JPH0329098B2 - - Google Patents

Info

Publication number
JPH0329098B2
JPH0329098B2 JP17868384A JP17868384A JPH0329098B2 JP H0329098 B2 JPH0329098 B2 JP H0329098B2 JP 17868384 A JP17868384 A JP 17868384A JP 17868384 A JP17868384 A JP 17868384A JP H0329098 B2 JPH0329098 B2 JP H0329098B2
Authority
JP
Japan
Prior art keywords
epoxy resin
solid
crystalline epoxy
present
curing agent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP17868384A
Other languages
Japanese (ja)
Other versions
JPS6155123A (en
Inventor
Juzo Akata
Norio Kawamoto
Kyoshi Saito
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nitto Denko Corp
Original Assignee
Nitto Denko Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nitto Denko Corp filed Critical Nitto Denko Corp
Priority to JP17868384A priority Critical patent/JPS6155123A/en
Publication of JPS6155123A publication Critical patent/JPS6155123A/en
Publication of JPH0329098B2 publication Critical patent/JPH0329098B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は粉末状エポキシ樹脂組成物の製造方法
に関する。 粉末状エポキシ樹脂組成物は従来無公害、省資
源、省エネルギー型の塗料、絶縁材料、合固着材
料として巾広く使用されている。これ等粉末状エ
ポキシ樹脂組成物に使用されているエポキシ樹脂
の一つとして結晶性エポキシ樹脂がある。この結
晶性エポキシ樹脂は通常使用されている固体状エ
ポキシ樹脂たとえばビスフエノールA型、ビスフ
エノールF型、ノボラツク型エポキシ樹脂に比
し、溶融時の粘度が著しく低いという特性を有
し、これがためプリプレグやコイル等の含浸固着
に用いられている。しかしながらこの結晶性エポ
キシ樹脂は他の成分たとえば硬化剤やその他の添
加剤等と溶融混合すると結晶性がなくなり、融点
降下が生じ、常温で液状となつたり、固体であつ
ても常温付近でブロツキングを生じ易く、粉末組
成物として用いることが非常に困難であつた。 このため従来結晶性エポキシ樹脂を用いる場合
は結晶性エポキシ樹脂及びその他の成分たとえば
硬化剤等を細かく微粉砕した後乾式で混合して使
用し、溶融混合は行なつていなかつた。この乾式
混合でもエポキシ樹脂や硬化剤は均一に混合され
た状態となつているが、これに外力が加わるとた
とえば運搬時などの振動により偏析が起こり、得
られる樹脂硬化物の物性にバラツキが生じる難点
がある。また特に一度使用した余剰物を再使用す
るとやはり得られる樹脂硬化物の特性に大きなバ
ラツキを生じ、時には硬化が生じない場合もあつ
た。 本発明者は結晶性エポキシ樹脂を用いた粉末状
組成物の上記利点と難点に注目し、上記利点を毫
も損うことなく難点だけをうまく解消出来る方法
を開発すべく研究を続けて来たが、この研究に於
いて結晶性エポキシ樹脂と硬化剤必要に応じその
他の添加剤と共に乾式混合した後、これ等を圧着
し、次いで粉砕し分級するときは、所期の目的を
達成出来ることを見出し、ここに本発明を完成す
るに至つた。すなわち本発明は、30℃で固体の結
晶性エポキシ樹脂と、同温度で固体の硬化剤とを
粉砕し乾式混合した後、各成分の融点以下の温度
で圧着せしめ、次いで粉砕し分級することを特徴
とする粉末状エポキシ樹脂組成物の製造方法に係
るものである。 本発明法に依ると結晶性エポキシ樹脂、硬化剤
及び必要に応じその他の添加剤を含有して成る組
成物を乾式混合した後圧着し、これを再び粉砕し
分級すると、実に驚くべきことに溶融混合してい
ないにもかかわらず従来の如く振動等の外力が加
わつても、或いは余剰分を再使用しても、全く硬
化物特性にバラツキが生じることなくほぼ均等な
樹脂硬化物が収得出来、従来の難点をうまく解消
出来る。 本発明で使用する結晶性エポキシ樹脂としては
30℃で固体の結晶性エポキシ樹脂であり、従来こ
の分野で使用されて来た所謂結晶性エポキシ樹脂
が広く使用される。特に本発明に於いては30℃で
固体で且つその融点よりも10℃高い温度での溶融
粘度が5ポイズ以下であるエポキシ樹脂が好まし
い。これ等の具体例としてはたとえばトリグリシ
ジルイソシアヌレート、4,4′−ビス(2,3−
エポキシプロポキシ)−3,3′,5,5′−テトラ
メチルビフエニル、ジグリシジルテレフタレー
ト、ジグリシジルハイドロキノン等を例示出来
る。更に詳しくは、たとえば下記一般式()で
表わされるジグリシジルハイドロキノンを代表例
として説明すると、次の通りである。 ジグリシジルハイドロキノンは式()におい
て繰り返し単位数n=0の化合物であり、結晶性
を有するものである。しかしながら本発明に於い
ては上記nが1〜5程度の化合物や、末端がエポ
キシ化されていない化合物を20℃以下好ましくは
5%以下含んでいても良い。 本発明結晶性エポキシ樹脂には、また非結晶性
で固形状のエポキシ樹脂たとえば固形ビスフエノ
ールA型、ビスフエノールF型、ノボラツク型エ
ポキシ樹脂を一部通常5〜80重量%好ましくは5
〜30重量%程度含有させることが出来る。これ等
非結晶性エポキシ樹脂を一部含有させることによ
り、塗膜と可とう性の向上、溶融粘度の調整、耐
熱性の向上という利点が生じる。これ等非結晶性
エポキシ樹脂は軟化点としては130℃程度以下の
ものが好ましく、軟化点があまり高くなりすぎる
と圧着時に圧着し難くなる傾向がある。これ等非
結晶性エポキシ樹脂の具体例を挙げるとエポキシ
当量が400〜2000のビスフエノールA型、ビスフ
エノールF型エポキシ樹脂や、5核体以上のフエ
ノールノボラツクのポリグリシジルエーテル等で
ある。 本発明に於いて使用する硬化剤は30℃で固体の
ものであるかぎり特に制限されず、広い範囲で各
種の硬化剤が使用出来、たとえば代表例としてア
ミン、アミンアダクト、ポリアミド、ポリアミド
アダクト、多価酸、酸無水物、多価フエノール、
イミダゾール類、イミダゾリン類、ジシアンジア
ミド及びその誘導体、三フツ化ホウ素及びその誘
導体、ジヒドラジド類等を挙げることが出来る。 また本発明に於いては必要に応じて各種の添加
剤を配合することが出来るが、これ等添加剤は固
体であることが望ましいが、全体の10重量%以下
好ましくは5重量%以下程度ならば液体のもので
あつても良い。但し液体の場合は硬化剤と予め溶
融混合しておくとより均一に分散し、良好な効果
が期待できるので特に好ましい。これ等添加剤と
してはこの種粉末状エポキシ樹脂組成物に使用さ
れて来た各種の添加剤がいずれも使用出来、たと
えば三級アミン、イミダゾール類、三フツ化ホウ
素、ジシアンジアミド及びその誘導体の如き硬化
促進剤、タルク、ケイ砂、シリカ、炭酸カルシウ
ム、硫酸バリウムの如き充填剤、カーボンブラツ
ク、ベンガラ、酸化チタン、酸化クロム、シアニ
ンブルー、シアニングリーンの如き顔料、その他
流れ調整剤等を例示出来る。これ等添加剤の配合
割合は、その種類や用途に応じて変化するが、通
常0.5〜200重量%好ましくは0.5〜50重量%程度
である。 本発明法実施に際しては先ず上記各成分、更に
詳しくは結晶性エポキシ樹脂、硬化剤及び必要に
応じ他の添加剤を粉砕する。粉砕手段は何等制限
されず各種の手段がいずれも有効に適用される。
粉砕の程度としては通常平均粒径が10〜100μm
程度であるが、最終目的物たるエポキシ樹脂組成
物よりも充分に細かくなるような粒度たとえば最
終目的物組成物の平均粒度が200μmならば上記
各成分は平均粒径が20〜50μm程度に粉砕するの
が好ましい。また特にこの際(平均粒径20〜50μ
mの中から)100μm以上の大粒を除去すると各
成分の分散状態がより一層均一となり好ましい。 粉砕された各成分は次いで乾式混合されるが、
この際の手段としても特に制限されず各種の手段
がいずれも使用出来、たとえば高速撹拌型ミキサ
ー、Vプレンダー等を代表例として挙げることが
出来る。この乾式混合により各成分は充分均一に
混合される。 次いでこの混合物を圧着せしめる。この圧着工
程は本発明に於いては極めて重要であり、結晶性
エポキシ樹脂、硬化剤及び必要に応じ使用される
その他の添加剤を圧着しておたがいに結合せしめ
る。この際の圧着された状態とは、圧着物が最悪
でも、容易に手で粉々にくずすことが出来ないよ
うな状態を指し、本発明に於いては上記の如き状
態となるかぎり、圧着操作は何等限定されない
が、通常20〜50℃程度で50〜300Kg/cm2程度の条
件で行なう。特に該圧着工程に於いては結晶性エ
ポキシ樹脂及び硬化剤の融点より低い温度で圧着
工程を行なうことが大切であり、決してこれ等が
溶融しないようにする必要がある。 最後に圧着したものを粉砕し、分級して最終目
的物たる本発明組成物を得る。この際の粉砕並び
に分級いずれも従来公知の方法で良く、これによ
り700μm以下の組成物とする。 かくして得られる本発明組成物は、たとえばそ
の一粒子をとつてみると、エポキシ樹脂粒子と硬
化剤とが圧着されて成つており、振動等の外力が
作用しても何等組成に変化が生ぜず、またたとえ
再使用したとしても従来の乾式混合した組成物の
如きバラツキは全く生じない。 以下に実施例並びに比較例を示して本発明の特
徴とする所をより一層明瞭となす。 実施例 1〜4 第1表に示す所定の結晶性エポキシ樹脂、硬化
剤、及び硬化促進剤を粉砕し、120メツシユ篩で
篩別する。120メツシユをパスしたものを、第1
表に示す配合割合(重量部)でヘンシエルミキサ
ーで乾式混合する。次にこの粉体を第1表に示す
条件で圧着させ、粉砕し、40メツシユで篩別し
た。得られた組成物の性状とブロツキング性を第
1表に併記した。 比較例 1〜4 実施例と同様な配合で、乾式混合後圧着せずに
ロールにて溶融混合した。得られた組成物の性状
を第1表に示した。
The present invention relates to a method for producing a powdered epoxy resin composition. Powdered epoxy resin compositions have been widely used as pollution-free, resource-saving, and energy-saving paints, insulating materials, and bonding materials. Crystalline epoxy resin is one of the epoxy resins used in these powdered epoxy resin compositions. This crystalline epoxy resin has a characteristic that its viscosity when melted is significantly lower than that of normally used solid epoxy resins, such as bisphenol A type, bisphenol F type, and novolak type epoxy resins, and this makes it possible to use it in prepregs. It is used for impregnating and fixing coils, etc. However, when this crystalline epoxy resin is melted and mixed with other components such as curing agents and other additives, it loses its crystallinity and its melting point drops, causing it to become liquid at room temperature, or even if it is solid, to block at room temperature. It was very difficult to use it as a powder composition. For this reason, conventionally, when using a crystalline epoxy resin, the crystalline epoxy resin and other components such as a curing agent were finely pulverized and then mixed in a dry process, without melt-mixing. Even with this dry mixing, the epoxy resin and curing agent are uniformly mixed, but if external force is applied to this, for example due to vibration during transportation, segregation will occur, resulting in variations in the physical properties of the resulting cured resin. There are some difficulties. In addition, especially when a surplus material that has been used once is reused, the properties of the resulting cured resin product vary greatly, and in some cases, no curing occurs. The present inventor has focused on the above-mentioned advantages and disadvantages of powdered compositions using crystalline epoxy resin, and has continued research to develop a method that can successfully eliminate only the disadvantages without compromising the above-mentioned advantages. However, in this research, it was found that the desired purpose could be achieved when the crystalline epoxy resin and curing agent were dry mixed together with other additives as necessary, then compressed, and then crushed and classified. This led to the completion of the present invention. That is, the present invention involves pulverizing and dry mixing a crystalline epoxy resin that is solid at 30°C and a curing agent that is solid at the same temperature, then pressing them together at a temperature below the melting point of each component, and then pulverizing and classifying. The present invention relates to a method for producing a characteristic powdered epoxy resin composition. According to the method of the present invention, a composition comprising a crystalline epoxy resin, a curing agent, and other additives as required is dry mixed and then pressed, and when this is crushed and classified again, surprisingly, it melts. Despite not being mixed, even if external forces such as vibrations are applied as in the past, or even if the surplus is reused, a nearly uniform cured resin product can be obtained without any variation in the properties of the cured product. The conventional difficulties can be successfully solved. The crystalline epoxy resin used in the present invention is
The so-called crystalline epoxy resin, which is solid at 30°C and has been conventionally used in this field, is widely used. In particular, in the present invention, an epoxy resin that is solid at 30°C and has a melt viscosity of 5 poise or less at a temperature 10°C higher than its melting point is preferred. Specific examples of these include triglycidyl isocyanurate, 4,4'-bis(2,3-
Examples include epoxypropoxy)-3,3',5,5'-tetramethylbiphenyl, diglycidyl terephthalate, and diglycidyl hydroquinone. More specifically, diglycidyl hydroquinone represented by the following general formula () will be explained as a representative example as follows. Diglycidylhydroquinone is a compound of the formula () in which the number of repeating units n=0, and has crystallinity. However, in the present invention, a compound in which n is about 1 to 5 or a compound whose end is not epoxidized may be contained at a temperature of 20°C or less, preferably 5% or less. The crystalline epoxy resin of the present invention also contains a portion of a non-crystalline solid epoxy resin, such as solid bisphenol A type, bisphenol F type, or novolac type epoxy resin, usually in an amount of 5 to 80% by weight, preferably 5 to 80% by weight.
It can be contained in an amount of about 30% by weight. By partially containing these non-crystalline epoxy resins, there are advantages of improving the coating film and flexibility, adjusting the melt viscosity, and improving heat resistance. These non-crystalline epoxy resins preferably have a softening point of about 130° C. or lower; if the softening point becomes too high, it tends to be difficult to press-bond them. Specific examples of these non-crystalline epoxy resins include bisphenol A type and bisphenol F type epoxy resins having an epoxy equivalent of 400 to 2,000, and polyglycidyl ethers of phenol novolaks having five or more nuclei. The curing agent used in the present invention is not particularly limited as long as it is solid at 30°C, and a wide variety of curing agents can be used. Typical examples include amine, amine adduct, polyamide, polyamide adduct, and polyamide. acid, acid anhydride, polyphenol,
Examples include imidazoles, imidazolines, dicyandiamide and its derivatives, boron trifluoride and its derivatives, and dihydrazides. In addition, in the present invention, various additives can be blended as necessary, but it is desirable that these additives be solid, but if the additives are not more than 10% by weight, preferably not more than 5% by weight of the total. For example, it may be a liquid. However, in the case of a liquid, it is particularly preferable to melt and mix it with a curing agent in advance because it will disperse more uniformly and good effects can be expected. As these additives, any of the various additives that have been used in powdered epoxy resin compositions of this type can be used, such as curing agents such as tertiary amines, imidazoles, boron trifluoride, dicyandiamide, and derivatives thereof. Examples include accelerators, fillers such as talc, silica sand, silica, calcium carbonate, and barium sulfate, pigments such as carbon black, red iron oxide, titanium oxide, chromium oxide, cyanine blue, and cyanine green, and other flow control agents. The proportion of these additives varies depending on their type and use, but is usually about 0.5 to 200% by weight, preferably about 0.5 to 50% by weight. When carrying out the method of the present invention, first, the above-mentioned components, more specifically, the crystalline epoxy resin, the curing agent, and other additives as necessary are pulverized. The crushing means is not limited in any way, and various means can be effectively applied.
The degree of pulverization usually has an average particle size of 10 to 100 μm.
For example, if the average particle size of the final target composition is 200 μm, the above components should be ground to an average particle size of about 20 to 50 μm. is preferable. Also, especially at this time (average particle size 20-50μ)
It is preferable to remove large grains of 100 μm or more (from m) because the dispersion state of each component becomes even more uniform. The milled ingredients are then dry mixed,
The means at this time is not particularly limited and any of various means can be used, such as a high-speed stirring mixer, a V-blender, etc. as representative examples. By this dry mixing, each component is mixed sufficiently and uniformly. This mixture is then pressed. This crimping step is extremely important in the present invention, in which the crystalline epoxy resin, curing agent, and other additives used as necessary are crimped and bonded to each other. In this case, the crimped state refers to a state in which the crimped object cannot be easily broken into pieces by hand at worst, and in the present invention, as long as the above-mentioned state is reached, the crimping operation is not carried out. Although not limited in any way, it is usually carried out at a temperature of about 20 to 50°C and a pressure of about 50 to 300 kg/cm 2 . In particular, in the compression bonding process, it is important to perform the compression bonding process at a temperature lower than the melting points of the crystalline epoxy resin and the curing agent, and it is necessary to ensure that these do not melt. Finally, the compressed material is crushed and classified to obtain the final target composition of the present invention. Both the pulverization and classification at this time may be carried out by conventionally known methods, whereby a composition with a particle size of 700 μm or less can be obtained. When one particle of the thus obtained composition of the present invention is taken, for example, it is made up of epoxy resin particles and a curing agent bonded together, and the composition does not change in any way even when external forces such as vibrations are applied. Furthermore, even if the composition is reused, there will be no variation at all, unlike in conventional dry-mixed compositions. Examples and comparative examples are shown below to further clarify the features of the present invention. Examples 1 to 4 Predetermined crystalline epoxy resins, curing agents, and curing accelerators shown in Table 1 are ground and sieved using a 120 mesh sieve. The one that passed 120 meshes is the first one.
Dry mix using a Henschel mixer at the proportions (parts by weight) shown in the table. Next, this powder was pressed under the conditions shown in Table 1, crushed, and sieved through a 40-mesh screen. The properties and blocking properties of the obtained composition are also listed in Table 1. Comparative Examples 1 to 4 The same formulations as in Examples were melt-mixed using rolls without pressure bonding after dry mixing. The properties of the obtained composition are shown in Table 1.

【表】【table】

【表】【table】

Claims (1)

【特許請求の範囲】 1 30℃で固体の結晶性エポキシ樹脂と、同温度
で固体の硬化剤とを粉砕し乾式混合した後、各成
分の融点以下の温度で圧着せしめ、次いで粉砕し
分級することを特徴とする粉末状エポキシ樹脂組
成物の製造方法。 2 30℃で固体の結晶性エポキシ樹脂が、30℃で
固体で且つその融点より10℃高い温度での溶融粘
度が5ポイズ以下であるエポキシ樹脂である特許
請求の範囲第1項記載の製造方法。
[Claims] 1. A crystalline epoxy resin that is solid at 30°C and a curing agent that is solid at the same temperature are ground and dry mixed, then pressed together at a temperature below the melting point of each component, and then ground and classified. A method for producing a powdered epoxy resin composition, characterized in that: 2. The manufacturing method according to claim 1, wherein the crystalline epoxy resin that is solid at 30°C is an epoxy resin that is solid at 30°C and has a melt viscosity of 5 poise or less at a temperature 10°C higher than its melting point. .
JP17868384A 1984-08-27 1984-08-27 Producion of powdered epoxy resin composition Granted JPS6155123A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17868384A JPS6155123A (en) 1984-08-27 1984-08-27 Producion of powdered epoxy resin composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17868384A JPS6155123A (en) 1984-08-27 1984-08-27 Producion of powdered epoxy resin composition

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP14311792A Division JPH0673188A (en) 1992-04-17 1992-04-17 Production of powdery epoxy resin composition

Publications (2)

Publication Number Publication Date
JPS6155123A JPS6155123A (en) 1986-03-19
JPH0329098B2 true JPH0329098B2 (en) 1991-04-23

Family

ID=16052724

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17868384A Granted JPS6155123A (en) 1984-08-27 1984-08-27 Producion of powdered epoxy resin composition

Country Status (1)

Country Link
JP (1) JPS6155123A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019003824A1 (en) 2017-06-30 2019-01-03 東レ株式会社 Preform for fiber-reinforced composite material, thermosetting resin composition, fiber-reinforced composite material, and method for producing fiber-reinforced composite material
WO2019065432A1 (en) 2017-09-28 2019-04-04 東レ株式会社 Thermosetting resin composition for fiber-reinforced composite material, preform, fiber-reinforced composite material, and method for producing fiber-reinforced composite material

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5414058A (en) * 1990-05-28 1995-05-09 Somar Corporation Powder coating composition comprising conventional epoxides with crystalline epoxides and curing agents
JPH0776268B2 (en) * 1991-06-25 1995-08-16 ソマール株式会社 Method for producing epoxy resin powder composition
TW215927B (en) * 1992-02-28 1993-11-11 Ciba Geigy
DE4413113A1 (en) * 1994-04-15 1995-10-19 Rudolf Hinterwaldner One-piece, reactive melt mass molding and process for its preparation
US6140430A (en) * 1999-05-07 2000-10-31 Morton International Inc. Powder coating of non-crystalline and crystalline epoxy resins
DE10208644A1 (en) * 2002-02-28 2003-09-11 Bakelite Ag Process for the production and processing of epoxy resin molding compounds

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019003824A1 (en) 2017-06-30 2019-01-03 東レ株式会社 Preform for fiber-reinforced composite material, thermosetting resin composition, fiber-reinforced composite material, and method for producing fiber-reinforced composite material
US11225560B2 (en) 2017-06-30 2022-01-18 Toray Industries, Inc. Preform for fiber-reinforced composite material, thermosetting resin composition, fiber-reinforced composite material, and method of producing fiber-reinforced composite material
WO2019065432A1 (en) 2017-09-28 2019-04-04 東レ株式会社 Thermosetting resin composition for fiber-reinforced composite material, preform, fiber-reinforced composite material, and method for producing fiber-reinforced composite material

Also Published As

Publication number Publication date
JPS6155123A (en) 1986-03-19

Similar Documents

Publication Publication Date Title
JPH0329098B2 (en)
KR0159537B1 (en) Process for the preparation of powder coating composition
JP2007067164A (en) Semiconductor sealing epoxy resin composite and its manufacturing method
EP0204658B1 (en) Powdery mixture of a curable epoxy resin
JP2544686B2 (en) Epoxy resin powder composition and method for producing the same
JPH01129035A (en) Production of powdery epoxy resin composition
JPS5829858A (en) Resin composition for sealing electronic component
JPS5813623A (en) Solid curing agent composition for epoxy resin
JPH0673188A (en) Production of powdery epoxy resin composition
JPH07258384A (en) Epoxy resin composition
JPS6243452B2 (en)
JPH0657745B2 (en) Powder curing accelerator for epoxy resin
JPH11269352A (en) Epoxy resin composition for sealing semiconductor
JPS59191715A (en) Production of epoxy resin composition
JPS6235434B2 (en)
JPH0990369A (en) Production of liquid crystal display panel
JPS6227111B2 (en)
KR960008474B1 (en) Powder coating composition
KR0159525B1 (en) Powder coating composition and process for preparing the same
JP2000068420A (en) Electronic component sealing material and manufacture thereof
JP3477815B2 (en) Method of manufacturing spacer and liquid crystal display panel
JPS6228194B2 (en)
JP2922151B2 (en) Semiconductor sealing device
JPS63225618A (en) Sealing resin composition and its production
JPS61261371A (en) Epoxy resin powder composition