JPH0354903B2 - - Google Patents

Info

Publication number
JPH0354903B2
JPH0354903B2 JP7624184A JP7624184A JPH0354903B2 JP H0354903 B2 JPH0354903 B2 JP H0354903B2 JP 7624184 A JP7624184 A JP 7624184A JP 7624184 A JP7624184 A JP 7624184A JP H0354903 B2 JPH0354903 B2 JP H0354903B2
Authority
JP
Japan
Prior art keywords
transistor
mos transistor
potential
potential supply
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP7624184A
Other languages
Japanese (ja)
Other versions
JPS605628A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP59076241A priority Critical patent/JPS605628A/en
Publication of JPS605628A publication Critical patent/JPS605628A/en
Publication of JPH0354903B2 publication Critical patent/JPH0354903B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K19/00Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits
    • H03K19/02Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits using specified components
    • H03K19/08Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits using specified components using semiconductor devices
    • H03K19/094Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits using specified components using semiconductor devices using field-effect transistors
    • H03K19/0944Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits using specified components using semiconductor devices using field-effect transistors using MOSFET or insulated gate field-effect transistors, i.e. IGFET
    • H03K19/09441Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits using specified components using semiconductor devices using field-effect transistors using MOSFET or insulated gate field-effect transistors, i.e. IGFET of the same canal type
    • H03K19/09443Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits using specified components using semiconductor devices using field-effect transistors using MOSFET or insulated gate field-effect transistors, i.e. IGFET of the same canal type using a combination of enhancement and depletion transistors
    • H03K19/09445Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits using specified components using semiconductor devices using field-effect transistors using MOSFET or insulated gate field-effect transistors, i.e. IGFET of the same canal type using a combination of enhancement and depletion transistors with active depletion transistors

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Computing Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Read Only Memory (AREA)
  • Electronic Switches (AREA)
  • Logic Circuits (AREA)

Description

【発明の詳細な説明】 本発明は集積回路化に適するMOSトランジス
タ回路に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a MOS transistor circuit suitable for integration into an integrated circuit.

一般にMOS集積回路のパツケージから導出さ
れる外部導出ピン(端子)数は、パツケージの小
形化等の面から少ない方がよい。この問題の一つ
の解決策として、集積回路の外部導出ピンを共用
することがあげられるが、信号ラインと電源ライ
ンを共用することを考えた場合、これらラインの
共通化ノードに、入力信号の能力(+10μA〜−
10μA程度)以上の電流を流すことは問題である
から、該能力範囲内に電流値を抑える必要があ
る。
In general, the number of external lead-out pins (terminals) led out from a package of a MOS integrated circuit is preferably as small as possible from the viewpoint of downsizing the package. One solution to this problem is to share the external pins of the integrated circuit, but when considering sharing the signal line and power supply line, the input signal capability is added to the common node of these lines. (+10μA~-
Since it is a problem to flow a current of more than 10 μA), it is necessary to suppress the current value within the capability range.

本発明は上記の点に鑑みてなされたもので、選
択的に高電位が供給される電源ラインと通常使用
の電源またはアースとの間に、能力範囲以上の電
流が流れない構成とし、前記ピン数削減の際の問
題点を解決することができるMOSトランジスタ
回路を提供しようとするものである。
The present invention has been made in view of the above points, and has a structure in which a current exceeding the capacity range does not flow between a power line to which a high potential is selectively supplied and a normally used power supply or ground, and the pin The present invention aims to provide a MOS transistor circuit that can solve problems in reducing the number of transistors.

以下図面を参照して本発明の実施例を説明す
る。第1図は本発明に至る改良前の回路図であ
る。なお、ここで使用しているMOSトランジス
タのチヤネル型は、凡て同一で例えばNチヤネル
型とする。第1図において1はゲートに制御信号
Aが入力される駆動用のエンハンスメント型
MOSトランジスタで、このトランジスタ1のソ
ースは電圧Vs(アース電位)の供給端に接続さ
れ、ドレインは出力端Oに接続される。負荷素子
としてのデプレツシヨン型MOSトランジスタ2
は、そのソースとゲートが出力端Oに接続され、
ドレインがノードaに接続される。このノードa
にはエンハンスメント型MOSトランジスタ3の
ソースが接続され、該トランジスタ3のドレイン
とゲートは電圧Vpの供給端に接続される。この
電圧Vpの供給端は信号ライン兼電源ラインとな
る個所である。また上記ノードaにはデプレツシ
ヨン型MOSトランジスタ4のソースが接続され、
該トランジスタ4のドレインは通常電源としての
電圧Vcの供給端に、ゲートは制御信号Bの供給
端に接続される。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a circuit diagram before the improvement leading to the present invention. Note that the channel types of the MOS transistors used here are all the same, for example, N-channel type. In Figure 1, 1 is an enhancement type for driving in which control signal A is input to the gate.
This transistor 1 is a MOS transistor, and its source is connected to a voltage Vs (ground potential) supply terminal, and its drain is connected to an output terminal O. Depletion type MOS transistor 2 as a load element
has its source and gate connected to the output terminal O,
A drain is connected to node a. This node a
is connected to the source of an enhancement type MOS transistor 3, and the drain and gate of the transistor 3 are connected to the supply end of the voltage Vp. The supply end of this voltage Vp serves as a signal line and a power supply line. Further, the source of a depletion type MOS transistor 4 is connected to the node a,
The drain of the transistor 4 is connected to the supply end of the voltage Vc as a normal power supply, and the gate is connected to the supply end of the control signal B.

次に第1図の回路動作を説明する。まず電圧
Vpの供給ラインつまりノードbを信号ラインと
して用いる場合は、信号Bを“1”にする。この
時信号Aが“1”で、トランジスタ1がオン(導
通)してノードoが“0”になつても、ノードa
にはVc(例えば+5V)近くの電位が出るように
トランジスタ4,2,1の大きさ及びスレツシヨ
ルド電圧Vthを設定してやる。するとノードaの
電位がVc近辺であるため、電圧Vpが、ノードa
の電位とトランジスタ3のスレツシヨルド電圧
Vth3とを加えた値以下では、トランジスタ3には
電流が流れない。つまりトランジスタ3はオフ
(非導通)状態である。ところで上記信号Vpは、
これを他の回路の入力信号として用いる場合、通
常“Vc+1”ボルトが最大であり、ノードaの
電位はVc近辺であるため、Vth3を1V近辺にして
おけばVpが入力信号の時は該入力電流はほとん
ど流れず、充分他のMOSトランジスタ回路の入
力信号として通用する。
Next, the operation of the circuit shown in FIG. 1 will be explained. First the voltage
When using the Vp supply line, that is, node b, as a signal line, signal B is set to "1". At this time, even if signal A is "1" and transistor 1 is turned on (conducting) and node o becomes "0", node a
The sizes of transistors 4, 2, and 1 and the threshold voltage Vth are set so that a potential near Vc (for example, +5 V) is output. Then, since the potential of node a is near Vc, the voltage Vp becomes
potential and the threshold voltage of transistor 3
No current flows through the transistor 3 below the sum of V th3 and V th3. In other words, transistor 3 is in an off (non-conducting) state. By the way, the above signal Vp is
When using this as an input signal for other circuits, the maximum voltage is usually "Vc + 1" volts, and the potential of node a is around Vc, so if V th3 is set around 1V, when Vp is the input signal, it will be the same. Almost no input current flows, and it can be used as an input signal for other MOS transistor circuits.

次にVpを電源(例えば25V)として使用する
場合は、信号Bを“0”にする。この時第1図の
回路は主にトランジスタ3,2,1で出力0を決
定することができ、その時ノードaの電位をトラ
ンジスタ4がオフする程度に設定してやれば、
Vp供給端からVc供給端へ流れ出る電流はなくな
る。即ち電源としてのVpは、Vc≦Vpの状態で
使用でき、ノードoには“Vp−Vth3”ボルトの
電位まで出力することができる。
Next, when using Vp as a power source (for example, 25V), set signal B to "0". At this time, the circuit of FIG. 1 can determine the output 0 mainly by transistors 3, 2, and 1, and if the potential of node a is set to such an extent that transistor 4 is turned off,
No current flows from the Vp supply end to the Vc supply end. That is, Vp as a power source can be used in a state where Vc≦Vp, and a potential of “Vp−V th3 ” volts can be output to node o.

以上のような動作を行なう第1図の回路にあつ
ては、ノードbに入力信号としての能力以上の電
流を流さずに済むから、集積回路化した際のピン
数削減が可能となる。
In the circuit shown in FIG. 1 that operates as described above, it is not necessary to flow a current exceeding the capacity of the input signal to the node b, so that it is possible to reduce the number of pins when integrated into an integrated circuit.

第2図、第3図は第1図を変形したものであ
り、第2図は第1図のデプレツシヨン型トランジ
スタ4の代りにエンハンスメント型トランジスタ
4′を用い、そのゲートをドレイン側に接続した
もの、第3図は上記デプレツシヨン型トランジス
タ4の代りにエンハンスメント型トランジスタ
4″を用いたものである。
Figures 2 and 3 are modifications of Figure 1, and in Figure 2, an enhancement type transistor 4' is used in place of the depletion type transistor 4 in Figure 1, and its gate is connected to the drain side. In FIG. 3, an enhancement type transistor 4'' is used in place of the depletion type transistor 4.

第4図は、Vpに接続されていた、トランジス
タ3のドレイン側に、トランジスタ3′のソース
をかわりに接続し、トランジスタ3′のドレイン
円Vp(ノードb)に接続、ゲートには制御信号C
を入力したものである。第2図の例では、トラン
ジスタ3のスレツシヨルド電圧Vth3をトランジス
タ4′のスレツシヨルド電圧th4′より高く、第3
図の例では、トランジスタ3のVth3をトランジス
タ4″のスレツシヨルドVth4″より高くしてやれ
ば、Vpを信号ラインとして用いる場合の入力信
号の“1”レベルは、Vcより高い電位までリー
ク電流なしで使用できる。上記Vth3をVth4′、
Vth4″より高くする方法としては、シヨートチヤ
ネル効果を利用して、第2図ではトランジスタ3
よりトランジスタ4′のチヤネル長を、第3図で
はトランジスタ3よりトランジスタ4″のチヤネ
ル長を短くしてやれば簡単に実現出来る。なお第
2図、第3図ではVcもVpと同様に信号、電源の
両方に用いることができる。
In Figure 4, the source of transistor 3' is connected instead to the drain side of transistor 3, which was connected to Vp, and connected to the drain circle Vp (node b) of transistor 3', and the control signal C is connected to the gate.
This is what you entered. In the example of FIG. 2, the threshold voltage V th3 of transistor 3 is set higher than the threshold voltage th4 ' of transistor 4', and
In the example shown in the figure, if V th3 of transistor 3 is made higher than the threshold V th4 of transistor 4, the "1" level of the input signal when Vp is used as a signal line can reach a potential higher than Vc without leakage current. Can be used. The above V th3 is V th4 ′,
To make V th4 higher than ``V th4'', use the short channel effect, and in Figure 2, transistor 3
This can be easily achieved by making the channel length of transistor 4' shorter than that of transistor 4'' in Figure 3, or by making the channel length of transistor 4'' shorter than that of transistor 3 in Figure 3.In addition, in Figures 2 and 3, Vc is also used for signal and power supply as well as Vp. Can be used for both.

第4図の例では、ノードbを電源として用いた
ときに、出力oに、第1図よりも、高い電圧が出
るように、工夫したものである。信号Cは、信号
Bと逆位相の信号で、例えば、Cを第1図の回路
で作ると、Cの“1”レベルは、Vp(例えば
25V)マイナスVth3になる。bを信号ラインとし
て使用する時Cは“0”レベル、Bは“1”レベ
ルになる。Cの“0”レベルを0Vにすれば、
b′の電位は、トランジスタ3′のVth3′の絶対値を
とつた値以下にしかならない。なぜなら(b′の電
位)=(Cの電位−Vth3′)だから。トランジスタ
3をカツトオフするには、|Vth3′|+Vth3<(a
の電位)〔式〕が成立するように、Vth3(正の
値)、Vth3′を選べばよい。bを電源として、用い
る場合Cには、Vp−Vth3(第1図の回路を用いて
作る時)の電圧が与えられる。aの電位をVc近
辺に設定してやつた場合、式の関係より、Vth3
を0Vを少しこえた値、に設定しておけば、第1
図で用いたVth3より、かなり低い値にできる。こ
の時b′のレベルがVpまで出るように、式の範
囲内でVth3′を決めることは容易で、出力Oの値
は、Vp−Vth3の関係だけで決めるこが出来、第
1図のVth3より第4図のVth3の値を小さくするこ
とが出来る分だけ、出力Oには、高い電圧を出す
ことが出来る。
The example shown in FIG. 4 is designed so that when node b is used as a power source, a higher voltage is output at the output o than in FIG. 1. Signal C is a signal with the opposite phase to signal B. For example, if C is created using the circuit shown in Figure 1, the "1" level of C will be Vp (for example,
25V) becomes negative V th3 . When b is used as a signal line, C is at "0" level and B is at "1" level. If the “0” level of C is set to 0V,
The potential of b' is only equal to or less than the absolute value of V th3 ' of transistor 3'. Because (potential of b') = (potential of C - V th3 '). To cut off transistor 3, |V th3 ′|+V th3 <(a
V th3 (positive value) and V th3 ′ should be selected so that the equation (potential) holds true. When b is used as a power source, a voltage of Vp-V th3 (when made using the circuit shown in FIG. 1) is applied to C. When the potential of a is set near Vc, from the relationship of the formula, V th3
If you set it to a value slightly above 0V, the first
It can be made to a much lower value than V th3 used in the figure. At this time, it is easy to determine V th3 ' within the range of the formula so that the level of b' reaches Vp, and the value of the output O can be determined only by the relationship of Vp - V th3 , as shown in Figure 1. As much as the value of V th3 in FIG. 4 can be made smaller than V th3 in FIG. 4, a higher voltage can be outputted to the output O.

なお本発明は上記実施例のみに限定されるもの
ではなく、例えば負荷MOSとしてのデプレツシ
ヨン型トランジスタ2にエンハンスメント型のも
のを用い、そのゲートをノードa側に接続した
り、該ゲートに電圧Vcを供給したりしてもよい。
また実施例では使用トランジスタにNチヤネル型
のものを用いたが、Pチヤネル型のものを用いた
構造にもできる等、本発明の要旨を逸脱しない範
囲で種々の応用が可能である。
Note that the present invention is not limited to the above-mentioned embodiments; for example, an enhancement type transistor may be used as the depletion type transistor 2 as the load MOS, and its gate may be connected to the node a side, or a voltage Vc may be applied to the gate. You can also supply it.
Furthermore, although N-channel type transistors were used as the transistors in the embodiments, various applications are possible without departing from the gist of the present invention, such as a structure using P-channel type transistors.

以上説明した如く本発明によれば、選択的に高
電位が供給される電源ラインに能力以上の電流を
流さずに済み、ピンの数削減も図れるので、集積
回路の小型化が可能となる等の利点を有した
MOSトランジスタ回路が提供できるものである。
As explained above, according to the present invention, it is not necessary to flow a current exceeding the capacity in the power supply line to which a high potential is selectively supplied, and the number of pins can be reduced, making it possible to miniaturize the integrated circuit, etc. had the advantage of
This is what a MOS transistor circuit can provide.

【図面の簡単な説明】[Brief explanation of drawings]

第1図ないし第3図は本発明に至る前の回路
図、第4図は本発明の一実施例の回路図である。 1,3……エンハンスメント型MOSトランジ
スタ、2,4,3′……デプレツシヨン型MOSト
ランジスタ、a,b,o,b′……ノード、Vp…
…選択的に高電位になる電源電圧、Vc……通常
電源電圧、Vs……アース電圧、A,B,C……
制御信号。
1 to 3 are circuit diagrams before the present invention, and FIG. 4 is a circuit diagram of one embodiment of the present invention. 1, 3...Enhancement type MOS transistor, 2,4,3'...Depression type MOS transistor, a, b, o, b'...Node, Vp...
...Power supply voltage that selectively becomes high potential, Vc...Normal power supply voltage, Vs...Earth voltage, A, B, C...
Control signal.

Claims (1)

【特許請求の範囲】[Claims] 1 一端が第1の電位供給端に接続される駆動用
の第1のMOSトランジスタと、この第1のMOS
トランジスタの他端に一端が接続される負荷用の
第2のMOSトランジスタと、この第2のMOSト
ランジスタの他端に一端が接続され、ゲートが制
御信号によつて制御される、少なくとも1つのデ
プレツシヨン形の第3のMOSトランジスタを含
み、他端が第2の電位供給端に接続される回路手
段と、一端が前記第2のMOSトランジスタの前
記他端に接続され他端が第3の電位供給端に接続
され、ゲートが前記制御信号の反対の論理レベル
の信号によつて制御されるデプレツシヨン型の第
4のMOSトランジスタとを具備し、前記第2の
電位供給端に前記第3の電位供給端より高い電位
が供給される場合には、前記制御信号の論理レベ
ルの反対の論理レベルの前記信号を低レベルにし
て、前記第4のMOSトランジスタをオフ状態と
することにより、前記第2の電位供給端から前記
第3の電位供給端への電流経路を遮断し、前記高
い電位が供給されない場合には、前記制御信号の
論理レベルを低レベルにして、前記第4のMOS
トランジスタをオン状態とすることにより、前記
回路手段の前記一端に前記第3の電位供給端から
の電位を供給し、かつ前記第3のMOSトランジ
スタをオフ状態とすることにより、前記回路手段
に電流が流れないようにして、前記第2の電位供
給端から前記第3の電位供給端への電流経路を遮
断するようにしたことを特徴とするMOSトラン
ジスタ回路。
1 a first MOS transistor for driving whose one end is connected to a first potential supply end;
a second MOS transistor for a load, one end of which is connected to the other end of the transistor; and at least one depletion transistor, one end of which is connected to the other end of the second MOS transistor, the gate of which is controlled by a control signal. circuit means including a third MOS transistor having a shape, the other end being connected to the second potential supply end; one end being connected to the other end of the second MOS transistor and the other end being connected to the third potential supply end; a depletion type fourth MOS transistor whose gate is controlled by a signal having a logic level opposite to that of the control signal; When a higher potential is supplied than the second MOS transistor, the second MOS transistor is turned off by setting the signal at the opposite logic level to the logic level of the control signal to a low level. The current path from the potential supply terminal to the third potential supply terminal is cut off, and when the high potential is not supplied, the logic level of the control signal is set to a low level, and the fourth MOS
By turning on the transistor, a potential from the third potential supply end is supplied to the one end of the circuit means, and by turning the third MOS transistor off, a current is supplied to the circuit means. 2. A MOS transistor circuit, characterized in that the current path from the second potential supply terminal to the third potential supply terminal is cut off by preventing the current from flowing.
JP59076241A 1984-04-16 1984-04-16 Mos transistor circuit Granted JPS605628A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59076241A JPS605628A (en) 1984-04-16 1984-04-16 Mos transistor circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59076241A JPS605628A (en) 1984-04-16 1984-04-16 Mos transistor circuit

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2320479A Division JPS55115729A (en) 1979-02-28 1979-02-28 Mos transistor circuit

Publications (2)

Publication Number Publication Date
JPS605628A JPS605628A (en) 1985-01-12
JPH0354903B2 true JPH0354903B2 (en) 1991-08-21

Family

ID=13599676

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59076241A Granted JPS605628A (en) 1984-04-16 1984-04-16 Mos transistor circuit

Country Status (1)

Country Link
JP (1) JPS605628A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5213743A (en) * 1986-06-24 1993-05-25 Goyo Paper Working Co., Ltd. Method of manufacturing release paper
JPS6484864A (en) * 1987-09-21 1989-03-30 Toho Kako Kk Food packaging film and packaging method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5240903A (en) * 1975-09-26 1977-03-30 Sharp Corp Voice compound equipment

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5240903A (en) * 1975-09-26 1977-03-30 Sharp Corp Voice compound equipment

Also Published As

Publication number Publication date
JPS605628A (en) 1985-01-12

Similar Documents

Publication Publication Date Title
US5808480A (en) High voltage swing output buffer in low voltage technology
JPS631778B2 (en)
JPH05175811A (en) Power-on reset circuit
US6359496B1 (en) Analog switch including two complementary MOS field-effect transitors
JPH0562491B2 (en)
US4267465A (en) Circuit for recharging the output nodes of field effect transistor circuits
KR940020669A (en) Bias Circuit (BIAS CIRCUIT)
JPH0354903B2 (en)
JPH01195719A (en) Semiconductor integrated circuit
US20040075468A1 (en) Digital signal driver circuit
US4742253A (en) Integrated insulated-gate field-effect transistor circuit for evaluating the voltage of a node to be sampled against a fixed reference voltage
JPH01161913A (en) Clock driver circuit
JPS62125713A (en) Semiconductor integrated circuit
JPS6025323A (en) Semiconductor integrated circuit
JPH0311127B2 (en)
JP2541289B2 (en) Output circuit
JPH03230617A (en) Semiconductor integrated circuit
JPH0225108A (en) Semiconductor integrated circuit
KR100281146B1 (en) CMOS NAND Circuit
JPH0218606A (en) Constant current circuit
JPH02124634A (en) Four level output circuit
JPS63116517A (en) Signal output circuit
JPS62183623A (en) High voltage switch circuit
JPH06132740A (en) Output circuit
JPS6225514A (en) Logic circuit