JPH03246871A - Manufacture of sealed lead-acid battery - Google Patents

Manufacture of sealed lead-acid battery

Info

Publication number
JPH03246871A
JPH03246871A JP2043215A JP4321590A JPH03246871A JP H03246871 A JPH03246871 A JP H03246871A JP 2043215 A JP2043215 A JP 2043215A JP 4321590 A JP4321590 A JP 4321590A JP H03246871 A JPH03246871 A JP H03246871A
Authority
JP
Japan
Prior art keywords
sulfuric acid
electrolyte
specific gravity
battery
acid electrolyte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2043215A
Other languages
Japanese (ja)
Inventor
Toshiaki Hayashi
俊明 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Storage Battery Co Ltd
Original Assignee
Japan Storage Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Storage Battery Co Ltd filed Critical Japan Storage Battery Co Ltd
Priority to JP2043215A priority Critical patent/JPH03246871A/en
Publication of JPH03246871A publication Critical patent/JPH03246871A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)

Abstract

PURPOSE:To shorten the injection time of a sulfuric acid electrolyte by injecting a smaller quantity of the low-specific gravity sulfuric acid electrolyte than that which can be held by a positive electrode plate, a negative electrode plate and granular powder for the formation of an electrode plate group, then injecting a high-specific gravity sulfuric acid electrolyte to obtain the preset electrolyte quantity and electrolyte specific gravity. CONSTITUTION:Normal positive electrode paste and negative electrode paste are filled in positive and negative electrode lattices and aged, then they are inserted into a battery jar. The silica granular powder manufactured by adding water to silica fine powder into a paste shape and drying and crushing it is densely filled between both electrodes and around an electrode plate group while vibrations are applied. A sulfuric acid electrolyte is injected with the preset specific gravity and injection factor to a battery thus assembled for formation. The specific gravity of the sulfuric acid electrolyte is determined from the battery voltage after formation is completed end the battery is left intact for a preset period, the sulfuric acid electrolyte is supplemented in consideration of the decreased quantity of the battery weight during formation, and the specific gravity is adjusted to a preset value. No gap is generated inside the silica granular powder, and the injection time of the sulfuric acid electrolyte can be largely shortened.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は密閉式鉛蓄電池の製造方法の改良に関するもの
である。
DETAILED DESCRIPTION OF THE INVENTION FIELD OF INDUSTRIAL APPLICATION This invention relates to an improvement in the manufacturing method of sealed lead-acid batteries.

従来の技術 近年、ポータプル機器やコンピュータのノく・ンクアッ
プ電源として密閉式鉛蓄電池が広く用いられるようにな
ってきた。この種の密閉式鉛蓄電池はその電解液保持方
法によりリテーナ式とゲル式とに分類される。リテーナ
式はla細カラス繊維を主体として抄紙された多孔性の
セパレータに8 Ta 酸電解液を保持させる方法であ
り、ゲル式は珪酸などにより′8硫酸電解液をゲル状に
して電池内に充填する方法である。
BACKGROUND OF THE INVENTION In recent years, sealed lead-acid batteries have come into widespread use as power sources for portable devices and computers. This type of sealed lead-acid battery is classified into a retainer type and a gel type depending on the electrolyte retention method. The retainer type is a method in which the 8 Ta acid electrolyte is held in a porous separator made from la fine glass fiber, and the gel type is a method in which the 8 Ta acid electrolyte is turned into a gel using silicic acid and filled into the battery. This is the way to do it.

発明が解決しようとする課題 リテーナ式の場合セパレータの主体を占める微細カラス
繊維が高価であるためにセパレータ自体も非常に高価な
ものであった。そのために合成樹脂m維などに置き換え
たセパレータも開発されているが、充分な保液性を有す
るにはいたっていない。
Problems to be Solved by the Invention In the case of a retainer type separator, the fine glass fibers that make up the main body of the separator are expensive, so the separator itself is also very expensive. For this purpose, separators replaced with synthetic resin m-fibers have been developed, but they do not have sufficient liquid retention properties.

一方、ゲル式の場合ゲルの調整やその充填が複雑であり
、またエレメントの上部の空間を除くすべての空間にゲ
ルを充填する必要があるため余分の電解液を充填しなけ
ればならない欠点があった。
On the other hand, in the case of a gel type, preparing and filling the gel is complicated, and since it is necessary to fill all spaces except the space above the element with gel, there is a drawback that extra electrolyte must be filled. Ta.

さらにゲル内におけるVA酸イオンの拡散が遅いために
従来の解放型の液式鉛蓄電池はもちろんリテーナ式の密
閉鉛蓄電池よりも性能が劣っていた。
Furthermore, due to the slow diffusion of VA acid ions within the gel, the performance was inferior to conventional open-type liquid lead-acid batteries as well as retainer-type sealed lead-acid batteries.

これらの問題点を解決するために密閉式!9蓄電池の電
解液保持材としてシリカ造粒粉体について検討をおこな
い、シリカ造粒粉体が電解液保持材として適用できるこ
とがわかった。しかし、実験を進めていくとともに幾つ
かの欠点が明らかになってきた。その1つとして電槽内
で極板群の化成をおこなう場合、化成中に発生するガス
によってシリカ造粒粉体が電解液とともに押し上げられ
、正・負極板の間隙にシリカ造粒粉体が充填されていな
い空隙が生じ、電池の充放電に寄与しない部分ができる
ことがわかった。
Closed type to solve these problems! We investigated silica granulated powder as an electrolyte retaining material for storage batteries, and found that silica granulated powder can be used as an electrolyte retaining material. However, as the experiments progressed, several shortcomings became apparent. As one of these methods, when forming the electrode plates in the battery case, the gas generated during forming pushes up the silica granulated powder along with the electrolyte, filling the gap between the positive and negative electrode plates. It was found that voids were created that did not contribute to the charging and discharging of the battery.

課題を解決するための手段 本発明は安価で保液性に優れかつ硫酸の拡散性の優れた
密閉式鉛蓄電池用の電解液保持体であるシリカ造粒粉体
を用いた密閉式鉛蓄電池の上述した問題点を解決するも
ので、その要旨とするところは正・負極板および上記造
粒粉体に保持できるよりも少ない量の低比重の硫酸電解
液を注入して極板群の化成をおこない、その後高比重の
硫酸電解液を注入して所定の電解液量および電解液比重
に調製することにある。以下に実施例にて詳述する。
Means for Solving the Problems The present invention provides a sealed lead-acid battery using silica granulated powder, which is an electrolyte retainer for a sealed lead-acid battery that is inexpensive and has excellent liquid retention and sulfuric acid diffusivity. This solution solves the above-mentioned problems, and its gist is to inject a smaller amount of low-density sulfuric acid electrolyte than can be held in the positive and negative electrode plates and the above-mentioned granulated powder to chemically form the electrode plate group. After that, a high specific gravity sulfuric acid electrolyte is injected to adjust the electrolyte amount and electrolyte specific gravity to a predetermined value. This will be explained in detail in Examples below.

実施例 Pb−Ca−3n合金よりなる正および負極格子体に通
常の正極および負極ペーストを充填し熟成した後、正極
板3枚と負極板4枚とで極板群を作製し、電槽に挿入し
た。ここで、両極板の間隙は厚さ約1.5111の合成
樹脂板を用いて保持したが、電池に無害で両極板の間隙
を保持できるものであればよい。望ましくは両極板間に
占める体積の少ないものかよい。
Example After filling the positive and negative electrode grids made of Pb-Ca-3n alloy with ordinary positive and negative electrode pastes and aging them, a group of electrode plates was prepared with three positive electrode plates and four negative electrode plates, and the plates were placed in a battery case. Inserted. Here, the gap between the two electrodes was maintained using a synthetic resin plate having a thickness of approximately 1.5111 mm, but any material may be used as long as it is harmless to the battery and can maintain the gap between the two electrodes. It is preferable to use a material that occupies a small volume between the two electrode plates.

次いでシリカの微粉末に水を加えてペースト状にし約2
00℃で乾燥した後粉砕して作製した直径20〜500
μmのシリカ造粒粉体を両極間および極板群の周囲に振
動を加えながら密に充填した。ここで充填したシリカの
造粒粉体は充填状態で約90%の、それ自身では約85
%の気孔率を有していた。
Next, add water to the fine silica powder and make it into a paste for about 2
Diameter 20-500 made by drying at 00℃ and then crushing
Granulated silica powder of μm size was densely packed between the two electrodes and around the electrode plate group while applying vibration. The silica granulated powder filled here is about 90% in the filled state, and about 85% by itself.
% porosity.

このようにして造粒粉体を充填した後、蓋を接着し、排
気弁を装着して公称容ji4.5Ahの密閉式鉛蓄電池
を組み立てた。このようにして組み立てた電池に第1表
に示す比重および注液率で硫酸電解液を注入して化成を
おこなった。
After filling the granulated powder in this manner, a lid was adhered and an exhaust valve was attached to assemble a sealed lead-acid battery having a nominal capacity of 4.5 Ah. Chemical formation was performed by injecting sulfuric acid electrolyte into the thus assembled battery at the specific gravity and injection rate shown in Table 1.

第1表 ここで、注液率とは両極板の気孔率および充填したシリ
カ造粒粉体の気孔率とから求めた両極板およびシリカ造
粒粉体に保持できる硫酸電解液の量に対する注入したV
X酸電解液の割合であり、注液率100%といえばちょ
うど両極板およびシリカ造粒粉体に保持できる硫酸電解
液の量を注液したことを示すものである。化或は正極活
物質の理論電気量の300%を20時間かけて通電して
おこなった。
Table 1 Here, the injection rate is the amount of sulfuric acid electrolyte injected relative to the amount of sulfuric acid electrolyte that can be held in the bipolar plates and the silica granulated powder, which is determined from the porosity of the bipolar plates and the porosity of the filled silica granulated powder. V
This is the ratio of the X-acid electrolyte, and an injection rate of 100% indicates that exactly the amount of sulfuric acid electrolyte that can be held in the bipolar plates and the silica granulated powder has been injected. 300% of the theoretical amount of electricity was applied to the positive electrode active material over a period of 20 hours.

化成中の電池を観察したところ、注液率が100%以上
である電池1.2.5.6および9では充填したシリカ
造粒粉体の上部に電解液が押出されており、充填したシ
リカ造粒粉体の内部には空隙が認められた。これは上述
したように充電中に発生するガスによって極板内部から
電解液が押出されるとともに、電解液がシリカ造粒粉体
の空孔にいっばいに満たされているためにガスの抜は道
がなくシリカ造粒粉体を押しながらガスが電池上部に出
てくるため空隙が生じるものと考えられる。
When we observed the batteries during chemical formation, we found that in batteries 1, 2, 5, 6 and 9 where the injection rate was 100% or more, the electrolyte was extruded onto the top of the filled silica granulated powder, and the filled silica Voids were observed inside the granulated powder. This is because, as mentioned above, the electrolyte is pushed out from inside the electrode plate by the gas generated during charging, and the electrolyte fills the pores of the silica granules all at once, making it difficult for gas to escape. It is thought that the voids are created because there is no path and the gas comes out to the top of the battery while pushing the silica granulated powder.

一方、注液率が100%に満たない電池では充填したシ
リカ造粒粉体の上部に電解液は認められず、充填したシ
リカ造粒粉体の内部に空隙は存在しなかった。また、硫
酸電解液の注入に際しては本発明による製造方法であれ
ば注入する硫酸電解液の量が少ないために通常かなり長
い時間を要する硫fIi電解液の注入時間を大幅に短縮
できるという効果もみつかった。
On the other hand, in batteries where the injection rate was less than 100%, no electrolytic solution was observed above the filled silica granulated powder, and no voids were present inside the filled silica granulated powder. Furthermore, when injecting the sulfuric acid electrolyte, the production method according to the present invention has the effect that the injection time for the sulfuric acid electrolyte, which normally takes a long time, can be significantly shortened because the amount of sulfuric acid electrolyte to be injected is small. Ta.

化成が終了した後、24時間放置後の電池電圧から硫酸
電解液の比重を求め、さらに化成中の電池重量の減少量
を考慮して硫酸電解液を補い、硫酸電解液の比重を1.
30に調製するとともに電解液量をちょうど両極板およ
びシリカ造粒粉体に保持できる硫酸電解液の量に調製し
た。この後0.45Aで4時間の補充電をおこなって電
池内の電解液を充分に均一にした。ここで、比重1.0
5の硫酸電解液を注液率110%で注入した電池1は化
成後における電解液量がちょうど両極板およびシリカ造
粒粉体に保持できる硫酸電解液に一致したので高濃度の
硫酸電解液を注入することができなかった。比重1.2
5の硫酸電解液を注液率110%で注入した電池9は化
成後の比重が1.30で、電解液量もちょうど両極板お
よびシリカ造粒粉体に保持できる硫酸電解液の量に一致
するように調製した従来法による電池である。また、注
液率を100%とした電池2および6では電池内の電解
液を抜いた後に高濃度のg酸電解液を注入しなければ所
定の比重に調整できず、製造工程上実施できないと判断
された。
After chemical formation is completed, the specific gravity of the sulfuric acid electrolyte is determined from the battery voltage after being left for 24 hours, and the sulfuric acid electrolyte is supplemented taking into consideration the amount of decrease in battery weight during chemical formation, and the specific gravity of the sulfuric acid electrolyte is adjusted to 1.
30, and the amount of electrolyte was adjusted to just the amount that could be held in both electrode plates and silica granulated powder. Thereafter, supplementary charging was performed for 4 hours at 0.45 A to make the electrolyte in the battery sufficiently uniform. Here, the specific gravity is 1.0
In battery 1, in which the sulfuric acid electrolyte of No. 5 was injected at a injection rate of 110%, the amount of electrolyte after formation matched the amount of sulfuric acid electrolyte that could be held in the bipolar plates and the silica granulated powder, so a high concentration sulfuric acid electrolyte was used. could not be injected. Specific gravity 1.2
Battery 9, in which the sulfuric acid electrolyte of No. 5 was injected at an injection rate of 110%, has a specific gravity of 1.30 after formation, and the amount of electrolyte exactly matches the amount of sulfuric acid electrolyte that can be held in the bipolar plates and the silica granulated powder. This is a battery prepared using a conventional method. In addition, for batteries 2 and 6 where the injection rate was 100%, the specific gravity could not be adjusted to the specified value unless a highly concentrated g-acid electrolyte was injected after draining the electrolyte in the battery, which may not be possible due to the manufacturing process. It was judged.

本発明による電池3,4.7および8では上述したよう
な充填したシリカ造粒粉体の内部の空隙の生成や電解液
が充填したシリカ造粒粉体の上部に押し上げられるとい
った現象は認められなかった。
In batteries 3, 4, 7, and 8 according to the present invention, the above-mentioned phenomena such as the formation of voids inside the filled silica granulated powder and the electrolyte being pushed up to the top of the filled silica granulated powder were not observed. There wasn't.

次いで従来の欠点を解消できなかった電池12.5およ
び6を除いた本発明による4種類の電池3,4.7およ
び8について初期の容量試験をおこなった。あわせて従
来法による電池9も容量試験をおこなった。結果を第2
表に示す。
Next, an initial capacity test was conducted on four types of batteries 3, 4.7, and 8 according to the present invention, excluding batteries 12.5 and 6, in which the conventional drawbacks could not be overcome. At the same time, a capacity test was also conducted on Battery 9 manufactured by the conventional method. Second result
Shown in the table.

本発明による電池はいずれも従来法による電池9よりも
低率放電、高率放電とも優れていた。これは従来方法で
製造した電池9には充填したシリカ造粒粉体の内部に空
隙ができているために放電反応の分布が不均一になり、
また電解液である硫酸の極板への供給が不十分になって
いるのに対し、本発明による製造方法で製造した電池で
はシリカ造粒粉体の内部に空隙がないために反応分布が
均一で硫酸の供給もスムーズに行われるためと考えられ
る。
All of the batteries according to the present invention were superior to Battery 9 produced by the conventional method in both low rate discharge and high rate discharge. This is because the battery 9 manufactured by the conventional method has voids inside the filled silica granulated powder, which makes the distribution of the discharge reaction uneven.
In addition, the supply of sulfuric acid, which is an electrolytic solution, to the electrode plates is insufficient, whereas in batteries manufactured by the manufacturing method of the present invention, there are no voids inside the silica granulated powder, so the reaction distribution is uniform. This is thought to be due to the smooth supply of sulfuric acid.

第2表 本実施例では低比重の硫酸電解液に比重1.15〜1.
20のものを用い、注液率を70〜90%としたが、こ
れらの条件は電池構成や化成条件によって異なるもので
ある。ただし鉛蓄電池の正・負極板は高比重の硫酸電解
液に長時間さらされると劣化が促進されるため低比重の
硫酸は化成終了時において所定比重以下になるように調
製するのが望ましく、注液率は化成後の正・負極板の活
物質の化成性の低下を引き起こさないようにしなければ
ならない。
Table 2 In this example, the low specific gravity sulfuric acid electrolyte had a specific gravity of 1.15 to 1.
20 was used, and the injection rate was set at 70 to 90%, but these conditions differ depending on the battery configuration and chemical formation conditions. However, if the positive and negative electrode plates of lead-acid batteries are exposed to high-density sulfuric acid electrolyte for a long time, their deterioration will be accelerated. The liquid ratio must be set so as not to cause a decrease in the formation properties of the active materials of the positive and negative electrode plates after formation.

発明の効果 以上詳述したように本発明による製造方法を用いれば従
来の製造方法で見られたシリカ造粒粉体の内部の空隙の
生成も起こらす、さらに硫酸電解液の注入時間を大幅に
短縮できその工業的価値は非常に大きい。
Effects of the Invention As detailed above, the production method according to the present invention does not cause the formation of voids inside the silica granulated powder, which was seen in the conventional production method, and also significantly reduces the injection time of the sulfuric acid electrolyte. It can be shortened and has great industrial value.

Claims (1)

【特許請求の範囲】[Claims] 1、電池の充電中に発生する酸素ガスを負極で吸収させ
る密閉式電池であって、極板間および極板群の周囲に5
0〜200ミクロンに造粒したシリカ粉体を充填、配置
し、放電に必要かつ充分な量の硫酸電解液を上記造粒粉
体および隔離体に含浸、保持させる密閉式鉛蓄電池の製
造方法において、正・負極板および上記造粒粉体に保持
できるよりも少ない量の低比重の硫酸電解液を注入して
極板群の化成をおこない、その後高比重の硫酸電解液を
注入して所定の電解液量および電解液比重に調製するこ
とを特徴とする密閉式鉛蓄電池の製造方法。
1. It is a sealed battery in which the negative electrode absorbs oxygen gas generated during battery charging, and there are 5
In a method for manufacturing a sealed lead-acid battery, in which silica powder granulated to a size of 0 to 200 microns is filled and arranged, and a sufficient amount of sulfuric acid electrolyte necessary for discharge is impregnated and retained in the granulated powder and separator. , a smaller amount of low specific gravity sulfuric acid electrolyte than can be held in the positive and negative electrode plates and the above granulated powder is injected to chemically form the electrode plate group, and then a high specific gravity sulfuric acid electrolyte is injected to form a predetermined amount of sulfuric acid electrolyte. A method for manufacturing a sealed lead-acid battery, characterized by adjusting the amount of electrolyte and the specific gravity of the electrolyte.
JP2043215A 1990-02-23 1990-02-23 Manufacture of sealed lead-acid battery Pending JPH03246871A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2043215A JPH03246871A (en) 1990-02-23 1990-02-23 Manufacture of sealed lead-acid battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2043215A JPH03246871A (en) 1990-02-23 1990-02-23 Manufacture of sealed lead-acid battery

Publications (1)

Publication Number Publication Date
JPH03246871A true JPH03246871A (en) 1991-11-05

Family

ID=12657694

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2043215A Pending JPH03246871A (en) 1990-02-23 1990-02-23 Manufacture of sealed lead-acid battery

Country Status (1)

Country Link
JP (1) JPH03246871A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002216839A (en) * 2001-01-17 2002-08-02 Furukawa Battery Co Ltd:The Battery container chemical treatment method of lead storage battery

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002216839A (en) * 2001-01-17 2002-08-02 Furukawa Battery Co Ltd:The Battery container chemical treatment method of lead storage battery
JP4601834B2 (en) * 2001-01-17 2010-12-22 古河電池株式会社 Battery case formation method for lead acid battery

Similar Documents

Publication Publication Date Title
WO2013046499A1 (en) Lead acid storage battery for energy storage
JPH03246871A (en) Manufacture of sealed lead-acid battery
JP3555177B2 (en) Sealed lead-acid battery
JP2004055323A (en) Control valve type lead-acid battery
JPS6237882A (en) Closed type lead storage battery
JPS6030063A (en) Sealed type lead-acid battery
JP4812257B2 (en) Sealed lead-acid battery for cycle use
JPS5882472A (en) Lead storage battery and manufacture thereof
JPH04149968A (en) Sealed-type lead secondary battery
JPS6211466B2 (en)
JPH05205732A (en) Manufacture of anode plate for lead-acid battery
JPH04366546A (en) Sealed lead-acid battery
JPS601757A (en) Manufacture of sealed lead storage battery
JP2855677B2 (en) Sealed lead-acid battery
JPS6065475A (en) Enclosed lead storage battery
JPH01248459A (en) Sealed lead-acid battery
JPH0451471A (en) Sealed type lead acid battery
JPH07296845A (en) Sealed lead-acid battery
JPH08153535A (en) Sealed lead-acid battery and its manufacture
JPS62170173A (en) Sealed lead-acid battery
JPS6217946A (en) Enclosed lead storage battery
JPS6023953A (en) Enclosed lead storage battery
JPH05151988A (en) Sealed type lead acid battery
JPH05326011A (en) Sealed lead-acid battery
JPH046757A (en) Manufacture of sealed lead-acid battery