JPH0355765A - Sealed lead storage battery - Google Patents

Sealed lead storage battery

Info

Publication number
JPH0355765A
JPH0355765A JP1189970A JP18997089A JPH0355765A JP H0355765 A JPH0355765 A JP H0355765A JP 1189970 A JP1189970 A JP 1189970A JP 18997089 A JP18997089 A JP 18997089A JP H0355765 A JPH0355765 A JP H0355765A
Authority
JP
Japan
Prior art keywords
electrolyte
separator
battery
silica
sealed lead
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1189970A
Other languages
Japanese (ja)
Other versions
JP2855677B2 (en
Inventor
Toshiaki Hayashi
俊明 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Storage Battery Co Ltd
Original Assignee
Japan Storage Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Storage Battery Co Ltd filed Critical Japan Storage Battery Co Ltd
Priority to JP1189970A priority Critical patent/JP2855677B2/en
Publication of JPH0355765A publication Critical patent/JPH0355765A/en
Application granted granted Critical
Publication of JP2855677B2 publication Critical patent/JP2855677B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Cell Separators (AREA)
  • Secondary Cells (AREA)

Abstract

PURPOSE:To obtain a battery having an electrolyte holding body which is highly economical and has a high liquid holding ability and sulfur diffusing ability by providing a separator including fine powders between a positive and a negative pole plate, and filling silica granulated grains of a specified grain size between the pole plates and around the group of pole plates. CONSTITUTION:For a seale lead battery in which oxygen gas produced at the time of charging is absorbed by a negative pole, a separator including silica fine powders in part of its composition is put between a positive and negative electrode, and silica grains granulated in a grain size of 50-200mu are filled between the pole plates and around the group of pole plates, where sulfuric electrolyte of a necessary and sufficient quantity for discharging is impregnated. A high characteristic sealed lead battery including an electrolyte holding body which is highly economical and has a high liquid holding ability and sulfur diffusing ability can thus be obtained.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は密閉式鉛蓄電池、特にその電解液保持体の改良
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a sealed lead-acid battery, and in particular to improvements in its electrolyte holder.

従来の技術 近年、ポータブル機器やコンピューターのバックアップ
電源として密閉式鉛蓄電池が広く用いられるようになっ
てきた。この種の密閉式鉛蓄電池はその電解液保持方法
によりリテーナ式とゲル式とに分類される。リテーナ式
は微細ガラス繊維を主体として抄紙された多孔性のセパ
レータに希硫酸電解液を保持させる方法であり、ゲル式
は珪酸などにより希硫酸電解液をゲル状にして電池内に
充填する方法である. 発明が解決しようとする課題 リテーナ式の場合セパレー夕の主体を占める微細ガラス
繊維が高価であるためにセパレータ自体も非常に高価な
ものであった。そのために合成樹脂繊維などに置き換え
たセパレー夕も開発されているが、充分な保液性を有す
るにはいたっていない。
BACKGROUND OF THE INVENTION In recent years, sealed lead-acid batteries have become widely used as backup power sources for portable devices and computers. This type of sealed lead-acid battery is classified into a retainer type and a gel type depending on the electrolyte retention method. The retainer type is a method in which the dilute sulfuric acid electrolyte is held in a porous separator made of paper mainly made of fine glass fibers, and the gel type is a method in which the dilute sulfuric acid electrolyte is turned into a gel using silicic acid and filled into the battery. be. Problems to be Solved by the Invention In the case of a retainer type separator, the fine glass fibers that make up the main part of the separator are expensive, so the separator itself is also very expensive. For this purpose, separators replaced with synthetic resin fibers have been developed, but they do not have sufficient liquid retention properties.

一方、ゲル式の場合ゲルの調整やその充填が複雑であり
、またエレメントの上部の空間を除く全ての空間にゲル
を充填する必要があるため余分の電解液を充填しなけれ
ばならない欠点があった。
On the other hand, in the case of a gel type, preparing and filling the gel is complicated, and since it is necessary to fill all spaces except the space above the element with gel, there is a drawback that extra electrolyte must be filled. Ta.

さらにゲル内における硫酸イオンの拡散が遅いために従
来の開放形の液式j9蓄電氾は勿論リテーナ】(の密閉
式鉛蓄電池よりも性能が劣っていた。
Furthermore, due to the slow diffusion of sulfate ions within the gel, the performance of conventional open type liquid type J9 storage batteries was inferior to that of sealed type lead acid batteries.

これらの問題点を解決するために密閉式(11蓄電池の
電解液保持材としてシリカ造拉扮体についー(検討を行
い、シリカ〈二酸化][素)の造粒扮体が電解液保持材
として適用できることか判った。しかし、実験を追めて
行くと共にいくつかの欠点か四らかになってきた。その
一つとして両・階を充分に隔離しなければ特に自動車用
などのような画極板の間隔の狭い電池ではシリカ扮木の
間隙を通っ゛(活物質粒子が浸透し短絡を起こしてしま
うこと、さらに短絡を肋止ずるためにlM細カラス繊維
から成る薄いガラスセパレー夕を極板表面に当接して用
いると電解液が充分に存在する間Cよ良好な性能を示す
が、過充電されるような用途で電解漬が減少してくると
カラスセパレータに含まれていた電解液がシリカ逍粒粉
体に吸収さt(てしまいガラスセバレータ中の電解液が
減少して、極板に電解}ほを供給できなくなりさらに抵
抗も大きくなってしまうことが判った。
In order to solve these problems, we investigated the use of silica as an electrolyte retaining material in sealed storage batteries (11). I found that it could be applied. However, as I continued to experiment, I found some drawbacks. One of them is that if the floors and floors are not sufficiently isolated, the In batteries with narrow electrode plates, the active material particles penetrate through the gaps between the silica sheets and cause a short circuit.In order to prevent short circuits, a thin glass separator made of 1M fine glass fiber is used to prevent short circuits. When used in contact with the plate surface, it shows better performance than C as long as there is sufficient electrolyte, but if the electrolyte decreases in applications where overcharging occurs, the electrolyte contained in the glass separator will disappear. It was found that the electrolyte in the glass separator was absorbed by the silica granules and the electrolyte in the glass separator was reduced, making it impossible to supply electrolyte to the electrode plates and further increasing the resistance.

課題を解決するための手段 本発明はL連した問題点を解決するもので、安価で保液
性に漬れかつ硫酸の拡散性の優れた電解液保持体をイf
ずる密閉式鉛蓄電池を提供ずるしのである。その要旨と
するところは組成の一部にシリカの微小粉体を有する隔
離体を正臣板と負他仮との間に介在させてなる横板群を
電槽内に収納すると共に、極板間および椹板群の周囲に
50〜200ミクロンに逍粒したシリカ粉体を充填,配
置し、放電に必要かつ充分な量のra酸電解液を上記遣
拉粉体および隔離体に含浸,保持させることにある.以
下本発明を実施例に基づいて説明する。
Means for Solving the Problems The present invention solves a series of problems by providing an electrolyte holder that is inexpensive, has good liquid retention properties, and has excellent sulfuric acid diffusivity.
Zurushino offers sealed lead acid batteries. The gist of this is that a horizontal plate group consisting of a separator containing fine silica powder as a part of the composition is interposed between the Masaomi plate and the negative and other plates, and the horizontal plate group is housed in a battery case. Fill and arrange silica powder granulated to 50 to 200 microns around the bamboo plate group, and impregnate and hold the RA acid electrolyte in the amount necessary and sufficient for discharge into the above-mentioned powder and separator. There is a particular thing. The present invention will be explained below based on examples.

実施例 pb−Qi−Sn合金より或る正および負極格子体に通
常の正極および負極ペーストをそれぞれ充填した後、シ
リカの微小粉体を約50%含み無機繊維、有機繊維およ
び少量のバインダーと共に湿式抄造した厚さ約0.2■
のセパレー夕を負極板の両面に当接して正極板3枚と負
極板4枚とで極板群を作製し、電槽に挿入した.ここで
、両極板の間隔は厚さ約11の合成樹脂板を用いて保持
したが、電池に無害で両極板の間隔を保持できるもので
あればよい。望ましくは両極板間に占める体積の少ない
ものがよい。
Example: A certain positive and negative electrode grid made of pb-Qi-Sn alloy was filled with ordinary positive and negative electrode pastes, respectively, and then wet-processed with about 50% of silica fine powder together with inorganic fibers, organic fibers and a small amount of binder. Paper-made thickness approximately 0.2■
The separators were brought into contact with both sides of the negative electrode plate, and an electrode plate group was prepared with three positive electrode plates and four negative electrode plates, and the electrode plate group was inserted into the battery case. Here, the spacing between the two electrode plates was maintained using a synthetic resin plate having a thickness of about 11 mm, but any material that is harmless to the battery and capable of maintaining the spacing between the two electrode plates may be used. It is preferable to use a material that occupies a small volume between the two electrode plates.

ついでシリカの倣ワ)末に水を加えてペースト状にし約
200゜C″?:″乾燥した後粉砕して作製した直径2
0〜500μmのシリカ造粒粉体を両極板間および地板
群の周囲に振動を加えながら密に充填した。
Next, water was added to the silica powder to make a paste, dried at about 200°C, and then crushed to make a diameter 2.
Granulated silica powder of 0 to 500 μm was densely packed between the two electrode plates and around the base plate group while applying vibration.

ここで充填したシリカの逍粒粉体は充填状態で約90%
の、それ自身では約85%の気孔率を有していた。
The silica powder filled here is about 90% in the filled state.
By itself, it had a porosity of about 85%.

このようにして造粒粉体を充填した後、フタを接着し、
排気弁を装着して公称容量4.5Ahの密閉式鉛蓄電池
Aを組み立てた。比較のために同じ極板を用いて本発明
のシリカ微小粉体を含むセパレータの代わりに微細ガラ
ス繊維から成る同じ厚さのガラスセパレー夕を用いた密
閉式鉛蓄電池Bおよび両極板の間に微細ガラス繊維から
成るガラスセパレータのみを用い極板群の周囲にシリカ
造粒扮体を充填していない従来のリテーナ式の密閉式1
;〕蓄電池Cも組み立てた。第1表にこれら3種類の電
池の初期の容量試験結果を、第1図にサイクル寿命試験
の結果を示す。サイクル寿命試験は公称容量の50%を
1時間で放電しその135%を4時間かけて充電すると
いう条件で行った.なお、;品度は40゜Cである。
After filling the granulated powder in this way, glue the lid,
A sealed lead-acid battery A with a nominal capacity of 4.5 Ah was assembled with an exhaust valve installed. For comparison, a sealed lead-acid battery B using the same electrode plates and a glass separator of the same thickness made of fine glass fibers instead of the separator containing fine silica powder of the present invention, and a fine glass fiber between the two electrode plates. Conventional closed type retainer type 1 that uses only a glass separator consisting of a glass separator and does not fill the periphery of the electrode plate with silica granules.
;] Storage battery C was also assembled. Table 1 shows the initial capacity test results of these three types of batteries, and FIG. 1 shows the cycle life test results. The cycle life test was conducted under the conditions of discharging 50% of the nominal capacity in one hour and charging it to 135% over four hours. Note that the quality is 40°C.

第1表 第1表から明らがなように両極板を隔離するためにシリ
カ微小粉体を含むセパレー夕を用いたもの(A)も微細
ガラス繊維がら成る同じ厚さのカラスセパレータを用い
たもの(B)もほぼ同程度の性能を示し、従来のリテー
ナ式の密閉式鉛蓄電池(C)よりも潰れた性能を示した
,これはシリ力遺拉粉体中での電解液である硫酸の移動
がスムースであり、かつ電解液を多く注入できることに
よるものと思われる。一方、第1図に示した上うに倣細
ガラス繊維から成る薄いガラスセパレー夕を負極板の表
向に当接し極間および極板群の周囲にシリカの造拉粉体
を充填して用いたもの(F3)は従来品(C)よりも寿
命サイクルは長かったものの、約300サイクル付近か
ら急激に容量低下を起こした。この電池を解体して調べ
たところ、シリカ逍粒粉体中には電解漬が充分に含まれ
ているにもかからず負極板に当接したガラスセバレータ
にCまほとんど電解液が含まれておらず、このような急
激な容量低下は、負極板に電解7^を供給できなくなり
さらにガラスセバレー夕中の抵抗も大きくなってしまっ
たからであると考えられる。一方、本発明のシリカ微小
粉体を含むセパレータを負極板の表面に当接し極間およ
び極板群の周囲にシリ力の遣′#l粉体を充填して用い
た電池では急激な容1低下は見られず寿命性能は大幅に
向上した.この電池についても寿命試験後解体して調べ
た。シリカ造粒粉体中には勿論、隔離板中にも充分な電
解液が含まれていた。
Table 1 As is clear from Table 1, the method in which a separator containing fine silica powder was used to separate the two electrode plates (A) also used a glass separator of the same thickness made of fine glass fibers. Type (B) also showed almost the same performance, and showed better performance than the conventional cage-type sealed lead-acid battery (C). This seems to be due to the smooth movement of the electrolyte and the ability to inject a large amount of electrolyte. On the other hand, as shown in Fig. 1, a thin glass separator made of fine glass fiber was brought into contact with the surface of the negative electrode plate, and silica powder was filled between the electrodes and around the electrode group. Although the product (F3) had a longer life cycle than the conventional product (C), the capacity suddenly decreased from around 300 cycles. When this battery was disassembled and examined, it was found that although the silica powder contained a sufficient amount of electrolyte, the glass separator in contact with the negative electrode plate contained almost no electrolyte. It is thought that this rapid capacity drop was due to the fact that the electrolyte 7^ could no longer be supplied to the negative electrode plate, and the resistance of the glass separator also increased. On the other hand, in a battery using a separator containing the silica micropowder of the present invention in contact with the surface of a negative electrode plate and filling the space between the electrodes and the periphery of the electrode plate group with the silicate powder, the capacitance rises rapidly. No deterioration was observed, and the life performance was significantly improved. This battery was also disassembled and examined after the life test. Sufficient electrolyte was contained not only in the silica granulated powder but also in the separator.

なお、上記実施例ではシリカ微小粉体を含むセパレー夕
をn極板の表面に当接して用いた場合について示したが
、tEm板の表面に当接して用いる等、シリカ+a小粉
体を含むセパレー夕が正,負蚤板間に介在する梢成であ
ればよく、上記実施例に限定ずるものではない。
In addition, in the above example, a case was shown in which a separator containing fine silica powder was used in contact with the surface of the n-electrode plate, but it could be used in contact with the surface of a tEm plate, etc., containing fine silica + a powder. The present invention is not limited to the above embodiments, as long as the separator is a branch structure interposed between the positive and negative flea plates.

発明の効果 上述の実/i1例から明らかなように、本発り1による
密閉式j9蓄電池はシリカの微小粉体を含むセパレー夕
を正,負極板間に介在させ極板間および極板群の周囲に
シリカ逍粒粉体を充填することによって、従来形の密閉
式船蓄電池の性能を大幅に向上でき、その工業的価値は
大きい。
Effects of the Invention As is clear from the above-mentioned Practical Example 1, the sealed J9 storage battery according to the present invention 1 has a separator containing fine silica powder interposed between the positive and negative electrode plates, and between the electrode plates and between the electrode plate groups. By filling the surrounding area with silica powder, the performance of conventional sealed marine storage batteries can be greatly improved, and its industrial value is great.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はサイクル寿命試験の結果を示す図である。 FIG. 1 is a diagram showing the results of a cycle life test.

Claims (1)

【特許請求の範囲】[Claims] 1、電池の充電中に発生する酸素ガスを負極で吸収させ
る密閉式鉛蓄電池において、組成の一部にシリカの微小
粉体を有する隔離体を正、負極板間に介在させてなる極
板群を電槽内に収納すると共に、極板間および極板群の
周囲に50〜200ミクロンに造粒したシリカ粉体を充
填、配置し、放電に必要かつ充分な量の硫酸電解液を上
記造粒粉体および隔離体に含浸、保持させることを特徴
とする密閉式鉛蓄電池。
1. In a sealed lead-acid battery in which the negative electrode absorbs oxygen gas generated during battery charging, an electrode plate group in which a separator containing fine silica powder as part of the composition is interposed between the positive and negative electrode plates. is stored in a battery case, and silica powder granulated to a size of 50 to 200 microns is filled and arranged between the electrode plates and around the electrode plate group, and a sufficient amount of sulfuric acid electrolyte necessary for discharge is applied. A sealed lead-acid battery characterized by being impregnated and held in granular powder and a separator.
JP1189970A 1989-07-21 1989-07-21 Sealed lead-acid battery Expired - Fee Related JP2855677B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1189970A JP2855677B2 (en) 1989-07-21 1989-07-21 Sealed lead-acid battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1189970A JP2855677B2 (en) 1989-07-21 1989-07-21 Sealed lead-acid battery

Publications (2)

Publication Number Publication Date
JPH0355765A true JPH0355765A (en) 1991-03-11
JP2855677B2 JP2855677B2 (en) 1999-02-10

Family

ID=16250232

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1189970A Expired - Fee Related JP2855677B2 (en) 1989-07-21 1989-07-21 Sealed lead-acid battery

Country Status (1)

Country Link
JP (1) JP2855677B2 (en)

Also Published As

Publication number Publication date
JP2855677B2 (en) 1999-02-10

Similar Documents

Publication Publication Date Title
JPS6132365A (en) Retainer-type lead storage battery
JPH042060A (en) Sealed type lead acid battery
JP2855669B2 (en) Sealed lead-acid battery
JPH0355765A (en) Sealed lead storage battery
JP3555177B2 (en) Sealed lead-acid battery
JPS6237882A (en) Closed type lead storage battery
JPH02165570A (en) Closed lead battery
JPS5882472A (en) Lead storage battery and manufacture thereof
JPH02158062A (en) Sealed lead-storage battery
JPH02158063A (en) Sealed lead-storage battery
JP3261417B2 (en) Sealed lead-acid battery
JPH04149968A (en) Sealed-type lead secondary battery
JPH0432158A (en) Closed lead acid battery
JP2958790B2 (en) Sealed lead-acid battery
JP2571063B2 (en) Manufacturing method of sealed lead-acid battery
JPH03252063A (en) Sealed type lead storage battery
JPS60148052A (en) Sealed lead storage battery
JPH03246871A (en) Manufacture of sealed lead-acid battery
JPH01248459A (en) Sealed lead-acid battery
JPS62157673A (en) Lead storage battery
JPH05151988A (en) Sealed type lead acid battery
JPH0482172A (en) Lithium cell
JPH03112067A (en) Sealed lead-acid battery
JPH0451471A (en) Sealed type lead acid battery
JPH03196466A (en) Sealed lead-acid storage battery

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees