JPH02124634A - Four level output circuit - Google Patents

Four level output circuit

Info

Publication number
JPH02124634A
JPH02124634A JP63277912A JP27791288A JPH02124634A JP H02124634 A JPH02124634 A JP H02124634A JP 63277912 A JP63277912 A JP 63277912A JP 27791288 A JP27791288 A JP 27791288A JP H02124634 A JPH02124634 A JP H02124634A
Authority
JP
Japan
Prior art keywords
terminal
circuit
output control
output
mosfet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63277912A
Other languages
Japanese (ja)
Inventor
Masami Hashimoto
正美 橋本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP63277912A priority Critical patent/JPH02124634A/en
Publication of JPH02124634A publication Critical patent/JPH02124634A/en
Pending legal-status Critical Current

Links

Landscapes

  • Logic Circuits (AREA)

Abstract

PURPOSE:To obtain a four level output circuit outputting 4 different potentials by using an output control circuit so as to apply ON/OFF control of 1st to 4th MOSFETs. CONSTITUTION:An output control circuit 14 consists of a NAND circuit 21 and a NOR circuit 22 and an output terminal of the nOR circuit 22 is used as the 2nd output control terminal 19. Moreover, the 1st input terminal 16 and the 3rd output control terminal 20 are connected directly. A gate of a P-channel MOSFET 10 is connected to the 1st output control terminal 18, a gate of an N-channel MOSFET 11 is connected to the terminal 19 and gates of an N- channel MOSFET 12 and a P-channel MOSFET 13 are both connected to the terminal 20. Let a potential at a positive terminal +VDD be a potential VDD, the potential at a negative terminal -VSS be '0', a threshold voltage of the P-channel MOSFET be VTP, and the threshold voltage of the N-channel MOSFET be VTH, then the source of the MOSFET 10 is connected to the terminal +VDD, then a level VDD is outputted when the level of the gate is 0 and the MOSFET 10 is turned off when the gate level is VDD. Thus, the 4-value output circuit is constituted.

Description

【発明の詳細な説明】 (産業上の利用分野] 本発明は絶縁ゲート電界効果型トランジスタ(以下MO
SFETと略す)を用いた半導体集積回路において異な
る4種の電位を出力する出力回路に関する。
Detailed Description of the Invention (Industrial Application Field) The present invention relates to an insulated gate field effect transistor (hereinafter referred to as MO
The present invention relates to an output circuit that outputs four different potentials in a semiconductor integrated circuit using a semiconductor integrated circuit (abbreviated as SFET).

[従来の技術] 従来において多値の出力回路の例としては1.0、ハイ
インピーダンスを出力する回路や、3電源以上を用いた
回路であった。
[Prior Art] Conventionally, examples of multi-value output circuits include circuits that output 1.0, high impedance, and circuits that use three or more power supplies.

〔発明が解決しようとする課題) さて前述した従来の1.0、ハイインビーダンスを出力
する多値出力回路は3値のみであり、かつ1つの出力状
態がハイインピーダンスという電位不定という特殊状態
である問題があり、また3電源以上を用いた多値出力回
路では電源系が多数必要であるという問題点があった。
[Problems to be Solved by the Invention] The conventional multi-value output circuit that outputs 1.0 and high impedance as described above has only three values, and one output state is high impedance, which is a special state in which the potential is undefined. There is also a problem in that a multi-value output circuit using three or more power supplies requires a large number of power supply systems.

そこで本発明はこのような問題点を解決するもので、そ
の目的とするところは正負それぞれひとつの電源のみで
4つの異なった電位を出力し、多値の基本回路を構成す
ることにある。
The present invention is intended to solve these problems, and its purpose is to output four different potentials using only one power supply for each positive and negative power supply, thereby configuring a multi-value basic circuit.

[課題を解決するための手段] 本発明の4値出力回路は、 a)MOSFETを用いた半導体集積回路において、 b)ソース電極を正極の電源端子に接続したP型の第1
のMOSFETと、 C)ソース電極を負極の電源端子に接続したN型の第2
のMOSFETと、 d)ドレイン電極を正極の電源端子に接続したN型の第
3のMOSFETと、 e)ドレイン電極を負極の電源端子に接続したP型の第
4のMOSFETと、 f)2つ以上の入力端子と、2つ以上の出力制御端子を
持つ出力制御回路と、 g)4値をとりうる4値出力端子とからなり、h)前期
第1、第2のMOSFETのドレイン電極と、前記第3
、第4のMOSFETのソース電極とがすべて前記4値
出力端子に接続され、i)前記第1、第2、第3、第4
のMOSFETのゲート電極が前記出力制御回路の2つ
以上存在する出力制御端子のいずれかに接続されている
ことを特徴とする。
[Means for Solving the Problems] The four-value output circuit of the present invention includes: a) a semiconductor integrated circuit using a MOSFET; b) a P-type first circuit whose source electrode is connected to a positive power supply terminal;
C) A second N-type MOSFET whose source electrode is connected to the negative power supply terminal.
d) a third N-type MOSFET whose drain electrode is connected to the positive power terminal; e) a fourth P-type MOSFET whose drain electrode is connected to the negative power terminal; and f) two. an output control circuit having the above input terminals and two or more output control terminals; g) a four-value output terminal capable of taking four values; h) drain electrodes of the first and second MOSFETs; Said third
, and the source electrodes of the fourth MOSFET are all connected to the four-value output terminal, i) the first, second, third, and fourth MOSFETs;
The gate electrode of the MOSFET is connected to one of two or more output control terminals of the output control circuit.

[イ乍 用] 本発明の上記の構成によれば第1のMOSFETがオン
(ON)しているときは正極の電位が出力され、第2の
MOSFETがオンしているときは負極の電位が出力さ
れ、第3のMOSFETがオンしているときは正極性の
中間電位が出力され、第4のMOSFETがオンしてい
るときは負極性の中間電位が出力され、出力制御回路に
より第1〜第4のMOS F ETのオン、オフ(OF
F)が制御されるので4つの異なった電位を出力する4
値出力回路となる。
[For use] According to the above configuration of the present invention, when the first MOSFET is on, the positive electrode potential is output, and when the second MOSFET is on, the negative electrode potential is output. When the third MOSFET is on, a positive intermediate potential is output, and when the fourth MOSFET is on, a negative intermediate potential is output. Fourth MOS FET on/off (OF
F) is controlled so it outputs four different potentials 4
It becomes a value output circuit.

r実 施 例〕 第1図は本発明の第1の実施例を示す回路図である。第
1図において1O113はP型MOSFETであり、1
1.12はN型MOSFETである。P型MOSFET
IOのソース電極は正極の電源端子である+Vooに接
続され、N型MOSFET11のソース電極は負極の電
源端子である一V asに接続され、N型MOSFET
12のドレイン電極は+V ooに接続され、P型MO
5FET13のドレイン電極は−Vlfiに接続されて
いる。
Embodiment] FIG. 1 is a circuit diagram showing a first embodiment of the present invention. In FIG. 1, 1O113 is a P-type MOSFET, and 1
1.12 is an N-type MOSFET. P-type MOSFET
The source electrode of IO is connected to the positive power supply terminal +Voo, and the source electrode of the N-type MOSFET 11 is connected to the negative power supply terminal 1V as.
The drain electrode of 12 is connected to +V oo and the P-type MO
The drain electrode of 5FET13 is connected to -Vlfi.

15は本発明の出力端子としての4値出力端子である。15 is a four-value output terminal as an output terminal of the present invention.

MOSFETIO111のドレイン電極、及びMOSF
ET12.13のソース電極はすべて4値出力端子15
に接続されている。破線14で示した内部の回路で出力
制御回路が構成されている。16.17は出力制御回路
14のそれぞれ第1入力端子、第2入力端子であり、1
8゜19.20は出力制御回路14のそれぞれ第1゜第
2、第3出力制御端子である。出力制御回路14はNA
ND回路21とNOR回路により構成されており、NA
ND回路21の第1のゲート端子、第2ゲート端子はそ
れぞれ第1入力端子16、第2入力端子17に接続され
ており、NAND回路21の出力は第1出力制御端子1
8となっている。NOR回路22の第1ゲート端子、第
2ゲート端子はそれぞれ第1入力端子16、第2入力端
子17に接続されており、NOR回路22の出力は第2
出力制御端子19となっている。また第1入力端子16
と第3出力制御端子20は直接に接続されている。P型
MOSFET10のゲート電極は第1出力制御端子I8
に接続され。
Drain electrode of MOSFETIO111 and MOSFETIO111
All source electrodes of ET12.13 are 4-value output terminal 15
It is connected to the. The internal circuit indicated by the broken line 14 constitutes an output control circuit. 16 and 17 are the first input terminal and second input terminal of the output control circuit 14, respectively;
8.degree. 19.20 are the 1.degree. second and third output control terminals of the output control circuit 14, respectively. The output control circuit 14 is NA
It is composed of an ND circuit 21 and a NOR circuit, and the NA
The first gate terminal and second gate terminal of the ND circuit 21 are connected to the first input terminal 16 and the second input terminal 17, respectively, and the output of the NAND circuit 21 is connected to the first output control terminal 1.
It is 8. The first gate terminal and second gate terminal of the NOR circuit 22 are connected to the first input terminal 16 and the second input terminal 17, respectively, and the output of the NOR circuit 22 is connected to the second input terminal 16.
It serves as an output control terminal 19. Also, the first input terminal 16
and the third output control terminal 20 are directly connected. The gate electrode of the P-type MOSFET 10 is connected to the first output control terminal I8.
connected to.

N型MOSFETIIのゲート電極は第2出力制御端子
19に接続され、N型MOSFET12とP型MOSF
ET13のゲート電極は共に第3出力制御端子20に接
続されている。
The gate electrode of N-type MOSFET II is connected to the second output control terminal 19, and the N-type MOSFET 12 and P-type MOSFET
The gate electrodes of the ETs 13 are both connected to the third output control terminal 20.

さて正極+Vo11の電位なりtlI、とし、負極−V
SSの電位を0電位とし、P型MO5FETのスレッシ
ョルド電圧なVT、、N型MOSFETのスレッショル
ド電圧なVTHとすると、P型MO5FETlOはソー
ス電極が+vI、Dに接続されているのでゲート電極が
0の時VOOを出力し、Vooのときオフする。さて第
2図はMOSFETのドレイン電極と電源側に接続した
場合の応答特性図であるが、N型MO5FET12はド
レイン電極が+V D(1に接続されているのでゲート
電極が0からVDDに変った時は第2図の曲線23に示
すようにソース電極の電位はV oo−V 丁Nで飽和
してしまう。何故ならばゲート電極とソース電極の電位
差がスレッショルド電圧以上にないとオン状態を保てな
いからである。そしてゲート電極が0のときはオフする
。またP型MOSFET13はドレイン電極が0電位で
あるーV、に接続されているので、ゲート電極がvDD
からOに変る時は第2図の曲線24に示すようにソース
電極の電位は前述した同様の理由でV TFで飽和して
しまう。そしてゲート電極がVDllのときはオフする
。したがってV。0電位を1.0電位な0とし、第1入
力端子16と第2入力端子17の電位の組み合せに対し
て4値出力端子15の電位は以下のようになる。
Now, assume that the potential of the positive electrode +Vo11 is tlI, and the negative electrode -V
If the potential of SS is 0 potential, and the threshold voltage of P-type MOSFET is VT, and the threshold voltage of N-type MOSFET is VTH, the source electrode of P-type MO5FETIO is connected to +vI and D, so the gate electrode is 0. When VOO is output, it is turned off when Voo. Now, Figure 2 is a response characteristic diagram when the drain electrode of the MOSFET is connected to the power supply side. Since the drain electrode of N-type MO5FET12 is connected to +V D (1), the gate electrode changes from 0 to VDD. As shown by curve 23 in Figure 2, the potential of the source electrode saturates at Voo-VdN.This is because the on state is maintained unless the potential difference between the gate electrode and the source electrode exceeds the threshold voltage. When the gate electrode is at 0, it is turned off.Also, since the drain electrode of the P-type MOSFET 13 is connected to 0 potential, -V, the gate electrode is at vDD.
When the voltage changes from 0 to 0, the potential of the source electrode becomes saturated at VTF for the same reason as described above, as shown by curve 24 in FIG. Then, when the gate electrode is at VDll, it is turned off. Therefore V. Letting 0 potential be 1.0 potential, the potential of the four-value output terminal 15 is as follows for the combination of the potentials of the first input terminal 16 and the second input terminal 17.

(1,1)の時  V。。When (1, 1) V. .

(l、0)の時  V DOVTN (0,1)の時  vTP (0,0)の時  0 以上より第1入力端子16、第2入力端子17の組み合
せによって4値出力端子15が4電位をとりうることが
わかる。
(l, 0) V DOVTN (0, 1) vTP (0, 0) 0 From the above, the combination of the first input terminal 16 and the second input terminal 17 causes the 4-value output terminal 15 to output 4 potentials. I understand what is possible.

以上において入力端子は2本の場合の例を示したが、入
力端子3本以上の組み合せに対しての4値出力回路も構
成できる。
Although the example in which there are two input terminals has been shown above, a four-value output circuit can also be constructed for a combination of three or more input terminals.

また出力する4値の状態を入力の組み合せのどの状態に
割り当てるかも様々に変えることもできる。
Furthermore, it is also possible to variously change which state of the input combination the four-valued state to be output is assigned to.

また出力制御回路の構成も様々に変えることができる。Furthermore, the configuration of the output control circuit can be changed in various ways.

〔発明の効果] 以上述べたように本発明によれば1つづつの正極及び負
極の電源で4値の出力状態を持つ出力回路が構成できる
という効果がある。
[Effects of the Invention] As described above, according to the present invention, an output circuit having four output states can be constructed using one positive electrode and one negative electrode power source.

したがって回路の簡略化、高集積化、高機能化が図れる
という効果がある。
Therefore, there is an effect that the circuit can be simplified, highly integrated, and highly functional.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の第1の実施例を示す回路図。 第2図はMOSFETのドレイン電極を電源側に接続し
た場合の応答特性図である。 10. 11、 l 4 ・ l 5 ・ l 6. 18. 2 l ・ 22 ・ l 3 ・ 12 ・ l 7 ・ l 9、 ・P型MO5FET ・N型MOSFET ・出力制御回路 ・4値出力端子 ・入力端子 ・出力制御端子 ・NAND回路 ・NOR回路 以上 出願人 セイコーエプソン株式会社
FIG. 1 is a circuit diagram showing a first embodiment of the present invention. FIG. 2 is a response characteristic diagram when the drain electrode of the MOSFET is connected to the power supply side. 10. 11, l 4 ・ l 5 ・ l 6. 18. 2 l ・ 22 ・ l 3 ・ 12 ・ l 7 ・ l 9, ・P-type MO5FET ・N-type MOSFET ・Output control circuit ・4-value output terminal ・Input terminal ・Output control terminal ・NAND circuit ・NOR circuit Applicant Seiko Epson Corporation

Claims (1)

【特許請求の範囲】[Claims] (1)a)絶縁ゲート電界効果型トランジスタ(以下M
OSFETと略す)を用いた半導体集積回路において、 b)ソース電極を正極の電源端子に接続したP型の第1
のMOSFETと、 c)ソース電極を負極の電源端子に接続したN型の第2
のMOSFETと、 d)ドレイン電極を正極の電源端子に接続したN型の第
3のMOSFETと、 e)ドレイン電極を負極の電源端子に接続したP型の第
4のMOSFETと、 f)2つ以上の入力端子と、2つ以上の出力制御端子を
持つ出力制御回路と、 g)4値をとりうる4値出力端子とからなり、h)前期
第1、第2のMOSFETのドレイン電極と、前記第3
、第4のMOSFETのソース電極とがすべて前記4値
出力端子に接続され、i)前記第1、第2、第3、第4
のMOSFETのゲート電極が前記出力制御回路の2つ
以上存在する出力制御端子のいずれかに接続されている
ことを特徴とする4値出力回路。
(1)a) Insulated gate field effect transistor (hereinafter M
In a semiconductor integrated circuit using an OSFET (abbreviated as OSFET), b) a P-type first transistor whose source electrode is connected to a positive power supply terminal;
c) a second N-type MOSFET whose source electrode is connected to the negative power supply terminal;
d) a third N-type MOSFET whose drain electrode is connected to the positive power terminal; e) a fourth P-type MOSFET whose drain electrode is connected to the negative power terminal; and f) two. an output control circuit having the above input terminals and two or more output control terminals; g) a four-value output terminal capable of taking four values; h) drain electrodes of the first and second MOSFETs; Said third
, and the source electrodes of the fourth MOSFET are all connected to the four-value output terminal, i) the first, second, third, and fourth MOSFETs;
A four-value output circuit characterized in that a gate electrode of the MOSFET is connected to one of two or more output control terminals of the output control circuit.
JP63277912A 1988-11-02 1988-11-02 Four level output circuit Pending JPH02124634A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63277912A JPH02124634A (en) 1988-11-02 1988-11-02 Four level output circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63277912A JPH02124634A (en) 1988-11-02 1988-11-02 Four level output circuit

Publications (1)

Publication Number Publication Date
JPH02124634A true JPH02124634A (en) 1990-05-11

Family

ID=17590025

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63277912A Pending JPH02124634A (en) 1988-11-02 1988-11-02 Four level output circuit

Country Status (1)

Country Link
JP (1) JPH02124634A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0459422A2 (en) * 1990-05-28 1991-12-04 Nec Corporation Data output circuit of semiconductor device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0459422A2 (en) * 1990-05-28 1991-12-04 Nec Corporation Data output circuit of semiconductor device
JPH0435224A (en) * 1990-05-28 1992-02-06 Nec Corp Semiconductor device
EP0459422A3 (en) * 1990-05-28 1994-05-04 Nec Corp

Similar Documents

Publication Publication Date Title
JP2616142B2 (en) Output circuit
US4581545A (en) Schmitt trigger circuit
US5331322A (en) Current cell for digital-to-analog converter
US4988894A (en) Power supply switching circuit
JPH07142990A (en) Level conversion circuit
US4717845A (en) TTL compatible CMOS input circuit
JPS5928986B2 (en) semiconductor integrated circuit
JP2001127615A (en) Division level logic circuit
JPH02124634A (en) Four level output circuit
JPS62145906A (en) Amplifier circuit
JPH03132115A (en) Semiconductor integrated circuit
US20030222701A1 (en) Level shifter having plurality of outputs
JP3052433B2 (en) Level shift circuit
JP2646771B2 (en) Semiconductor integrated circuit
JPH07105709B2 (en) Voltage conversion circuit
JPS594890B2 (en) digital circuit
JPS59200524A (en) Cmos multiplexer
JPH0537380A (en) Current cell circuit
JPS6182532A (en) Inverter circuit
JPH0354903B2 (en)
KR100272481B1 (en) Programmable buffer circuit comprising reduced number of transistors
JPH0377537B2 (en)
JPH01140808A (en) Transfer gate switching circuit
JPH0213490B2 (en)
JPH06268452A (en) Level conversion circuit