JPS60226567A - Preparation of powder coating compound - Google Patents

Preparation of powder coating compound

Info

Publication number
JPS60226567A
JPS60226567A JP59082897A JP8289784A JPS60226567A JP S60226567 A JPS60226567 A JP S60226567A JP 59082897 A JP59082897 A JP 59082897A JP 8289784 A JP8289784 A JP 8289784A JP S60226567 A JPS60226567 A JP S60226567A
Authority
JP
Japan
Prior art keywords
powder coating
powder
coating compound
curing
aging
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59082897A
Other languages
Japanese (ja)
Other versions
JPH0356267B2 (en
Inventor
Tadashige Nomura
野村 侃滋
Mitsuo Kuze
久世 光夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Paint Co Ltd
Original Assignee
Nippon Paint Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Paint Co Ltd filed Critical Nippon Paint Co Ltd
Priority to JP59082897A priority Critical patent/JPS60226567A/en
Publication of JPS60226567A publication Critical patent/JPS60226567A/en
Publication of JPH0356267B2 publication Critical patent/JPH0356267B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Paints Or Removers (AREA)

Abstract

PURPOSE:To prepare easily and in high accuracy a curable powder coating compound capable of economizing baking time and baking energy which are required after it is applied to various devices and various products, by including a process wherein components are uniformly blended and a process wherein the previously blended components are lagged and aged at a specific temperature. CONSTITUTION:For example, an acrylic resin is blended with a curing agent (e.g., dodecanedicarboxylic acid, etc.), etc. and uniformly blended by melt blending method. The prepared flaky, pelletized, granular or powdery melt blend is lagged and aged at 40-80 deg.C, to give the desired powder coating compound.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は産業用の各種機材、工業用の各種製品に塗装す
る粉体塗料の製造方法、特に短時間で硬化する熱硬化性
粉体塗料を容易に、かつ精度良く製造する方法に関する
[Detailed Description of the Invention] Industrial Field of Application The present invention relates to a method for producing powder coatings for coating various industrial equipment and products, particularly for easily producing thermosetting powder coatings that harden in a short time. The present invention relates to a method for manufacturing with high precision.

従来技術 粉体塗料は熱硬化性樹脂、硬化剤、顔料あるいは各種添
加剤から構成される。これらの原料類は通常エクストル
ーダなどにより溶融混合した後にフレーク、ペレット、
粒状等とし、次いで粉砕機にて所望の粒度に粉砕し粉体
塗料としており、この様な製造方法の例としては特開昭
52−47031がある。
Prior art powder coatings are composed of thermosetting resins, curing agents, pigments, or various additives. These raw materials are usually melted and mixed using an extruder and then turned into flakes, pellets,
It is made into granules, etc., and then pulverized to a desired particle size using a pulverizer to produce a powder coating. An example of such a manufacturing method is JP-A-52-47031.

従来、粉体塗料の硬化を早めるには熱硬化性樹脂と硬化
剤の種類と量及び触媒の併用に依存していたが短時間で
硬化する粉体塗料はど製造が困難であった。
Conventionally, accelerating the curing of powder coatings has relied on the type and amount of thermosetting resin and curing agent, as well as the combined use of catalysts, but it has been difficult to produce powder coatings that harden in a short time.

なぜならば、エクストルーダを通過さVた際に熱硬化性
樹脂および硬化剤は液化し顔料弁の分散媒となるが加温
によって加えられた熱エネルギーが多くなると硬化反応
を開始するからである。
This is because the thermosetting resin and curing agent liquefy when passed through the extruder and become a dispersion medium for the pigment valve, but when the thermal energy applied by heating increases, a curing reaction begins.

このため短時間で硬化する粉体塗料程溶融混合出来る温
度、即ち分散媒になる熱硬化性樹脂、硬化剤が溶融する
温度である通常の80〜140℃に加熱してエクストル
ーダで混合すると本来塗装後に硬化すべき反応が起こる
。この結果製造された粉体塗料は焼付を行ってもメルト
 フローが起こらないために均一な塗膜にならず、ピン
ホールが発生したり、更には被塗物と粉体塗膜の充分な
密着性が発揮出来ない等の欠陥が発生する。
For this reason, powder coatings that harden in a short time can be melted and mixed at a temperature of 80 to 140℃, which is the temperature at which the thermosetting resin and curing agent that becomes the dispersion medium melt, and mixed with an extruder. A reaction takes place which must later be cured. Even if the powder coating produced as a result is baked, melt flow does not occur, so the coating film is not uniform, pinholes occur, and the powder coating film does not adhere well to the object to be coated. Defects such as inability to perform properly occur.

従って通常はTg点点上上反応があまり進まない温度の
範囲およそ80〜140℃で混合され塗装後に160〜
220℃で焼付硬化される。換言すればエクストルーダ
を用いた従来の製法では80〜140℃に加温しても反
応が余り進まない原料しか使うことが出来なかった。ま
た、仮にこの方法により粉体塗料を製造できたとしても
粉体塗料としての硬化反応を支配するゲルタイムの調整
が困難であるため商業製品としての安定性に欠けていた
Therefore, it is usually mixed at a temperature range of about 80 to 140 degrees Celsius, at which the reaction does not proceed much above the Tg point, and after painting it is mixed at a temperature range of about 160 to 140 degrees Celsius.
Bake hardened at 220°C. In other words, in the conventional manufacturing method using an extruder, only raw materials that do not undergo much reaction even when heated to 80 to 140° C. can be used. Furthermore, even if a powder coating could be produced by this method, it would lack stability as a commercial product because it is difficult to adjust the gel time that governs the curing reaction of the powder coating.

これらの理由から短時間で硬化する粉体塗料の製造は従
来困難とされていた。
For these reasons, it has traditionally been difficult to produce powder coatings that harden in a short time.

発明の目的 本発明の目的は塗料の焼付エネルギーの節約及び焼付時
間の短縮である。
OBJECTS OF THE INVENTION An object of the present invention is to save energy and shorten the baking time of paints.

この焼付エネルギーの節約は粉体塗料の焼付を行う炉の
長さを短縮し、あるいは被塗物を搬送する」ンベアのス
ピードアップが可能になる等の効果に直結する。
This saving in baking energy is directly linked to effects such as shortening the length of the furnace for baking the powder coating, or increasing the speed of the conveyor for conveying the object to be coated.

また、熱容量の大きな被塗物が予熱され”Cいる場合は
、被塗物の保有する熱エネルギーだけで塗料を硬化させ
る可能性を追及する事である。
In addition, when an object to be coated with a large heat capacity is preheated, we are investigating the possibility of curing the paint using only the thermal energy possessed by the object.

本発明は前述のような短時間で硬化する熱硬化性粉体塗
料を容易に製造する方法を提供する事にある。
The object of the present invention is to provide a method for easily producing a thermosetting powder coating that cures in a short time as described above.

発明の構成 本発明は熱硬化性粉体塗料を製造する場合に於いて、各
成分を均一に混合する工程と、予め混合された各成分を
40〜80℃で保温熟成する事を特徴とする粉体塗料の
製造方法である。
Structure of the Invention The present invention, when producing a thermosetting powder coating, is characterized by the step of uniformly mixing each component, and the step of aging the pre-mixed components at a temperature of 40 to 80°C. This is a method for producing powder paint.

本発明の方法を適用しうる粉体塗料は従来公知の熱硬化
性樹脂、硬化剤、顔料あるいは各種添加剤からなる。
The powder coating material to which the method of the present invention can be applied comprises a conventionally known thermosetting resin, curing agent, pigment, or various additives.

熱硬化性樹脂としては粉体塗料用に通常用いられる常温
では固体で、融点が80〜140℃のアクリル樹脂、ポ
リエステル樹脂、エポキシ樹脂等がある。エポキシ樹脂
にはビスフェノールA1ビスフェノ−/lzF等のビス
フェノール類とエピクロルヒドリン等の1ピハロヒト刀
ンの反応物でエポキシ当量が400〜2000で数平均
分子量が800〜4400であるエポキシ樹脂、フェノ
ール型あるいはクレゾール型ノボラック樹脂とエピクロ
ルヒドリンとの反応物でエポキシ当量が170〜240
で数平均分子量が300〜750のいわゆるエポキシフ
ェノールノボラック樹脂の他にトリグリシジルイソシア
ヌレ−1〜、脂環式エポキシ樹脂等がある。
Examples of thermosetting resins include acrylic resins, polyester resins, epoxy resins, etc., which are solid at room temperature and have a melting point of 80 to 140°C, which are commonly used for powder coatings. Epoxy resins include epoxy resins with an epoxy equivalent of 400 to 2,000 and a number average molecular weight of 800 to 4,400, which are made from a reaction product of bisphenols such as bisphenol A1 bispheno-/lzF and 1-pyhalogen such as epichlorohydrin, phenol type or cresol type. A reaction product of novolac resin and epichlorohydrin with an epoxy equivalent of 170 to 240
In addition to so-called epoxyphenol novolac resins having a number average molecular weight of 300 to 750, there are triglycidyl isocyanurate-1 to alicyclic epoxy resins.

これらのエポキシ樹脂の硬化剤としてはジアミノジフェ
ニルメタン等の芳香族ジアミン、脂肪族アミンと脂肪族
ジカルボン酸の縮合物であるポリアミドアミン、ジシア
ンジアミド、イミダゾール類等のアミン系の硬化剤、無
水テトラヒドロフタル酸、無水ベンゾフェノンテトラカ
ルボン酸、無水トリメリット酸のような酸無水物、ドデ
カンジカルボン酸、セバシン酸、アジピン酸のような酸
硬化剤、フェノール樹脂、ビスフェノールA等のフェノ
ール系硬化剤等があげられる。
Curing agents for these epoxy resins include aromatic diamines such as diaminodiphenylmethane, polyamidoamines which are condensates of aliphatic amines and aliphatic dicarboxylic acids, amine-based curing agents such as dicyandiamide, imidazoles, tetrahydrophthalic anhydride, Examples include acid anhydrides such as benzophenonetetracarboxylic anhydride and trimellitic anhydride, acid curing agents such as dodecanedicarboxylic acid, sebacic acid, and adipic acid, and phenolic curing agents such as phenol resins and bisphenol A.

アクリル樹脂としては各種の(メタ)アクリレート、(
メタ)アクリル酸およびそのエステルの−・種以上から
なる樹脂があり、この硬化剤としてはドデカンジカルボ
ン酸、セバシン酸、イソフタル酸等のジカルボン酸が使
用される。
Acrylic resins include various (meth)acrylates, (
There are resins made of at least one species of meth)acrylic acid and its esters, and dicarboxylic acids such as dodecanedicarboxylic acid, sebacic acid, and isophthalic acid are used as the curing agent.

ポリエステル樹脂としては無水フタル酸、イソフタル酸
、テレフタル酸、無水マレイン酸などの多塩基酸とエチ
レングリコール、トリメチロールプロパン等の多価アル
コールを縮合した平均重合度3〜50、軟化点60〜1
50℃の樹脂で硬化剤としてはイソホロンジイソシアネ
ート、固形メラミン樹脂、トリグリシジルイソシアヌレ
ート等が使用できる。
Polyester resins include polybasic acids such as phthalic anhydride, isophthalic acid, terephthalic acid, and maleic anhydride condensed with polyhydric alcohols such as ethylene glycol and trimethylolpropane, with an average degree of polymerization of 3 to 50 and a softening point of 60 to 1.
As a curing agent for the resin at 50° C., isophorone diisocyanate, solid melamine resin, triglycidyl isocyanurate, etc. can be used.

以上の熱硬化性樹脂に対して少量の熱可塑性樹脂、例え
ば石油樹脂等を併用する事も出来る。
It is also possible to use a small amount of thermoplastic resin, such as petroleum resin, in combination with the above thermosetting resin.

必要に応じて加えられる顔料としては酸化チタン、黄色
酸化鉄、赤色酸化鉄、酸化硅素、クレー、タルク、硫酸
バリウム、炭酸カルラム、マイカ等の無機顔料もしくは
充填剤、アゾ系、アントラキノン系等の有機顔料等が用
いられる。
Pigments that can be added as necessary include inorganic pigments or fillers such as titanium oxide, yellow iron oxide, red iron oxide, silicon oxide, clay, talc, barium sulfate, carlum carbonate, and mica, and organic pigments such as azo and anthraquinone. Pigments etc. are used.

そのほかに増量剤、流れ調整剤、補強剤等の各種添加剤
が用いられる。
In addition, various additives such as fillers, flow control agents, and reinforcing agents are used.

本発明方法が主対象と覆る短時間硬化型の粉体塗料とし
ては、ビスフェノール系グリシジルエーテル型エポキシ
樹脂を主成分としてフェノール系硬化剤を含む系が最適
である。
The most suitable short-curing powder coating, which is the main target of the method of the present invention, is a system containing a bisphenol-based glycidyl ether type epoxy resin as a main component and a phenol-based curing agent.

上記の粉体塗料用の粉粒体状各原科は必要に応じてニー
ダ等で予め撹拌し、次いでエクストルーダで溶融混合し
て粉体塗料用の混合物を得る。
The above-mentioned raw materials for powder coatings are stirred in advance using a kneader or the like, if necessary, and then melted and mixed using an extruder to obtain a mixture for powder coatings.

(以下溶融混合物と称する。) 溶融混合物はエクストルーダのダイからフレーク状、ペ
レット状、粒状物として押出される。
(Hereinafter referred to as a molten mixture.) The molten mixture is extruded from a die of an extruder in the form of flakes, pellets, or granules.

本発明で最も重要なのは溶m混合物を40〜80℃で保
温熟成する工程である。
The most important step in the present invention is the step of insulating and aging the molten mixture at 40 to 80°C.

本発明は短時間で硬化する粉体塗料の原料である熱硬化
性樹脂、硬化剤、顔料あるいは各種添加剤を硬化が進み
にくい温度で均一な溶融混合物とした後、40〜80℃
の保温熟成工程を採用する事により反応の程度を容易に
調整できる予備反応が可能である事を利用している。
In the present invention, thermosetting resins, curing agents, pigments, and various additives, which are raw materials for powder coatings that harden in a short time, are made into a uniform molten mixture at a temperature at which curing does not proceed easily, and then the mixture is heated at 40 to 80°C.
By adopting the heat-retained aging process, we take advantage of the fact that a preliminary reaction is possible, which allows the degree of reaction to be easily adjusted.

フレーク状、ペレット状、粒状の溶融混合物を予備反応
させるには40℃以上の温疫が必要である。
In order to pre-react a molten mixture in the form of flakes, pellets or granules, a temperature of 40° C. or higher is required.

40℃未満であると予備反応が進みにくく日数がかかり
すぎ、また80℃を越えると反応が進みすぎて塗装でき
ない程度にゲル化したり塗膜の流動性が低下する為に塗
膜が凹凸になるなど仕上がり肌が悪くなったり密着性不
良の原因などになりやすい。
If the temperature is less than 40℃, the preliminary reaction will not proceed and it will take too many days, and if it exceeds 80℃, the reaction will proceed too much and it will gel to the extent that it cannot be painted or the fluidity of the coating will decrease, causing the coating to become uneven. This can easily lead to poor finish on the skin or poor adhesion.

好ましい保温熟成温度は50〜60℃である。A preferable thermal aging temperature is 50 to 60°C.

40℃程度の場合は1週間程度の保温熟成期間が必要で
あり、80℃近くでは8時間程度で所望の予備反応が得
られる。従って、温度の選択は塗料の反応速度と在庫管
理ないしは保温熟成の保管スペース等の点から適宜選択
すればよい。
When the temperature is about 40°C, a heat retention aging period of about one week is required, and when the temperature is about 80°C, the desired preliminary reaction can be obtained in about 8 hours. Therefore, the temperature may be appropriately selected from the viewpoints of the reaction rate of the paint, inventory management, storage space for thermal aging, etc.

保温熟成にはフレーク状、ペレット状、粒状、粉末状の
溶融混合物を段ボール等に入れた状態でも良い。加温に
よりフレーク、ペレット、粒、粉末自体が融着する場合
も有るので保温熟成温度は溶融混合物の70点によって
選択すれば良い。即ち、Tg点の高い溶融混合物(50
〜90℃)は予め粉末状に粉砕をしてから50〜80℃
で保温熟成するほうが一回の粉砕で済むので効率が良く
また経済的である。しかし、19点が45〜50℃未満
の溶融混合物は粉末に近いほど保温熟成の工程で 、;
融着しやすいのでフレーク状、ペレット状にて50〜6
0℃で保温熟成した後、希望するゲルタイムに到達した
時点で粉砕するのが良い。前記したブロッキングの防止
の点から粉体塗料としてのTg点は45〜90℃が好ま
しい。
For thermal aging, a molten mixture in the form of flakes, pellets, granules, or powder may be placed in a cardboard box or the like. Since flakes, pellets, grains, and powders themselves may fuse together due to heating, the heat retention aging temperature may be selected based on the 70 points of the molten mixture. That is, a molten mixture with a high Tg point (50
~90℃) is ground into powder in advance and then heated to 50~80℃.
It is more efficient and economical to age the grains at a warm temperature because only one crushing is required. However, the molten mixture with a score of 19 below 45-50°C is closer to powder during the heat retention aging process;
50-6 in flake and pellet form as it is easy to fuse.
After aging at 0°C, it is preferable to crush the product when the desired gel time is reached. From the viewpoint of preventing the above-mentioned blocking, the Tg point of the powder coating is preferably 45 to 90°C.

本発明方法で製造した粉体塗料は通常のように静電粉体
塗装、熱硬化して塗膜を形成する事も出来る。
The powder coating material produced by the method of the present invention can also be electrostatically powder coated and thermally cured to form a coating film in the usual manner.

この場合、保温熟成によって硬化性が向上しているので
、硬化の為の熱エネルギーは一般の製法に基づいた粉体
塗料の硬化条件である180〜b く、200℃×1〜3分で良い。
In this case, the curing properties have been improved by heat retention aging, so the thermal energy for curing is 180°C to 30°C, which is the curing condition for powder coatings based on general manufacturing methods, and 200°C for 1 to 3 minutes. .

本発明方法で製造した粉体塗料を用いた最も効果的な塗
膜形成方法は粉体塗料の一般的な融点である120〜2
60℃以上に被塗物を予熱しておいて塗装を行い、硬化
の為の焼付を特に行わず保持熱のみで硬化する方法であ
る。
The most effective coating film formation method using the powder coating produced by the method of the present invention is the melting point of 120-2, which is the general melting point of powder coatings.
This is a method in which the object to be coated is preheated to 60° C. or higher, and then the coating is applied, and the coating is cured using only retained heat without any special baking for curing.

以下実施例によって更に具体的に説明をする。A more specific explanation will be given below with reference to Examples.

以下余白 表1 塗料配合(1) *1 油化シェルlホキシ社製エポキシ樹脂*2 油化
シェルエポキシ社製フェノール系硬化剤*3 油化シェ
ルエポキシ社製フェノールノボラック型エポキシ樹脂 *4 共栄社油脂製流れ調整剤 表1,2の塗料配合をニーダ、ヘンシェルミキサーで原
料を予備混合した。
Margin table below 1 Paint formulation (1) *1 Epoxy resin manufactured by Yuka Shell L Hoxy Co. *2 Phenolic curing agent manufactured by Yuka Shell Epoxy Co. *3 Phenol novolac type epoxy resin manufactured by Yuka Shell Epoxy Co. *4 Manufactured by Kyoeisha Yushi Co., Ltd. Flow control agent The raw materials were premixed using a kneader and a Henschel mixer for the paint formulations shown in Tables 1 and 2.

この予備混合物をブス社製コニーダにて押出し、溶融混
合された均一な塗料とした。
This premix was extruded using a Konida manufactured by Busu Co., Ltd. to obtain a uniform melt-mixed paint.

この溶融混合する時の容易さを混合性(*8)として評
価し、ゲル化せずに溶融混合され均一な粉体塗料が得ら
れたものをO印、またゲル化してコニーダから押しだし
不可能なものをX印として表3,4に示した。
The ease of melt-mixing is evaluated as mixability (*8), and those that are melt-mixed without gelling to obtain a uniform powder coating are marked O, and gelling and impossible to extrude from the co-kneader. Those are shown in Tables 3 and 4 with an X mark.

次いで、溶融混合物をACM (線用鉄工所製粉砕ta
>にて粉砕したのち保温熟成し熱硬化性樹脂と硬化剤の
前駆反応を起こさせ反応度を調整した粉体塗料を得た。
Then, the molten mixture was crushed with ACM (pulverized ta manufactured by Wire Ironworks Co., Ltd.
The powder was pulverized at 1000 ml and then aged under heat to cause a precursor reaction between the thermosetting resin and the curing agent to obtain a powder coating whose reactivity was adjusted.

この保温熟成等の条件を表3,4に示す。Tables 3 and 4 show the conditions for this heat retention aging, etc.

得られた粉体塗料のTQ点と200℃でのゲルタイムを
測定し、表5.6に示した。
The TQ point and gel time at 200°C of the obtained powder coating were measured and shown in Table 5.6.

この塗料を240℃に予熱した3、2m厚で70X 1
50mmのテストピースに静電粉体塗装機で膜厚180
〜220μに塗装し、放冷したところテストピースの熱
により硬化した塗膜が得られた。
This paint was preheated to 240℃ and was 70X 1 with a thickness of 3.2m.
A film thickness of 180 mm was applied to a 50 mm test piece using an electrostatic powder coating machine.
When the test piece was coated to a thickness of ~220μ and allowed to cool, a coating film was obtained that was cured by the heat of the test piece.

この塗膜の性能を表5に示す。The performance of this coating film is shown in Table 5.

次いで、製造例1Aと1B、3Aと3B、6Aと6Bを
用い0.8履厚で70x 150mのテストピースに静
電粉体塗装機で塗装した後200℃×3分間焼付けて膜
厚60〜80μの塗膜を得た。
Next, using Production Examples 1A and 1B, 3A and 3B, and 6A and 6B, a test piece of 70 x 150 m with a thickness of 0.8 mm was coated with an electrostatic powder coating machine, and then baked at 200°C for 3 minutes to obtain a film thickness of 60 ~ A coating film of 80μ was obtained.

この塗膜の性能を表7に示す。Table 7 shows the performance of this coating film.

以下余白 表2 塗料配合(2) *5 メタクリル酸グリシジル15重量部、メタクリル
酸メヂル25重間部、スチレン40重量部、メタクリル
酸イソブチル20重量部の混合物にアゾビス(2−メヂ
ルプロピオニトリル)2重量部、連鎖移動剤としてt−
ドデシルメルカプタン1重量部を加え常法に従って共重
合して、重置平均分子量28000のアクリル樹脂をえ
た。
Table 2 below: Paint formulation (2) *5 Add azobis(2-medylpropionitrile) to a mixture of 15 parts by weight of glycidyl methacrylate, 25 parts by weight of medyl methacrylate, 40 parts by weight of styrene, and 20 parts by weight of isobutyl methacrylate. 2 parts by weight, t- as a chain transfer agent
1 part by weight of dodecyl mercaptan was added and copolymerized according to a conventional method to obtain an acrylic resin having a weighted average molecular weight of 28,000.

*6 バイエル社製ポリエステル樹脂 *7 バイエル社製ε−カプロラクタム ブロックイソ
シアネート この塗料を240℃に予熱した3、2.m厚で70X 
150111#Iのテストピースに静電粉体塗装機で膜
厚60〜100μに塗装し、放冷により硬化した塗膜を
得た。
*6 Polyester resin manufactured by Bayer *7 ε-caprolactam block isocyanate manufactured by Bayer This paint was preheated to 240°C 3.2. 70X with m thickness
A test piece of 150111#I was coated with an electrostatic powder coating machine to a film thickness of 60 to 100 μm, and a coating film was obtained which was cured by standing to cool.

この塗膜の性能を表6に示す。Table 6 shows the performance of this coating film.

各製造例は各塗料配合についてAが溶融混合だけで粉体
塗料としたものを比較例、またBが溶融混合したのち保
温熟成した実施例である。
Each manufacturing example is a comparative example in which powder paint A was prepared by only melt-mixing for each paint formulation, and B is an example in which powder paint was prepared by melt-mixing and then heat-retained aging.

*9 形状は溶融混合物の形。*9 The shape is that of a molten mixture.

表4 製造例(2) 各製造例は各塗料配合についてAが溶融混合だけで粉体
塗料としたものを比較例、またBが溶融混合したのち保
温熟成した実施例である。
Table 4 Production Example (2) Each production example is a comparative example in which A powder coating was made only by melt-mixing for each paint formulation, and B is an example in which powder coating was made by melt-mixing and then heat-retained aging.

*9 形状は溶融混合物の形。*9 The shape is that of a molten mixture.

以下余白 表5 粉体塗膜の性能(1) *10熱分析計 DT−30島津製作所製*1t 20
0℃で評価した硬化までの秒数。
Table 5 below: Performance of powder coating film (1) *10 Thermal analyzer DT-30 manufactured by Shimadzu *1t 20
Seconds to cure evaluated at 0°C.

$120IN−30671−6,8によって10mφの
ラムを用いて評価した。
Evaluation was made using a ram of 10 mφ using a $120 IN-30671-6,8.

$13 ASTHG−14にもとずいて重さ1Kg、で
行った際の0 折り曲げ角度と耐衝撃性のaは20℃、bは一40℃で
評価した結果である。 1 表6 粉体塗膜の性能(2) *14 JIS−ト5400によって10mmφの心棒
を用いて評価した。
$13 Based on ASTHG-14, the 0 bending angle and impact resistance were evaluated at a temperature of 20° C. and 40° C., respectively. 1 Table 6 Performance of powder coating film (2) *14 Evaluated according to JIS-To 5400 using a 10 mmφ mandrel.

*is JIS−に−5400にもとずいて172イン
チ、重さ05に9で行った塗膜破壊直前の耐衝撃距離c
m0以下余白 $15 JIS=に−5400により1mm間隔のコバ
ン目テスト$16 JIS−に−5400によるツルト
スプレーテスト100時間。
*Is impact resistance distance c just before paint film failure, based on JIS-5400, 172 inches, weight 05 to 9
Margin below m0 $15 JIS = ni-5400 1mm interval test $16 JIS = ni-5400 tsuruto spray test 100 hours.

評価基準は錆がASTH[1−610,ノクレが八5T
)l D714 。
The evaluation criteria are ASTH [1-610 for rust, 85T for rust]
) l D714.

表5.6によればIA、6A、7Aはゲルタイムが長く
、被塗物を予熱した熱エネルギーだけでは硬化が不4−
分で期待する性能に達していない。
According to Table 5.6, IA, 6A, and 7A have long gel times and cannot be cured with just the thermal energy of preheating the coated material.
The expected performance has not been reached in minutes.

また、製造例5.8はいずれもゲルタイムを短くする目
的で触媒を使用したが溶融混合時に押出し機内でゲル化
して粉体塗料とすることが出来なかった。
In addition, in both Production Examples 5 and 8, a catalyst was used for the purpose of shortening the gel time, but the mixture gelled in the extruder during melt mixing and could not be made into a powder coating.

一方、保温熟成を行った2B、3B、4Bと保温熟成1
を行っていない2A、3A、4Aを比較すると2B、3
B、4Bはゲルタイムが短く硬化性が高いので240℃
の被塗物の予熱エネルギーだけで期待する塗膜性能を充
分に発揮しており、特に−40℃での性能が優れている
On the other hand, 2B, 3B, 4B and heat aging 1
Comparing 2A, 3A, and 4A that have not done so, 2B, 3
B and 4B have short gel time and high curing properties, so 240℃
The expected coating film performance is fully demonstrated with just the preheating energy of the coated object, and the performance is particularly excellent at -40°C.

発明の効果 本発明は粉体塗料用の各原料を均一・に混合した後、保
温熟成させることによって200℃×1〜20秒で硬化
する粉体塗料の製造が可能となった。
Effects of the Invention The present invention makes it possible to produce a powder coating that hardens at 200° C. for 1 to 20 seconds by uniformly mixing raw materials for a powder coating and then aging the mixture under heat.

保温熟成工程を採用する事によりエクストルーダでの溶
融混合時にゲル化するなどの問題は解消した。
By adopting a thermal aging process, problems such as gelation during melt mixing in an extruder were resolved.

また保温熟成の温度と時間を適宜選択する事により塗装
後の焼イ」時間を調整する事も可能となった。この結果
、焼付炉の短縮、コンベア スピードの向上などの有用
なる成果が得られた。
It is also now possible to adjust the baking time after painting by appropriately selecting the heat aging temperature and time. As a result, useful results such as shortening the baking furnace time and improving conveyor speed were obtained.

出願人 日本ペイント株式会社applicant Nippon Paint Co., Ltd.

Claims (1)

【特許請求の範囲】 1 熱硬化性粉体塗料を製造する場合に於いて、各成分
を均一に混合する工程と、予め混合された各成分を40
〜80℃で保温熟成する工程からなる事を特徴とする粉
体塗料の製造方法。 2 原料を均一に混合する工程がメルト ブレンド法に
よるものである特許請求の範囲第一項記載の粉体塗料の
製造方法。 3 保温により予備反応される溶融混合物がフレーク状
、ベレット状、粒状、粉末状である特許請求の範囲第一
項記載の粉体塗料の製造方法。 4 熱硬化性粉体塗料のTQ点が45〜90℃である特
許請求の範囲第一項記載の粉体塗料の製造方法。
[Claims] 1. When producing a thermosetting powder coating, there is a step of uniformly mixing each component, and a step of mixing each component in advance for 40 minutes.
A method for producing a powder coating, characterized by comprising a step of thermal aging at ~80°C. 2. The method for producing a powder coating according to claim 1, wherein the step of uniformly mixing the raw materials is by a melt blending method. 3. The method for producing a powder coating material according to claim 1, wherein the molten mixture pre-reacted by keeping it warm is in the form of flakes, pellets, granules, or powder. 4. The method for producing a powder coating according to claim 1, wherein the thermosetting powder coating has a TQ point of 45 to 90°C.
JP59082897A 1984-04-26 1984-04-26 Preparation of powder coating compound Granted JPS60226567A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59082897A JPS60226567A (en) 1984-04-26 1984-04-26 Preparation of powder coating compound

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59082897A JPS60226567A (en) 1984-04-26 1984-04-26 Preparation of powder coating compound

Publications (2)

Publication Number Publication Date
JPS60226567A true JPS60226567A (en) 1985-11-11
JPH0356267B2 JPH0356267B2 (en) 1991-08-27

Family

ID=13787052

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59082897A Granted JPS60226567A (en) 1984-04-26 1984-04-26 Preparation of powder coating compound

Country Status (1)

Country Link
JP (1) JPS60226567A (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5450533A (en) * 1977-09-30 1979-04-20 Dainippon Ink & Chem Inc Preparation of powder coating
JPS57174355A (en) * 1981-04-20 1982-10-27 Dainippon Toryo Co Ltd Production of powdered paint
JPS5945366A (en) * 1982-09-06 1984-03-14 Kubota Ltd Epoxy resin powder paint
JPS5949244A (en) * 1982-09-14 1984-03-21 Nitto Electric Ind Co Ltd Manufacture of heat-curable resin composition

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5450533A (en) * 1977-09-30 1979-04-20 Dainippon Ink & Chem Inc Preparation of powder coating
JPS57174355A (en) * 1981-04-20 1982-10-27 Dainippon Toryo Co Ltd Production of powdered paint
JPS5945366A (en) * 1982-09-06 1984-03-14 Kubota Ltd Epoxy resin powder paint
JPS5949244A (en) * 1982-09-14 1984-03-21 Nitto Electric Ind Co Ltd Manufacture of heat-curable resin composition

Also Published As

Publication number Publication date
JPH0356267B2 (en) 1991-08-27

Similar Documents

Publication Publication Date Title
CN109762440B (en) Low-temperature curing powder coating and preparation method thereof
US20030194560A1 (en) Coating powders, methods of manufacture thereof, and articles formed therefrom
JPH06293867A (en) Matte powdery coating composition, method for coating and film made therefrom
US7041737B2 (en) Coating powder composition, method of use thereof, and articles formed therefrom
US3989679A (en) Epoxy resin powder composition
JPS59193970A (en) Powder coating composition
JPH04161466A (en) Production of epoxy resin-based powder coating
JPS60226567A (en) Preparation of powder coating compound
EP0204658A2 (en) Powdery mixture of a curable epoxy resin
JP2840201B2 (en) Powder paint
JPH07258384A (en) Epoxy resin composition
JP2002233819A (en) Powder coating method of steel and powder coated steel
JPS6332827B2 (en)
JP2778183B2 (en) Epoxy powder coating composition
JP2000109728A (en) Powder coating composition capable of being cured at wide baking temperature range and its coating application
JPS6336305B2 (en)
JPH09100425A (en) Powder paint for casting
JP3794289B2 (en) Metal tubes coated with epoxy resin powder coating
JP4622428B2 (en) Epoxy resin powder coating and manufacturing method thereof
CA2131745C (en) Low gloss powder coating composition and method for coating therewith
JPH11100534A (en) Powder coating material for electrostatic coating and method for coating therewith
JP3477815B2 (en) Method of manufacturing spacer and liquid crystal display panel
JP4971556B2 (en) Epoxy resin powder coating composition
JPH021189B2 (en)
JP3312485B2 (en) Powder epoxy resin composition

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees