JPH0451471A - Sealed type lead acid battery - Google Patents

Sealed type lead acid battery

Info

Publication number
JPH0451471A
JPH0451471A JP2160459A JP16045990A JPH0451471A JP H0451471 A JPH0451471 A JP H0451471A JP 2160459 A JP2160459 A JP 2160459A JP 16045990 A JP16045990 A JP 16045990A JP H0451471 A JPH0451471 A JP H0451471A
Authority
JP
Japan
Prior art keywords
electrode plates
powder
granulated
acid battery
separator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2160459A
Other languages
Japanese (ja)
Inventor
Toshiaki Hayashi
俊明 林
Masahiko Onari
小齊 雅彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Storage Battery Co Ltd
Original Assignee
Japan Storage Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Storage Battery Co Ltd filed Critical Japan Storage Battery Co Ltd
Priority to JP2160459A priority Critical patent/JPH0451471A/en
Publication of JPH0451471A publication Critical patent/JPH0451471A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)

Abstract

PURPOSE:To enhance the discharge performance of a sealed type lead acid battery greatly by putting fully specific silica powder between electrode plates and around the electrode plate bunch, and impregnating granulated powder and separator with a sulphuric acid electrolyte in a proper amount for discharging. CONSTITUTION:Silica powder granulated to pore diameters of 10-500mum, wherein the capacity of pores of 1-50mum in dia. shares 45% of the total pore capacity, is put fully between electrode plates and around the bunch of electrode plates, and the granulated powder and separator are impregnated with sulfuric acid electrolyte in a proper amount for discharging.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は密閉式鉛蓄電池、特にその電解液保持体の改良
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a sealed lead-acid battery, and in particular to improvements in its electrolyte holder.

従来の技術 近年、ポータプル機器やコンピューターのバックアップ
電源として密閉式鉛蓄電池が広く用いられるようになっ
てきた。この種の密閉式鉛蓄電池はその電解液保持方法
によりリテーナ式とゲル式とに分類される。リテーナ式
は微細カラス繊維を主体として抄紙された多孔性のセパ
レータに@硫酸電解液を保持させる方法であり、ゲル式
は珪酸などにより希硫酸電解液をゲル状にして電池内に
充填する方法である。
BACKGROUND OF THE INVENTION In recent years, sealed lead-acid batteries have become widely used as backup power sources for portable devices and computers. This type of sealed lead-acid battery is classified into a retainer type and a gel type depending on the electrolyte retention method. The retainer type is a method in which the sulfuric acid electrolyte is held in a porous separator made of paper mainly made of fine glass fibers, and the gel type is a method in which the dilute sulfuric acid electrolyte is turned into a gel using silicic acid and filled into the battery. be.

発明が解決しようとする課題 リテーナ式の場合セパレータの主体を占める微細カラス
繊維が高価であるためにセパレータ自体も非常に高価な
ものであった。そのために合成樹脂繊維などに置き換え
たセパレータも開発されているが、充分な保液性を有す
るにはいたっていない。
Problems to be Solved by the Invention In the case of a retainer type separator, the fine glass fibers that make up the main body of the separator are expensive, so the separator itself is also very expensive. For this purpose, separators replaced with synthetic resin fibers have been developed, but they do not have sufficient liquid retention properties.

一方、ゲル式の場合ゲルの調製やその充填が複雑であり
、またゲル内における硫酸イオンの拡散が遅いために従
来の開放形の液式鉛蓄電池は勿論リテーナ式の密閉式鉛
蓄電池よりも性能が劣っていた。
On the other hand, in the case of a gel type, the preparation and filling of the gel is complicated, and the diffusion of sulfate ions within the gel is slow, so the performance is lower than that of conventional open type liquid lead acid batteries as well as cage type sealed lead acid batteries. was inferior.

これらの問題点を解決するために密閉式鉛蓄電池の電解
液保持材としてシリカ造粒粉体について検討を行い、シ
リカ造粒粉体が電解液保持材として適用できることが判
った。しかし、実験を進めて行くと共にいくつかの欠点
が明らかになってきた。その一つとして電槽内で極板群
の高さまでシリカ造粒粉体を充填するためにリテーナ式
の場合よりも多くの電解液を注入しなりれはならないが
、それにもかかわらず電解液量の増加分に相当するだけ
の容量増加が得られないことかありられる。
In order to solve these problems, we investigated silica granulated powder as an electrolyte retaining material for sealed lead-acid batteries, and found that silica granulated powder can be used as an electrolyte retaining material. However, as the experiments progressed, several shortcomings became apparent. One of these is that in order to fill the silica granulated powder in the battery case up to the height of the electrode plate group, more electrolyte must be injected than in the case of a retainer type, but despite this, the amount of electrolyte It may not be possible to obtain an increase in capacity equivalent to the increase in capacity.

課題を解決するための手段 本発明は上述した問題点を解決するもので、安価で保液
性に優れかつ硫酸の拡散性の優れた電解液保持体を有す
る密閉式鉛蓄電池を提供するものである。その要旨とす
るところは極板間および極板群の周囲に孔径10〜50
0ミクロンに造粒し孔径1〜50ミクロンの孔の容積が
全細孔容積の45%以上であるシリカ粉体を充填、配置
し、放電に必要かつ充分な量の硫酸電解液を」二部逍粒
粉体および隔離体に含浸、保持さぜることにある。以下
本発明を実施例に基づいて説明する。
Means for Solving the Problems The present invention solves the above-mentioned problems, and provides a sealed lead-acid battery having an electrolyte holder that is inexpensive, has excellent liquid retention properties, and has excellent sulfuric acid diffusivity. be. The gist of this is that between the electrode plates and around the electrode plate group, holes with a diameter of 10 to 50
Fill and arrange silica powder that is granulated to 0 microns and have a pore volume of 1 to 50 microns that accounts for 45% or more of the total pore volume, and add 2 parts of sulfuric acid electrolyte in an amount necessary and sufficient for discharge. The purpose is to impregnate and hold the fine grain powder and separator. The present invention will be explained below based on examples.

実施例 Pb −Ca −Sn合金より成る丁および負極格子体
に通常の正極および負極ペース1〜を充填し熟成した後
、正極板3枚と負極板4枚とで極板群を作製し、電槽に
挿入した。ここで、両極板の間隔は厚さ約1.5th+
の合成樹脂板を用いて保持したが、電池に無害で両極板
の間隔を保持てきるものであれはよい。望ましくは両極
板間に占める体積の少ないものがよい。
Example Pb - Ca - Sn alloy plates and negative electrode grids were filled with ordinary positive and negative electrode pastes 1 to 1 and aged. After that, an electrode plate group was prepared with three positive electrode plates and four negative electrode plates, and the electrode inserted into the tank. Here, the distance between the two electrode plates is approximately 1.5th+
A synthetic resin plate was used to hold the battery, but any material that is harmless to the battery and that maintains the distance between the two electrode plates will suffice. It is preferable to use a material that occupies a small volume between the two electrode plates.

ついでシリカの微粉末を氷カラスをバインダーに用い、
水力ラスの量を2%、5%、10%、20%と変えたB
、C,D、Eの4種類のシリカ造粒粉体を作製した。す
なわちシリカの微粉末に上記の割合で予め水によく溶解
さぜた水力ラスを加えてペースト状にし約200°Cで
乾#!L7た後粉砕して振とう機で分級し直径10〜5
00μmのシリカ造粒粉体を得た。これらのシリカ造粒
粉体の孔径分布を水銀圧入式ポロシメーターを用いて測
定した。結果を第1表に示ず。造粒する前のシリカの微
粉末Aの測定結果も合わせて示した。
Then, using fine silica powder and ice crow as a binder,
B with the amount of hydraulic lath changed to 2%, 5%, 10%, and 20%
Four types of silica granulated powders, C, D, and E, were prepared. In other words, add hydrolase, which has been thoroughly dissolved in water at the above ratio, to fine silica powder, make a paste, and dry at about 200°C! After L7, crush it and classify it with a shaker to get a diameter of 10-5.
A granulated silica powder having a diameter of 0.00 μm was obtained. The pore size distribution of these silica granules was measured using a mercury intrusion porosimeter. The results are not shown in Table 1. The measurement results of fine silica powder A before granulation are also shown.

第1表 本実施例で用いたシリカの微粉末の粒子径は10〜40
ミリミクロンであるために径が0.1 ミクロン以下の
孔の容積が全細孔容積の50%以」二を占めていたが、
水力ラスをバインダーとして用いて造粒したものは径が
0.1 ミクロン以1この孔の容積が全細孔容積の35
%以下になっており、水力ラスの量が増えると共にその
割合が低下した。一方径が1〜50ミクロンの孔の容積
はシリカの微粉末では全細孔容積の13%にすぎなかっ
たか、水力ラスをバインターとして用いて造粒したもの
は径が1〜50ミクロンの孔の容積が全細孔容積の45
%以上になっており、水力ラスの量か増えると共にそ・
の割合は増加した。これはシリカの微粉末間の空隙にバ
インターが入り込んで粒子間を固定すると共にその空隙
を埋めて径が0.1 ミクロン以下の孔の容積を減少さ
せると共に径が10〜500ミクロンの造粒粒子間で構
成される径が1ミクロン以上の孔が新だに生成しなもの
で、シリカの単位重量および単位体積に占める空孔の容
積は造粒することによって減少することはなかった。
Table 1 The particle size of the fine silica powder used in this example is 10 to 40.
Because the diameter of the pores is millimicrons, the volume of pores with a diameter of 0.1 micron or less accounts for more than 50% of the total pore volume.
Granules made using hydraulic lath as a binder have a diameter of 0.1 micron or more.1 The volume of these pores is 35% of the total pore volume.
%, and the percentage decreased as the amount of hydraulic lath increased. On the other hand, the volume of pores with a diameter of 1 to 50 microns was only 13% of the total pore volume in fine silica powder, or the volume of pores with a diameter of 1 to 50 microns was granulated using hydraulic lath as a binder. The volume is the total pore volume of 45
% or more, and as the amount of hydraulic lath increases,
The proportion has increased. This is because the binder enters the voids between fine silica powder and fixes the particles, fills the voids and reduces the volume of pores with a diameter of 0.1 microns or less, and granulated particles with a diameter of 10 to 500 microns. The pores with a diameter of 1 micron or more formed between the particles were newly formed, and the volume of the pores relative to the unit weight and unit volume of the silica did not decrease by granulation.

このようにして製作したシリカ造粒粉体を両極板間およ
び極板群の周囲に振動を加えながら密に充填L、蓋を接
着した後排気弁を装着して公称容、i、1.5Ahの密
閉式鉛蓄電池を組立てた。このようにして組立てた電池
に硫酸電解液を注入し化成を施した後初期の容量試験を
行った。比較のために同じ冒ツl〜の正・負極板を用い
てリテーナ式およびゲル式の電池も作製し、同時に容量
試験を行っな。結果を第2表に示す。
The silica granulated powder produced in this way was densely packed between the two electrode plates and around the electrode group while applying vibration. After the lid was glued, an exhaust valve was attached and the nominal volume was set to i, 1.5Ah. A sealed lead-acid battery was assembled. After injecting a sulfuric acid electrolyte into the thus assembled battery and performing chemical conversion, an initial capacity test was conducted. For comparison, retainer type and gel type batteries were also fabricated using the same positive and negative electrode plates, and capacity tests were conducted at the same time. The results are shown in Table 2.

本発明による電池B〜、1?、は造粒していないシリカ
微粉末を用いた電池Aよりも5時間率および効率放電性
能が優れていた。また、従来のカラスセパレータを用い
たリテーナ式の電池ドやケル式の電池Gと比べても優れ
た性能を示した。これは01ミクロン以下の小さな孔が
減少することによって粉体内に保持された電解液の拡散
距離か短くなり、放電反応に寄与し易くなったものと考
えられる。
Batteries B~, 1 according to the present invention? , had better 5-hour rate and efficient discharge performance than Battery A using non-granulated silica fine powder. It also showed superior performance compared to conventional retainer-type batteries D and Kel-type batteries G that use conventional glass separators. This is considered to be because the diffusion distance of the electrolytic solution held in the powder became shorter due to the reduction of small pores of 0.1 micron or less, making it easier to contribute to the discharge reaction.

第2表 表面か少なくなったことを意味1〜、電解液の注入に要
する時間も大幅に短縮できた。
Table 2 means that the surface area decreased (1), and the time required for injecting the electrolyte was also significantly shortened.

発明の効果 以上述べたように極板間および極板群の周囲に10へ5
00 ミクロンに造粒した孔径1〜50ミクロンの孔の
容積か全細孔容積の45%以上であるシリカ粉末を充填
、配置し、放電に必要かつ十分な量の硫酸電解液を=L
記造粒粉体および隔離体に含浸、保持させることにより
密閉式鉛蓄電池の放電性能を大幅に向上させることがで
き、その工業的価値は非常に大きい。
Effects of the Invention As mentioned above, between the electrode plates and around the electrode plate group, 10 to 5
Fill and arrange silica powder with a pore diameter of 1 to 50 microns or more than 45% of the total pore volume, and add a sufficient amount of sulfuric acid electrolyte for discharge = L
By impregnating and retaining the granulated powder and separator, the discharge performance of sealed lead-acid batteries can be greatly improved, and its industrial value is extremely large.

Claims (1)

【特許請求の範囲】[Claims] 1、電池の充電中に発生する酸素ガスを負極で吸収させ
る密閉式鉛蓄電池であって、極板間および極板群の周囲
に10〜500ミクロンに造粒し孔径1〜50ミクロン
の孔の容積が全細孔容積の45%以上であるシリカ粉体
を充填、配置し、放電に必要かつ充分な量の硫酸電解液
を上記造粒粉体および隔離体に含浸、保持させることを
特徴とする密閉式鉛蓄電池。
1. A sealed lead-acid battery in which oxygen gas generated during battery charging is absorbed by the negative electrode, with granules of 10 to 500 microns between the electrode plates and around the electrode plate group, with pores of 1 to 50 microns in diameter. A silica powder having a volume of 45% or more of the total pore volume is filled and arranged, and the granulated powder and separator are impregnated and retained with a sufficient amount of sulfuric acid electrolyte necessary for discharge. A sealed lead-acid battery.
JP2160459A 1990-06-19 1990-06-19 Sealed type lead acid battery Pending JPH0451471A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2160459A JPH0451471A (en) 1990-06-19 1990-06-19 Sealed type lead acid battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2160459A JPH0451471A (en) 1990-06-19 1990-06-19 Sealed type lead acid battery

Publications (1)

Publication Number Publication Date
JPH0451471A true JPH0451471A (en) 1992-02-19

Family

ID=15715401

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2160459A Pending JPH0451471A (en) 1990-06-19 1990-06-19 Sealed type lead acid battery

Country Status (1)

Country Link
JP (1) JPH0451471A (en)

Similar Documents

Publication Publication Date Title
JP3555177B2 (en) Sealed lead-acid battery
JPH0451471A (en) Sealed type lead acid battery
JPS6237882A (en) Closed type lead storage battery
JPH06260208A (en) Sealed lead-acid battery
JPH01128367A (en) Sealed type lead storage battery
JPH0693367B2 (en) Sealed lead acid battery
JPS5882472A (en) Lead storage battery and manufacture thereof
JPH01124958A (en) Sealed lead-acid battery
JPH04149968A (en) Sealed-type lead secondary battery
JP3114419B2 (en) Sealed storage battery
JPH08153535A (en) Sealed lead-acid battery and its manufacture
JPH02158063A (en) Sealed lead-storage battery
JPH03112067A (en) Sealed lead-acid battery
JPH03246871A (en) Manufacture of sealed lead-acid battery
JP2855677B2 (en) Sealed lead-acid battery
JPH0676854A (en) Sealed lead-acid battery
JPS6023953A (en) Enclosed lead storage battery
JPH08180857A (en) Electrode plate for lead-acid battery
JPH01248457A (en) Sealed lead-acid battery
JPH0654680B2 (en) Sealed lead acid battery
JPS61256565A (en) Enclosed clad lead storage battery
JPS61185861A (en) Sealed type lead storage battery
JPH06140031A (en) Sealed lead-acid battery
JPH04118854A (en) Gel type lead storage battery
JPH03196466A (en) Sealed lead-acid storage battery