピースに静電粉
体塗装機で塗装した後200℃×3分間焼付けて膜
厚60〜80μの塗膜を得た。 この塗膜の性能を表7に示す。
[Table] The raw materials for the paint formulations shown in Tables 1 and 2 were premixed using a kneader and a Henschel mixer. This premix was extruded using a Konida manufactured by Busu Co., Ltd. to obtain a uniform melt-mixed paint. Mixability (*8) refers to the ease of melt mixing.
In Tables 3 and 4, those that were melted and mixed without gelling to obtain a uniform powder coating were marked with an ○, and those that gelled and could not be extruded from the co-kneader were marked with an x. Next, the molten mixture was pulverized with an ACM (pulverizer manufactured by Hosokawa Iron Works), and then aged under heat to cause a precursor reaction between the thermosetting resin and the curing agent to obtain a powder coating with an adjusted degree of reactivity. Tables 3 and 4 show the conditions for this heat retention aging, etc.
Shown below. The Tg point and gel time at 200°C of the obtained powder coating were measured and shown in Tables 5 and 6. 70 x 150 with a thickness of 3.2 mm preheated to 240℃ with this paint.
Film thickness 180~ with electrostatic powder coating machine on mm test piece
When it was painted to a thickness of 220μ and left to cool, a coating film was obtained that was cured by the heat of the test piece. The performance of this coating film is shown in Table 5. Next, using production examples 1A and 1B, 3A and 3B, and 6A and 6B, a 70 x 150 mm test piece with a thickness of 0.8 mm was coated with an electrostatic powder coating machine, and then baked at 200°C for 3 minutes to obtain a film thickness of 60 to 80 μm. A coating film was obtained. Table 7 shows the performance of this coating film.

【表】【table】

【表】 この塗料を240℃に予熱した3.2mm厚で70×150
mmのテストピースに静電粉体塗装機で膜厚60〜
100μに塗装し、放冷により硬化した塗膜を得た。 この塗膜の性能を表6に示す。
[Table] 70 x 150 with a thickness of 3.2 mm preheated to 240℃.
Film thickness: 60~ on electrostatic powder coating machine on mm test piece
A coating film of 100μ was coated and cured by cooling. Table 6 shows the performance of this coating film.

【表】 各製造例は各塗料配合についてAが溶融混合だ
けで粉体塗料としたものを比較例、またBが溶融
混合したのち保温熟成した実施例である。 *9形状は溶融混合物の形。
[Table] Each production example is a comparative example in which A was made into a powder coating only by melt-mixing for each paint formulation, and B is an example in which powder coating was made by melt-mixing and then heat-retained aging. *9 Shape is that of a molten mixture.

【表】 各製造例は各塗料配合についてAが溶融混合だ
けで粉体塗料としたものを比較例、またBが溶融
混合したのち保温熟成した実施例である。 *9形状は溶融混合物の形。
[Table] Each production example is a comparative example in which A was made into a powder coating only by melt-mixing for each paint formulation, and B is an example in which powder coating was made by melt-mixing and then heat-retained aging. *9 Shape is that of a molten mixture.

【表】【table】

【表】【table】

【表】 表5,6によれば1A、6A、7Aはゲルタイムが
長く、被塗物を予熱した熱エネルギーだけでは硬
化が不十分で期待する性能に達していない。 また、製造例5,8はいずれもゲルタイムを短
くする目的で触媒を使用したが溶融混合時に押出
し機内でゲル化して粉体塗料とすることが出来な
かつた。 一方、保温熟成を行つた2B、3B、4Bと保温熟
成を行つていない2A、3A、4Aを比較すると2B、
3B、4Bはゲルタイムが短く硬化性が高いので
240℃の被塗物の予熱エネルギーだけで期待する
塗膜性能を充分に発揮しており、特に−40℃での
性能が優れている。 発明の効果 本発明は粉体塗料用の各構成成分を均一に混合
して第1混合物を製造し、次いでその第1混合物
を保温熟成させる2段工程をとることによつて
200℃×1〜20秒で硬化する粉体塗料の製造が可
能となつた。 エクストルーダ内での加熱は、溶融混合時にゲ
ル化するなどの危険性を含んでいたが、保温熟成
工程を採用する事により緩かな条件で硬化を促進
できるようになつた。 また保温熟成の温度と時間を適宜選択する事に
より塗装後の焼付時間を調整する事も可能となつ
た。この結果、焼付炉の短縮、コンベア スピー
ドの向上などの有用なる成果が得られた。
[Table] According to Tables 5 and 6, 1A, 6A, and 7A had long gel times, and curing was insufficient with just the thermal energy used to preheat the coated object, so they did not reach the expected performance. In addition, in both Production Examples 5 and 8, a catalyst was used for the purpose of shortening the gel time, but the mixture gelled in the extruder during melt mixing and could not be made into a powder coating. On the other hand, when comparing 2B, 3B, and 4B that have been aged with heat retention and 2A, 3A, and 4A that have not been aged with heat retention, 2B,
3B and 4B have short gel time and high curing properties, so
The expected coating film performance is fully demonstrated with just the energy required to preheat the object to be coated at 240°C, and the performance is particularly excellent at -40°C. Effects of the Invention The present invention employs a two-step process of uniformly mixing each constituent component for a powder coating to produce a first mixture, and then aging the first mixture under heat.
It has become possible to produce powder coatings that harden in 1 to 20 seconds at 200°C. Heating in an extruder had the risk of gelation during melt mixing, but by adopting a heat retention aging process, it became possible to accelerate curing under mild conditions. It has also become possible to adjust the baking time after painting by appropriately selecting the temperature and time of thermal aging. As a result, useful results such as shortening the baking furnace time and improving conveyor speed were obtained.

Claims (1)

【特許請求の範囲】 1 熱硬化性粉体塗料の各構成成分を均一に混合
して第1混合物を製造し、次いで該第1混合物を
40〜80℃で保温熟成する2段工程からなる事を特
徴とする粉体塗料の製造方法。 2 各成分を均一に混合する工程がメルトブレン
ド法によるものである特許請求の範囲第1項記載
の粉体塗料の製造方法。 3 第1混合物がフレーク状、ペレツト状、粒
状、粉末状である特許請求の範囲第1項記載の粉
体塗料の製造方法。 4 熱硬化性粉体塗料としてのTg点が45〜90℃
の組成物である特許請求の範囲第1項記載の粉体
塗料の製造方法。
[Claims] 1. A first mixture is produced by uniformly mixing each component of a thermosetting powder coating, and then the first mixture is
A method for producing a powder coating, which is characterized by a two-stage process of heat-retaining aging at 40 to 80°C. 2. The method for producing a powder coating material according to claim 1, wherein the step of uniformly mixing each component is by a melt blending method. 3. The method for producing a powder coating material according to claim 1, wherein the first mixture is in the form of flakes, pellets, granules, or powder. 4 Tg point as thermosetting powder coating is 45-90℃
A method for producing a powder coating according to claim 1, which is a composition of:
JP59082897A 1984-04-26 1984-04-26 Preparation of powder coating compound Granted JPS60226567A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59082897A JPS60226567A (en) 1984-04-26 1984-04-26 Preparation of powder coating compound

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59082897A JPS60226567A (en) 1984-04-26 1984-04-26 Preparation of powder coating compound

Publications (2)

Publication Number Publication Date
JPS60226567A JPS60226567A (en) 1985-11-11
JPH0356267B2 true JPH0356267B2 (en) 1991-08-27

Family

ID=13787052

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59082897A Granted JPS60226567A (en) 1984-04-26 1984-04-26 Preparation of powder coating compound

Country Status (1)

Country Link
JP (1) JPS60226567A (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5450533A (en) * 1977-09-30 1979-04-20 Dainippon Ink & Chem Inc Preparation of powder coating
JPS57174355A (en) * 1981-04-20 1982-10-27 Dainippon Toryo Co Ltd Production of powdered paint
JPS5945366A (en) * 1982-09-06 1984-03-14 Kubota Ltd Epoxy resin powder paint
JPS5949244A (en) * 1982-09-14 1984-03-21 Nitto Electric Ind Co Ltd Manufacture of heat-curable resin composition

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5450533A (en) * 1977-09-30 1979-04-20 Dainippon Ink & Chem Inc Preparation of powder coating
JPS57174355A (en) * 1981-04-20 1982-10-27 Dainippon Toryo Co Ltd Production of powdered paint
JPS5945366A (en) * 1982-09-06 1984-03-14 Kubota Ltd Epoxy resin powder paint
JPS5949244A (en) * 1982-09-14 1984-03-21 Nitto Electric Ind Co Ltd Manufacture of heat-curable resin composition

Also Published As

Publication number Publication date
JPS60226567A (en) 1985-11-11

Similar Documents

Publication Publication Date Title
US3102043A (en) Fluidized bed coating method
CN104449268B (en) Special low-temperature cured body powder coating for aluminum wheel of automobile and preparation method thereof
CN109762440B (en) Low-temperature curing powder coating and preparation method thereof
US20030194560A1 (en) Coating powders, methods of manufacture thereof, and articles formed therefrom
CN1693343A (en) Raw mix powder compositions and methods of making the same
US20070231580A1 (en) Process for the preparation of powder coatings on heat-sensitive substrates
US3989679A (en) Epoxy resin powder composition
JPH0598193A (en) Powder coating and its raw material
JPH0356267B2 (en)
JP2022505420A (en) Low temperature fired powder coating resin
JPS6218420A (en) Curable epoxy resin composition and its use
JPH04161466A (en) Production of epoxy resin-based powder coating
JPH0587086B2 (en)
TW526248B (en) Powder coating compositions
JPS6332827B2 (en)
JPH04288317A (en) Powdered epoxy resin composition and production thereof
JPH0329098B2 (en)
JPS5825353B2 (en) powder paint
JP2778183B2 (en) Epoxy powder coating composition
JPH07258384A (en) Epoxy resin composition
CN108300145A (en) A kind of zinc-plated base material powdery paints and preparation method
JP3312485B2 (en) Powder epoxy resin composition
JPH021189B2 (en)
JPH0230328B2 (en)
JP4622428B2 (en) Epoxy resin powder coating and manufacturing method thereof

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees