JPH04161466A - Production of epoxy resin-based powder coating - Google Patents

Production of epoxy resin-based powder coating

Info

Publication number
JPH04161466A
JPH04161466A JP28976490A JP28976490A JPH04161466A JP H04161466 A JPH04161466 A JP H04161466A JP 28976490 A JP28976490 A JP 28976490A JP 28976490 A JP28976490 A JP 28976490A JP H04161466 A JPH04161466 A JP H04161466A
Authority
JP
Japan
Prior art keywords
epoxy resin
powder coating
powder
curing
coating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP28976490A
Other languages
Japanese (ja)
Inventor
Toyohiro Matsumura
松村 豊弘
Kazuyuki Morita
和幸 森田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP28976490A priority Critical patent/JPH04161466A/en
Publication of JPH04161466A publication Critical patent/JPH04161466A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain the subject composition, excellent in edge covering properties and useful as electronic parts, etc., by mixing an epoxy resin with a curing agent, etc., melt kneading the resultant mixture, pulverizing the kneaded mixture, heating and curing the resultant powder within a prescribed temperature range. CONSTITUTION:The objective coating is obtained by mixing an epoxy resin (preferably having 900-2500 epoxy equiv.) such as bisphenol A type with a curing agent such as dicyandiamide (blended in an amount of preferably 0.5-1.5 equiv. based on the epoxy equiv. of the resin) and other required additives, e.g. an inorganic filler, melt kneading the prepared mixture, pulverizing kneaded mixture, heating and curing the powder at a temperature within the range of 40-80 deg.C in a process for producing an epoxy resin-based powder coating containing the curing agent.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明はエポキシ樹脂系粉体塗料の製造方法に関し、更
に詳しくは、エツジカバリング性が優れている塗膜を成
膜することができるエポキシ樹脂系粉体塗料を製造する
方法に関する。
Detailed Description of the Invention (Industrial Field of Application) The present invention relates to a method for producing an epoxy resin powder coating, and more specifically to an epoxy resin that can form a coating film with excellent edge covering properties. The present invention relates to a method for producing a powder coating.

(従来の技術) エポキシ樹脂系の粉体塗料は、それを塗装して形成した
塗膜の電気絶縁性や防食性などが優れているので、広い
分野で使用されている。とりわけ、電気・電子部品の電
気絶縁被膜用の塗料として極めて有用である。
(Prior Art) Epoxy resin-based powder coatings are used in a wide range of fields because the coatings formed using them have excellent electrical insulation and anticorrosion properties. In particular, it is extremely useful as a paint for electrically insulating coatings on electrical and electronic parts.

ところで、モータのロータや平角電線などを電気絶縁被
覆する場合、成膜された塗膜のエツジカバリング性が良
好であることが重要である。
By the way, when electrically insulating coating a motor rotor, rectangular electric wire, etc., it is important that the formed coating film has good edge covering properties.

しかしながら、従来のエポキシ樹脂系粉体塗料の場合、
充分に良好なエツジカバリング性を備えた電気絶縁被覆
を行うことは可成り困難である。
However, in the case of conventional epoxy resin powder coatings,
It is quite difficult to produce electrically insulating coatings with sufficiently good edge covering properties.

すなわち、従来のエポキシ樹脂系粉体塗料で電気絶縁被
覆を行うと、一般に、被塗装物の平坦部における塗膜の
厚みに比べて、エツジ部における塗膜の厚みが薄くなる
That is, when an electrically insulating coating is applied using a conventional epoxy resin powder coating, the thickness of the coating film on the edge portions of the object is generally thinner than the thickness of the coating coating on the flat portions of the object to be coated.

そのため、エツジ部では、塗膜の電気絶縁性能が充分に
発揮されず、絶縁被覆した製品の用途が制限されざるを
得ないという問題が起こる。
Therefore, a problem occurs in that the electrical insulation performance of the coating film is not sufficiently exhibited at the edge portions, and the applications of products coated with insulation are inevitably limited.

このような問題を解決して塗膜のエツジカバリング性を
高めるために、従来は、粉体塗料として高分子量のエポ
キシ樹脂を使用したり、または、塗料中にシリカ微粉末
や、ポリエチレンワックスもしくは石油系ワックスのよ
うなワックス類を添加したりして、塗料の加熱溶融時に
おける溶融粘度を高めるという方法が採られている。
In order to solve these problems and improve the edge covering properties of the paint film, conventional methods have been to use high-molecular weight epoxy resin as a powder coating, or to add silica powder, polyethylene wax, or petroleum powder to the coating. A method has been adopted in which the melt viscosity of the paint is increased when the paint is heated and melted by adding waxes such as waxes.

(発明か解決しようとする課題) しかしながら、上記した方法はいずれも、塗膜のエツジ
カバリング性を向上させるという目的からすると、必す
しも充分な効果を発揮しない。しかも、シリカ微粉末を
添加した塗料の場合は、成膜した塗膜の耐水性や耐湿性
が低下するという問題か起こり、また、ワックス類を添
加した塗料の場合は、塗膜と被塗装物との密着性が低下
するという問題か起こる。
(Problem to be Solved by the Invention) However, none of the above-mentioned methods necessarily exhibits a sufficient effect from the viewpoint of improving the edge covering properties of the coating film. Moreover, in the case of paints containing fine silica powder, the water resistance and moisture resistance of the formed film may be reduced, and in the case of paints containing waxes, the paint film and the object being coated may be damaged. A problem may arise in which the adhesion with the material decreases.

本発明は、エポキシ樹脂系の粉体塗料における上記した
問題を解決し、エツジカバリング性か優れている塗膜用
の塗料として有用なエポキシ樹脂系粉体塗料の製造方法
の提供を目的とする。
The object of the present invention is to solve the above-mentioned problems with epoxy resin powder coatings and to provide a method for producing an epoxy resin powder coating that is useful as a coating material with excellent edge covering properties.

(課題を解決するための手段・作用) 上記した問題を達成するために、本発明においては、硬
化剤を含有するエポキシ樹脂系粉体塗料の製造方法にお
いて、エポキシ樹脂、硬化剤、その他の必要な添化剤を
混合し、溶融混練し、粉砕したのち、40℃以上、80
°C以下の温度で加熱養生することを特徴とするエポキ
シ樹脂系粉体塗料の製造方法が提供される。
(Means/effects for solving the problem) In order to achieve the above-mentioned problem, in the present invention, in a method for producing an epoxy resin-based powder coating containing a curing agent, the epoxy resin, the curing agent, and other necessary materials are used. After mixing the additives, melt-kneading, and pulverizing, heat the mixture at 40℃ or higher and 80℃.
Provided is a method for producing an epoxy resin powder coating characterized by heat curing at a temperature of °C or lower.

本発明においては、まず、エポキシ樹脂と硬化剤を例え
ばヘンシェルミキサーのような撹拌装置で混合したのち
、この混合物を押出機で溶融混練する。
In the present invention, first, the epoxy resin and the curing agent are mixed using a stirring device such as a Henschel mixer, and then this mixture is melt-kneaded using an extruder.

原料であるエポキシ樹脂としては、常温下で固形状態に
あるエポキシ樹脂であればいずれも使用か可能であり、
例えば、ビスフェノールA型エポキシ樹脂、ビスフェノ
ールF型エポキン樹脂、ノボラック型エポキシ樹脂、臭
素化エポキシ樹脂をあげることができる。これらは、そ
れぞれ、単独もしくは2種以上を混合して用いることが
できる。
As the raw material epoxy resin, any epoxy resin that is in a solid state at room temperature can be used.
Examples include bisphenol A type epoxy resin, bisphenol F type epoxy resin, novolac type epoxy resin, and brominated epoxy resin. These can be used alone or in combination of two or more.

上記したエポキシ樹脂のうち、ビスフェノールA型エポ
キシ樹脂はとくに好適である。
Among the above-mentioned epoxy resins, bisphenol A type epoxy resins are particularly suitable.

一般に、固形のビスフェノールA型エポキシ樹脂は、分
子量が900〜6000.エポキシ当量か450〜30
00程度であるが、本発明で用いるビスフェノールA型
エポキシ樹脂としては、エポキシ当量か900〜250
0程度のものか好ましい。
Generally, solid bisphenol A type epoxy resin has a molecular weight of 900 to 6,000. Epoxy equivalent: 450-30
However, the bisphenol A type epoxy resin used in the present invention has an epoxy equivalent of 900 to 250.
It is preferable to have a value of about 0.

エポキシ当量か900より小さいものは、その溶融粘度
が低くなるため、成膜した塗膜のエツジカバリング性が
低下することがあり、またエポキシ当量が2500より
大きいものは、その溶融粘度が高くなりすぎて成膜した
塗膜の平滑性が損なわれるからである。
If the epoxy equivalent is less than 900, the melt viscosity will be low, which may reduce the edge covering properties of the formed coating, and if the epoxy equivalent is more than 2,500, the melt viscosity will be too high. This is because the smoothness of the coating film formed by this process is impaired.

硬化剤としては、エポキシ樹脂系粉体塗料に用いられる
ものであればいずれも使用か可能であり、例えば、ジシ
アンジアミド、芳香族ジアミン、イミダゾール類のよう
なアミン系硬化剤;無水テトラヒドロフタル酸、無水ベ
ンゾフェノンテトラカルボン酸、無水トリメット酸、無
水ピロメリット酸のような酸無水物系硬化剤、フェノー
ル樹脂。
Any curing agent used in epoxy resin powder coatings can be used; for example, amine curing agents such as dicyandiamide, aromatic diamines, and imidazoles; tetrahydrophthalic anhydride, anhydrous Acid anhydride curing agents such as benzophenone tetracarboxylic acid, trimetic anhydride, pyromellitic anhydride, and phenolic resins.

ビスフェノールAのようなフェノール系硬化剤;などを
あげることができる。
Examples include phenolic curing agents such as bisphenol A; and the like.

硬化剤の配合量は用いるエポキシ樹脂の1エポキシ当量
あたり0.5〜1.5当量にすることが好ましい。
The amount of the curing agent to be blended is preferably 0.5 to 1.5 equivalents per 1 epoxy equivalent of the epoxy resin used.

なお、必要に応しては、更に、適宜な硬化促進剤9着色
顔料、無機質充填材1表面調整剤などを適量添加しても
よい。
In addition, if necessary, an appropriate amount of a suitable curing accelerator 9, coloring pigment, inorganic filler 1 surface conditioner, etc. may be added.

押出機で溶融混練して得られた混練物を、つぎに、粉砕
機で粉砕したのち、後述の条件で加熱養生する。
The kneaded material obtained by melt-kneading with an extruder is then pulverized with a pulverizer, and then heated and cured under the conditions described below.

混練物の粉砕は、通常、まず混練物を粗粉砕し、ついで
所定の粒径にまで微粉砕するという2工程で行われる。
The pulverization of the kneaded material is usually carried out in two steps: first, the kneaded material is coarsely pulverized and then finely pulverized to a predetermined particle size.

そして上記した加熱養生は、粗粉砕後微粉砕前に行って
もよく、また、微粉砕後に行ってもよい。
The heat curing described above may be performed after coarse pulverization and before pulverization, or may be performed after pulverization.

加熱養生は、加熱装置を備えている例えばヘンシェルミ
キサーやナウターミキサ−のような撹拌装置を用いて行
うことが好ましい。
Heat curing is preferably carried out using a stirring device equipped with a heating device, such as a Henschel mixer or a Nauta mixer.

このときの加熱温度は40〜80℃に設定される。この
温度が40℃より低い場合は、エツジカバリング性が不
充分となり、また80℃より高い温度で養生すると、塗
料粉末間でブロッキングが起こりやすくなるとともに、
硬化反応が進みすぎて、成膜した塗膜の平滑性や被塗装
物との密着性か損なわれるようになるので好ましくない
The heating temperature at this time is set at 40 to 80°C. If this temperature is lower than 40°C, edge covering properties will be insufficient, and if curing at a temperature higher than 80°C, blocking will easily occur between paint powders, and
This is not preferable because the curing reaction progresses too much and the smoothness of the formed coating film and its adhesion to the object to be coated are impaired.

加熱養生する時間は、用いるエポキシ樹脂と硬化剤の種
類、加熱温度、目的とする塗膜のエツジカバリング性の
程度などによって、適宜選定すればよい。
The heat curing time may be appropriately selected depending on the type of epoxy resin and curing agent used, the heating temperature, the desired degree of edge covering property of the coating film, etc.

良好なエツジカバリング性を得るためには、後述する方
法で測定するフロー値が70%以下、エツジカバー率が
40%以上であることが好ましい。
In order to obtain good edge covering properties, it is preferable that the flow value measured by the method described below be 70% or less and the edge coverage rate be 40% or more.

本発明方法で製造された粉体塗料は、例えば、静電吹付
塗装法、流動浸漬塗装法、静電流動浸漬法など、一般に
適用されている粉体塗装法によって、被塗装物に塗装す
ることかできる。
The powder coating produced by the method of the present invention can be applied to an object to be coated by a commonly applied powder coating method such as an electrostatic spray coating method, a fluidized dipping coating method, or an electrostatic dynamic dipping method. I can do it.

(発明の実施例) 実施例1 第1表で示した割合(重量部)で各原料をヘンシェルミ
キサーの中で混合したのち、二軸押出機で溶融混練した
(Examples of the Invention) Example 1 Each raw material was mixed in a Henschel mixer in the proportions (parts by weight) shown in Table 1, and then melt-kneaded in a twin-screw extruder.

(以下余白) 第1表 〜2200゜ 1000゜ *3:商品名、モンサント社製の表面調整剤。(Margin below) Table 1 ~2200° 1000° *3: Product name: Surface conditioning agent manufactured by Monsanto.

得られた混練物をまずペレット状に粗粉砕し、ついて微
粉砕して平均粒径50μmの微粉末にした。
The obtained kneaded material was first coarsely ground into pellets, and then finely ground into a fine powder with an average particle size of 50 μm.

この微粉末をナウターミキサ−の中に投入し、温度60
°Cで5時間の加熱養生を行い、本発明の粉体塗料とし
た。
This fine powder was put into a Nauta mixer, and the temperature was 60°C.
Heat curing was performed at °C for 5 hours to obtain the powder coating of the present invention.

この粉体塗料につき、ASTM−’D3451て規定す
る方法に準拠してフロー値(%)を測定した。
The flow value (%) of this powder coating was measured in accordance with the method specified in ASTM-'D3451.

すなわち、粉体塗料を成形して直径6 mm、高さ12
、7 mmの錠剤とし、この錠剤をカラス板の上にのせ
、全体を水平に保持したまま150°Cの電気オーブン
中で30分間加熱したのち、錠剤の寸法を測定し次式に
基ついてフロー値を算出した。
That is, the powder coating is molded into a piece with a diameter of 6 mm and a height of 12 mm.
, a 7 mm tablet was placed on a glass plate, and heated in an electric oven at 150°C for 30 minutes while keeping the whole tablet horizontal.The dimensions of the tablet were measured and the flow rate was calculated based on the following formula. The value was calculated.

また、ASTM−D2967に準拠してエツジカバー率
(%)を測定した。
Furthermore, edge coverage (%) was measured in accordance with ASTM-D2967.

すなわち、縦13mm、横13mm、長さ100mmの
鉄の角棒を170℃に予熱し、その表面に、粉体塗料を
200μmの厚みに流動浸漬塗装法で塗装したのちこれ
を170°Cで30分間加熱し、成膜した塗膜につき次
式に基づいてエツジカバー率を算出した。
That is, a square iron bar measuring 13 mm long, 13 mm wide, and 100 mm long was preheated to 170°C, and a powder coating was applied to the surface to a thickness of 200 μm using the fluidized dip coating method, and then this was heated at 170°C for 30 minutes. The edge coverage was calculated based on the following formula for the coating film formed by heating for 1 minute.

(余白) エツジ部の塗膜厚 ×100 以上の結果を第3表に示した。(margin) Coating thickness on edge ×100 The above results are shown in Table 3.

実施例2 加熱養生の条件を、温度60°C9時間IO時間とした
ことを除いては、実施例■と同様にして粉体塗料を製造
した。このフロー値、エツジカバー率を測定し、その結
果を第3表に示した。
Example 2 A powder coating material was produced in the same manner as in Example 2, except that the heat curing conditions were 60° C. and 9 hours IO time. The flow value and edge coverage were measured and the results are shown in Table 3.

実施例3 加熱養生の条件を、温度60°C9時間15時間とした
ことを除いては、実施例1と同様にして粉体塗料を製造
した。このフロー値、エツジカバー率を測定し、その結
果を第3表に示した。
Example 3 A powder coating material was produced in the same manner as in Example 1, except that the heat curing conditions were 60° C. for 9 hours and 15 hours. The flow value and edge coverage were measured and the results are shown in Table 3.

実施例4 加熱養生の条件を、温度70°C9時間5時間としたこ
とを除いては、実施例1と同様にして粉体塗料を製造し
た。このフロー値、エツジカバー率を測定し、その結果
を第3表に示した。
Example 4 A powder coating material was produced in the same manner as in Example 1, except that the heat curing conditions were 70° C. for 9 hours and 5 hours. The flow value and edge coverage were measured and the results are shown in Table 3.

実施例5 第2表で示した割合(重量部)で各原料をヘンシェルミ
キサーの中で混合したのち、二軸押出機で溶融混練した
Example 5 Each raw material was mixed in a Henschel mixer in the proportions (parts by weight) shown in Table 2, and then melt-kneaded in a twin-screw extruder.

第2表 15μm 得られた混練物をペレット状に粗粉砕したのちナウター
ミキサ−に投入し、温度50℃で48時間加熱養生した
。ついで、微粉砕して平均粒径50μmの微粉末とし、
本発明の粉体塗料を製造した。
Table 2: 15 μm The obtained kneaded material was coarsely ground into pellets, then put into a Nauta mixer and cured by heating at a temperature of 50° C. for 48 hours. Then, it is finely pulverized to a fine powder with an average particle size of 50 μm,
A powder coating of the present invention was produced.

得られた粉体塗料につき、実施例1と同様にしてフロー
値、エツジカバー率を測定した。その結果を第3表に示
した。
The flow value and edge coverage of the obtained powder coating were measured in the same manner as in Example 1. The results are shown in Table 3.

実施例6 加熱養生の条件を、温度60℃1時間24時間としたこ
とを除いては、実施例5と同様にして粉体塗料を製造し
た。このフロー値、エツジカバー率を測定し、その結果
を第3表に示した。
Example 6 A powder coating material was produced in the same manner as in Example 5, except that the heat curing conditions were 60° C. for 1 hour and 24 hours. The flow value and edge coverage were measured and the results are shown in Table 3.

比較例1 加熱養生を行わなかったことを除いては、実施例1と同
様にして粉体塗料を製造した。このフロー値、エツジカ
バー率を測定し、その結果を第3表に示した。
Comparative Example 1 A powder coating material was produced in the same manner as in Example 1, except that heat curing was not performed. The flow value and edge coverage were measured and the results are shown in Table 3.

比較例2 加熱養生の条件を、温度35℃1時間IO日間としたこ
とを除いては、実施例1と同様にして粉体塗料を製造し
た。このフロー値、エツジカバー率を測定し、その結果
を第3表に示した。
Comparative Example 2 A powder coating material was produced in the same manner as in Example 1, except that the heating curing conditions were 35° C. for 1 hour and 10 days. The flow value and edge coverage were measured and the results are shown in Table 3.

比較例3 加熱養生を行わなかったことを除いては、実施例5と同
様にして粉体塗料を製造した。このフロー値、エツジカ
バー率を測定し、その結果を第3表に示した。
Comparative Example 3 A powder coating material was produced in the same manner as in Example 5, except that heat curing was not performed. The flow value and edge coverage were measured and the results are shown in Table 3.

第3表 (発明の効果) 以上の説明で明らかなように、本発明方法で製造した粉
体塗料は、従来の製造方法によるエポキシ樹脂系粉体塗
料に比べて、フロー値は小さく、成膜した塗膜のエツジ
カバー率は高い。
Table 3 (Effects of the Invention) As is clear from the above explanation, the powder coating produced by the method of the present invention has a smaller flow value and a lower film formation rate than the epoxy resin powder coating produced by the conventional production method. The edge coverage of the coated film is high.

したがって、本発明方法によれば、従来のように、塗膜
の耐水性や耐湿性、被塗装物との密着性などに悪影響を
及ぼす添加剤を用いることなくエツジカバリング性の向
上した粉体塗料を製造することができ、とくに電気・電
子部品の電気絶縁被覆用粉体塗料の製造方法としてその
工業的価値は大である。
Therefore, according to the method of the present invention, a powder coating material with improved edge covering properties can be obtained without using additives that adversely affect the water resistance, moisture resistance, and adhesion of the coating film to the object to be coated. It has great industrial value, especially as a method for producing powder coatings for electrically insulating coatings on electrical and electronic parts.

Claims (1)

【特許請求の範囲】[Claims] 硬化剤を含有するエポキシ樹脂系粉体塗料の製造方法に
おいて、エポキシ樹脂、硬化剤、その他の必要な添化剤
を混合し、溶融混練し、粉砕したのち、40℃以上、8
0℃以下の温度で加熱養生することを特徴とするエポキ
シ樹脂系粉体塗料の製造方法。
In a method for producing an epoxy resin-based powder coating containing a curing agent, the epoxy resin, curing agent, and other necessary additives are mixed, melt-kneaded, and pulverized, and then heated at 40°C or higher at 8°C.
A method for producing an epoxy resin powder coating, which is characterized by heating and curing at a temperature of 0°C or lower.
JP28976490A 1990-10-26 1990-10-26 Production of epoxy resin-based powder coating Pending JPH04161466A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28976490A JPH04161466A (en) 1990-10-26 1990-10-26 Production of epoxy resin-based powder coating

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28976490A JPH04161466A (en) 1990-10-26 1990-10-26 Production of epoxy resin-based powder coating

Publications (1)

Publication Number Publication Date
JPH04161466A true JPH04161466A (en) 1992-06-04

Family

ID=17747454

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28976490A Pending JPH04161466A (en) 1990-10-26 1990-10-26 Production of epoxy resin-based powder coating

Country Status (1)

Country Link
JP (1) JPH04161466A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06190822A (en) * 1992-12-25 1994-07-12 Nippon Oil & Fats Co Ltd Lightweight aerated concrete, manufacture thereof and powder coating for reinforcing steel frame
JPH09227798A (en) * 1996-02-20 1997-09-02 Natoko Paint Kk Production system of granule
JP2004526396A (en) * 2001-03-14 2004-08-26 アクゾ ノーベル ナムローゼ フェンノートシャップ Powder coated rotor
JP2005220327A (en) * 2004-02-09 2005-08-18 Dainippon Toryo Co Ltd Thermosetting powder coating, coated ferrous material and manufacturing method of coated ferrous material
JP2006096890A (en) * 2004-09-30 2006-04-13 Sumitomo Bakelite Co Ltd Epoxy resin powder coating and method for producing the same
JP2008231177A (en) * 2007-03-19 2008-10-02 Kansai Paint Co Ltd Epoxy powder coating composition for steel stock and coated steel stock
JP2015515367A (en) * 2012-03-21 2015-05-28 ヴァルスパー・ソーシング・インコーポレーテッド Double coating single cured powder coating
US9751107B2 (en) 2012-03-21 2017-09-05 Valspar Sourcing, Inc. Two-coat single cure powder coating
US10280314B2 (en) 2012-03-21 2019-05-07 The Sherwin-Williams Company Application package for powder coatings

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06190822A (en) * 1992-12-25 1994-07-12 Nippon Oil & Fats Co Ltd Lightweight aerated concrete, manufacture thereof and powder coating for reinforcing steel frame
JPH09227798A (en) * 1996-02-20 1997-09-02 Natoko Paint Kk Production system of granule
JP2004526396A (en) * 2001-03-14 2004-08-26 アクゾ ノーベル ナムローゼ フェンノートシャップ Powder coated rotor
JP2005220327A (en) * 2004-02-09 2005-08-18 Dainippon Toryo Co Ltd Thermosetting powder coating, coated ferrous material and manufacturing method of coated ferrous material
JP4622428B2 (en) * 2004-09-30 2011-02-02 住友ベークライト株式会社 Epoxy resin powder coating and manufacturing method thereof
JP2006096890A (en) * 2004-09-30 2006-04-13 Sumitomo Bakelite Co Ltd Epoxy resin powder coating and method for producing the same
JP2008231177A (en) * 2007-03-19 2008-10-02 Kansai Paint Co Ltd Epoxy powder coating composition for steel stock and coated steel stock
JP2015515367A (en) * 2012-03-21 2015-05-28 ヴァルスパー・ソーシング・インコーポレーテッド Double coating single cured powder coating
US9751107B2 (en) 2012-03-21 2017-09-05 Valspar Sourcing, Inc. Two-coat single cure powder coating
JP2018103179A (en) * 2012-03-21 2018-07-05 ヴァルスパー・ソーシング・インコーポレーテッド Two-coat single cure powder coating
US10280314B2 (en) 2012-03-21 2019-05-07 The Sherwin-Williams Company Application package for powder coatings
US10940505B2 (en) 2012-03-21 2021-03-09 The Sherwin-Williams Company Two-coat single cure powder coating
US11098202B2 (en) 2012-03-21 2021-08-24 The Sherwin-Williams Company Two-coat single cure powder coating
US11925957B2 (en) 2012-03-21 2024-03-12 The Sherwin-Williams Company Two-coat single cure powder coating

Similar Documents

Publication Publication Date Title
JPH02102274A (en) Epoxy resin powder coating material suitable for slot insulation
JPH04161466A (en) Production of epoxy resin-based powder coating
US3506598A (en) Thermo-curing coating powder composition
CA1129587A (en) Saturated cross-linkable composition
JPS58198525A (en) Epoxy resin composition
JP2013203764A (en) Epoxy resin powder coating material and article coated by using the same
US4017447A (en) Flow control agent for ultra thin epoxy resin powder coatings
JP5012124B2 (en) Epoxy resin powder coating
TWI675076B (en) Powder coatings
JPS5813623A (en) Solid curing agent composition for epoxy resin
JPS61148274A (en) Epoxy resin powder coating composition
JPS6332827B2 (en)
JPH05287219A (en) Epoxy resin powder coating material
JP2778183B2 (en) Epoxy powder coating composition
JPS6189271A (en) Epoxy resin composition for powder coating
KR960000973B1 (en) Epoxy powder paint for electric insulation
JPH0573767B2 (en)
JPH0223584B2 (en)
KR100554031B1 (en) Thermosetting Epoxy Powder Coating Composition_
JPH0223583B2 (en)
JPS63142071A (en) Thermosetting epoxy resin powder coating composition
JPH0240700B2 (en)
JPH0711105A (en) Epoxy resin composition with excellent thermal impact property
JPS59226069A (en) Epoxy resin powder coating composition
JPH06256686A (en) Powder coating composition based on epoxy resin