JPH0353083B2 - - Google Patents

Info

Publication number
JPH0353083B2
JPH0353083B2 JP19611283A JP19611283A JPH0353083B2 JP H0353083 B2 JPH0353083 B2 JP H0353083B2 JP 19611283 A JP19611283 A JP 19611283A JP 19611283 A JP19611283 A JP 19611283A JP H0353083 B2 JPH0353083 B2 JP H0353083B2
Authority
JP
Japan
Prior art keywords
mortar
slurry
injection
formwork
vibration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP19611283A
Other languages
Japanese (ja)
Other versions
JPS6089305A (en
Inventor
Yukio Suzuki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd filed Critical Asahi Chemical Industry Co Ltd
Priority to JP19611283A priority Critical patent/JPS6089305A/en
Publication of JPS6089305A publication Critical patent/JPS6089305A/en
Publication of JPH0353083B2 publication Critical patent/JPH0353083B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Devices For Post-Treatments, Processing, Supply, Discharge, And Other Processes (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

従来から、例えば、朝倉書店より発行されてい
る「改訂新版コンクリート工学ハンドブツク」な
どに見られるように、金属アルミニウムを発泡剤
として用いた軽量気泡コンクリートの製造法が知
られている。の発泡剤はセメント等のアルカリと
反応して水素ガスを発生することにより、気泡を
形成するものである。 しかし、従来の軽量気泡コンクリートは製品の
表面及び内部に粗大な空洞を生じ、外観不良等の
間題を生じていた。 この原因は、型枠に原料スラリーを注入する
際、または注入の経路中での空気の巻き込みによ
るものと考えられる。 このような、粗大な空洞の発生を避けるため
に、従来は、原料スラリーの型枠への注入が全て
終了した後、型枠内に棒状バイブレーターを挿入
し、型枠内の軽量気泡モルタルに振動加速度を与
えることによつて、得られる製品の外観がよくな
ることは知られている。 しかし、この方法によると、型枠全域にわたつ
て均一に振動を与えることが困難であり、振動が
与えられた近傍では局部的に気泡の脱泡が起こ
り、発泡剤による気泡まで脱泡し、モルタルの局
部的な重質化が避けられなかつた。特に、振動加
速度を与える時間が長い場合は発泡剤による気泡
まで脱泡し、部分的な重質化が起こり、振動時間
が短いと粗大な空洞の発生が避けられない。また
適度に振動を与えても振動源に近い位置と遠い位
置では、振動の伝わり方が異なるためにモルタル
の脱泡現象が部分的には異なるため、得られる製
品においても、その気泡状態は均一なものではな
かつた。 本発明の目的は、モルタルの脱泡現象、即ち粗
大気泡が抜けたり、小気泡化されて大気泡がなく
なる現象を均一に生じせしめ、軽量気泡コンクリ
ート本来の気泡を有し、かつ気泡の均一な製品を
得ることである。 本発明は、軽量気泡コンクリートモルタルスラ
リーをミキサーより連続的に型枠に注入するに際
し、上部に開放部のある注入装置をモルタルスラ
リー注入管とは別体に設け、ミキサーよりモルタ
ルスラリー注入管を経て型枠に連続的に注入しつ
つある注入口装置自体を振動させ、その振動によ
りスラリーに振動加速度を与えながら連続注入す
ることを特徴とする軽量気泡コンクリートのモル
タル注入方法である。 このように本発明は、ミキサーより型枠に連続
的に注入しつつある注入口装置自体を振動させな
がら型枠へ軽量気泡コンクリートをミキサーより
型枠へ連続注入する点が第1の特徴点である発明
である。 本発明に使用する軽量気泡コンクリートモルタ
ルスラリーは通常の軽量気泡コンクリートの製造
に用いられるものでよく、例えば、珪石粉砕物60
部、生石灰10部、普通ポルトランドセメント30部
の混合物100部に対して水65〜80部を加え、発泡
剤を固形物に対し0.055〜0.075部加えて混合した
ものである。注入する際のモルタル粘度は、トル
ク検出型の山崎式回転粘度計で500〜750g−cm程
度のものであることが特に好ましい。 次に本発明を図面を用いながら説明する。 上記に例示した軽量気泡コンクリートモルタル
スラリーを第1図に示したように、ミキサー1に
接続した注入管2を通じ、型枠5に型枠底部付近
より連続的に注入する。この際、注入管2の途中
には開閉の為のバルブがあり、このバルブを開く
ことにより、ミキサー1から型枠5への注入を開
始させ、型枠5に所定量のスラリーが注入される
とこのバルブを閉じる。 本発明の特徴である振動を与える注入口3は、
注入管2と型枠5との間に設けられる。注入口3
は、上部に開放部が有るとともにバイブレーター
7が付属している。このバイブレーター7により
ミキサー1より型枠5に連続的に注入されつつあ
る軽量気泡コンクリートモルタルスラリーが、注
入口3の中を通過滞留する間に粗大気泡を脱泡し
て注入口の上部から抜けるようにする。又、注入
口7に金網等を置くことにより製品への異物の混
入も容易に防止できる。注入口7の下部先端部の
形状については、第1図及び第2図に示すよう
に、注入口先端部6(多口式とも表現可)を有し
たものでもよいし、第3図及び第4図に示したよ
うに、細長い長方形のスリツト9になつたもので
もよい。要するに、出来るだけ型枠底板に近付け
る構造となつており、かつ、底板にモルタルの流
れが水平になるような構造を有したものが特に好
ましい。 又、注入口先端部6を含む注入口3はバイブレ
ーター7により強制振動させられる為、この振動
により共振が大となつたり、注入口先端部6が破
損するような構造は避ける必要がある。 更に、図面に示すように、注入口3を昇降装置
4により上下させる構造とすることが特に好まし
い。この昇降装置の連絡部には、スプリング、防
振ゴム等を組み込み他の部分に振動を伝えないよ
うにする。このように昇降装置を用いると好まし
いのは次の理由による。モルタルの注入開始より
注入完了までの時間が1分以内の場合は、注入口
に先端部等より型枠中のモルタルにも振動が伝わ
つても注入口付近のモルタルの重質化は殆ど認め
られないが、注入に要する時間が長い場合は、注
入口を注入された型枠中のモルタルのレベル上昇
に伴つて徐々に上方に持ち上げると、注入口付近
のモルタルの重質化を避けることができる。 バイブレーター7は、モルタル注入中の注入口
3の中のモルタルに振動加速度1G以上、望まし
くは5G以上、振動数としては6000VPM以上、
より望ましくは10000VPM以上の振動数がかけら
れるような仕様のものであれば何でもよい。一般
的には、注入するモルタルスラリーの粘度などが
異なるものを注入することを考えてバイブレータ
ーを変速可能とすることがより好ましい。 このような本発明の注入方法に従つて注入した
スラリーが硬化し、養生された後に、ブロツクの
最上部より200mm低くなつた部分を水平に切断し
て、全巾、全長さにわたつて気泡径を測定し、気
泡混入係数を算出した。この気泡混入係数とは、
気泡径を3mm以上5mm未満、5mm以上7mm未満、
7mm以上10mm未満、10mm以上に分類し、計数し、
それぞれ、16,36,64,100を乗じて総和したも
のであつて、気泡混入度の度合いを示し、大きい
径の気泡の混入度の量が多い程高い値を示すもの
である。 比較例として従来法等に従つた場合と本発明に
従つた場合の気泡混入計数の結果を表1に示し
た。この表では注入口から1mの区間をA、1m
から2mまでをB、それ以上の区間をCと区別し
た。
BACKGROUND ART Conventionally, a method for manufacturing lightweight cellular concrete using metallic aluminum as a foaming agent has been known, for example, as seen in "Revised New Edition Concrete Engineering Handbook" published by Asakura Shoten. The foaming agent forms bubbles by reacting with an alkali such as cement and generating hydrogen gas. However, conventional lightweight cellular concrete produces large cavities on the surface and inside of the product, resulting in problems such as poor appearance. This is thought to be caused by air being entrained during injection of the raw material slurry into the mold or during the injection route. In order to avoid the formation of such coarse cavities, conventionally, after all the raw material slurry has been injected into the formwork, a rod-shaped vibrator is inserted into the formwork to vibrate the lightweight foam mortar inside the formwork. It is known that applying acceleration improves the appearance of the resulting product. However, according to this method, it is difficult to apply vibration uniformly over the entire area of the formwork, and bubbles are locally defoamed in the vicinity of the vibration, and even bubbles caused by the foaming agent are defoamed. Localized heavy mortar was unavoidable. In particular, if the vibration acceleration is applied for a long time, even the bubbles caused by the foaming agent are defoamed, resulting in partial heavyization, whereas if the vibration time is short, the generation of coarse cavities is unavoidable. Furthermore, even if a moderate amount of vibration is applied, the way the vibrations are transmitted differs between locations near and far from the vibration source, so the defoaming phenomenon of the mortar is partially different, so even in the resulting product, the bubble state is uniform. It wasn't something. The purpose of the present invention is to uniformly cause the defoaming phenomenon of mortar, that is, the phenomenon in which coarse bubbles are removed or become small bubbles and disappear, so that lightweight cellular concrete has the bubbles inherent in lightweight cellular concrete, and the bubbles are uniform. is to get the product. In the present invention, when a lightweight aerated concrete mortar slurry is continuously injected into a formwork from a mixer, an injection device with an open part at the top is provided separately from the mortar slurry injection pipe, and the mortar slurry is poured from the mixer through the mortar slurry injection pipe. This method of pouring mortar into lightweight cellular concrete is characterized by vibrating the pouring device itself which is continuously pouring into the formwork, and continuously pouring slurry while applying vibrational acceleration to the slurry due to the vibration. As described above, the first feature of the present invention is that lightweight aerated concrete is continuously injected from the mixer into the formwork while vibrating the inlet device itself, which is continuously injecting into the formwork from the mixer. This is an invention. The lightweight cellular concrete mortar slurry used in the present invention may be one that is used for the production of ordinary lightweight cellular concrete, such as crushed silica stone 60
10 parts of quicklime, 30 parts of ordinary Portland cement, 65 to 80 parts of water, and 0.055 to 0.075 parts of a foaming agent based on the solid matter. It is particularly preferable that the mortar viscosity at the time of pouring is about 500 to 750 g-cm as measured by a torque detection type Yamazaki rotational viscometer. Next, the present invention will be explained using the drawings. As shown in FIG. 1, the lightweight cellular concrete mortar slurry exemplified above is continuously injected into the formwork 5 from near the bottom of the formwork through the injection pipe 2 connected to the mixer 1. At this time, there is a valve in the middle of the injection pipe 2 for opening and closing, and by opening this valve, injection from the mixer 1 into the formwork 5 is started, and a predetermined amount of slurry is injected into the formwork 5. Close this valve. The injection port 3 that provides vibration, which is a feature of the present invention, is
It is provided between the injection pipe 2 and the mold 5. Inlet 3
has an open part at the top and comes with a vibrator 7. The vibrator 7 allows the lightweight aerated concrete mortar slurry, which is being continuously injected into the formwork 5 from the mixer 1, to defoam coarse air bubbles while passing through and staying in the injection port 3, and exit from the upper part of the injection port. Make it. Furthermore, by placing a wire mesh or the like in the injection port 7, it is possible to easily prevent foreign matter from entering the product. Regarding the shape of the lower tip of the inlet 7, it may have an inlet tip 6 (which can also be expressed as a multi-port type) as shown in FIGS. As shown in FIG. 4, it may be a long and narrow rectangular slit 9. In short, it is particularly preferable to have a structure that is located as close to the bottom plate of the formwork as possible, and that allows the flow of mortar to be horizontal to the bottom plate. Furthermore, since the inlet 3 including the inlet tip 6 is forced to vibrate by the vibrator 7, it is necessary to avoid a structure in which resonance becomes large or the inlet tip 6 is damaged due to this vibration. Furthermore, as shown in the drawings, it is particularly preferable to have a structure in which the injection port 3 is moved up and down by a lifting device 4. A spring, anti-vibration rubber, etc. are installed in the communication part of this lifting device to prevent vibrations from being transmitted to other parts. The reason why it is preferable to use the lifting device in this way is as follows. If the time from the start of mortar injection to the completion of injection is less than 1 minute, even if vibrations are transmitted to the mortar in the formwork from the tip of the injection port, the mortar near the injection port will hardly become heavier. However, if the time required for injection is long, it is possible to avoid the mortar near the injection port becoming heavier by gradually lifting the injection port upward as the level of mortar in the poured formwork increases. . The vibrator 7 applies a vibration acceleration of 1G or more, preferably 5G or more to the mortar in the injection port 3 during mortar injection, and a vibration frequency of 6000VPM or more.
More preferably, any material may be used as long as it can be applied with a frequency of 10,000 VPM or more. Generally, it is more preferable to make the vibrator variable speed in consideration of injecting mortar slurries having different viscosities. After the slurry injected according to the injection method of the present invention is cured and cured, the block is cut horizontally at a point 200 mm lower than the top of the block to measure the bubble diameter over the entire width and length. was measured, and the bubble entrainment coefficient was calculated. This bubble inclusion coefficient is
The bubble diameter is 3 mm or more and less than 5 mm, 5 mm or more and less than 7 mm,
Classify into 7 mm or more and less than 10 mm, 10 mm or more, count,
The values are calculated by multiplying by 16, 36, 64, and 100, respectively, and indicating the degree of bubble inclusion, and the larger the amount of large-diameter bubbles, the higher the value. As a comparative example, Table 1 shows the results of counting air bubbles when the conventional method etc. were followed and when the present invention was followed. In this table, the section 1m from the injection port is A, 1m
The section from 2m to 2m was classified as B, and the section longer than 2m was classified as C.

【表】 但し、気泡混入計数は1桁目を四捨五入した。
又、表1の絶乾比重の差の項は、各部分が振動に
より重質化するかどうかを示し、エリアCの絶乾
比重を100としたときの相対的な値を示している。
110ということは10%高比重化していることを示
す。 この表から本発明に従えば、局部的な重質化が
少なく、かつ、広い区域に均一な気泡混入状態に
なる。 以下に実施例を挙げる。 実施例 1 第1図及び第2図に示される注入装置で、型枠
5として、内寸法の長さが4m、巾が1.8m、高
さが0.2mのものを用い、スラリーとして、それ
ぞれ重量部で、珪石粉砕物45部、生石灰6部、普
通ポルトランドセメント27部、軽量気泡コンクリ
ートの回収屑20部、石膏2部の混合物100部に対
し、水70部を加え、更に発泡剤を固形物に対し、
0.007部を加えたものを用いた。 使用したバイブレーター7は2台であり、注入
口3に各々振動数毎分1000回、振巾100μ、振動
加速度5G(実測値)である。ミキサー1にて撹
拌されたスラリーは型枠5に約2分要して注入さ
れた。この注入の間バイブレーター7により振動
を与え続けた。注入終了後、注入口3は吊具によ
り上方へ移動し、発泡、硬化過程へ悪影響を与え
ないようにした。 このようにして得られた製品を硬化後、型枠底
板面より150mmの高さの位置で水平に切断し、版
中央で気泡混入係数を測定し、どの区域でも1m2
当たり16という好結果が得られた。このようにこ
の実施例でも軽量気泡コンクリート本来の気泡を
損なうことなく、気泡の均一な製品が得られる。 実施例 2 第3図及び第4図に示される注入装置で、型枠
10として、内寸法で4m長さ、15m巾、0.7m
高さのものを用い、スラリーとして、それぞれ重
量部で、珪石粉砕物45部、生石灰6部、普通ポル
トランドセメント27部、軽量気泡コンクリート回
収屑20部、石膏2部の混合物100部に対し、水70
部を加え、更に発泡剤を固形分に対して0.007部
加えたものを用いた。 使用したバイブレーター7は2本であり、モル
タル注入時に各々振動数12000回/分、振動巾
100μ、振動加速度5G(実測値)である。ミキサ
ー1で撹拌されたスラリーは型枠10へ約2.5分
間を要して注入される。この型枠10への注入の
間バイブレーター7により振動を与え続ける。
尚、注入口8の先端部9は長方形のスリツトとな
り、そのうえに長方形スリツトの内部は5cmピツ
チで分割されたスリツト構造となつており、注入
口8とモルタルとの接触面積を増すように構成さ
れている。又、モルタルの注入中、注入口8を30
秒毎に持ち上げて常に注入口8の先端部を型枠中
のモルタル表面に近いモルタル内部に位置させて
注入及び振動をする。モルタルの注入が終了する
と注入口8装置は上方へ移動させ、モルタルの発
泡や硬化過程に影響を与えないようにする。 こうして得られた製品を硬化後、型枠底板より
450mmの高さの位置で水平に切断して気泡混入係
数を測定する。この実施例で得られる製品は重質
化することなく、軽量気泡コンクリート本来の気
泡を有し、1m2当たりの気泡混入係数もどの区域
でも48であり、均一な気泡を有する軽量気泡コン
クリート製品となる。 以上の実施例にも示したように、本発明に従え
ば、粗大な気泡がなく、重質化することなく、軽
量気泡コンクリート本来の気泡を有し、かつ気泡
状態の均一は軽量気泡コンクリート製品が得られ
る。即ち、従来のモルタル振動法に見られる(部
分的な)モルタルの重質化を実用上問題がない程
度の最小限に抑えられる。 また型枠への注入中に振動が与えられるので振
動を付与するための付加的な時間は必要としな
い。 又、従来の型枠に注入した後のモルタルを振動
させる方法に比べると、注入口を振動させる本発
明の方法では、設備的に簡単なもので実施可能と
なる。
[Table] However, the first digit of the air bubble count was rounded off.
Further, the term "difference in absolute dry specific gravity" in Table 1 indicates whether each part becomes heavy due to vibration, and indicates a relative value when the absolute dry specific gravity of area C is set to 100.
110 means 10% higher specific gravity. According to this table, according to the present invention, there is little localized heaviness and a state in which bubbles are uniformly mixed over a wide area is achieved. Examples are given below. Example 1 In the injection apparatus shown in FIGS. 1 and 2, a mold 5 with an inner dimension of 4 m in length, a width of 1.8 m, and a height of 0.2 m was used, and the weight of each slurry was 70 parts of water is added to 100 parts of a mixture of 45 parts of crushed silica stone, 6 parts of quicklime, 27 parts of ordinary Portland cement, 20 parts of recovered waste from lightweight aerated concrete, and 2 parts of gypsum, and a foaming agent is added to the solid mixture. For,
0.007 part was added. Two vibrators 7 were used, and each vibrator 7 had a frequency of 1000 vibrations per minute, a vibration width of 100 μ, and a vibration acceleration of 5 G (actually measured values) at the injection port 3. The slurry stirred in the mixer 1 was poured into the mold 5 over a period of about 2 minutes. Vibration was continued by the vibrator 7 during this injection. After the injection was completed, the injection port 3 was moved upward by a hanger so as not to adversely affect the foaming and curing process. After curing the product obtained in this way, it was cut horizontally at a height of 150 mm from the bottom plate surface of the form, and the air bubble inclusion coefficient was measured at the center of the plate .
A good result of 16 hits was obtained. In this way, even in this example, a product with uniform air bubbles can be obtained without damaging the air bubbles inherent in lightweight cellular concrete. Example 2 Using the injection device shown in FIGS. 3 and 4, the mold 10 had an inner dimension of 4 m in length, 15 m in width, and 0.7 m in width.
As a slurry, water was added to 100 parts of a mixture of 45 parts of crushed silica stone, 6 parts of quicklime, 27 parts of ordinary Portland cement, 20 parts of recovered lightweight aerated concrete waste, and 2 parts of gypsum. 70
1 part and a blowing agent of 0.007 part based on the solid content was used. Two vibrators 7 were used, each with a frequency of 12,000 times/min and a vibration width when pouring mortar.
100μ, vibration acceleration 5G (actual measurement). The slurry stirred by the mixer 1 is poured into the mold 10 over a period of approximately 2.5 minutes. During the injection into the mold 10, the vibrator 7 continues to vibrate.
The tip 9 of the injection port 8 is a rectangular slit, and the inside of the rectangular slit has a slit structure divided at 5 cm pitches, so as to increase the contact area between the injection port 8 and the mortar. There is. Also, while pouring mortar, close the injection port 8 to 30
The tip of the injection port 8 is always positioned inside the mortar near the surface of the mortar in the formwork by lifting it every second to perform injection and vibration. When the mortar injection is finished, the injection port 8 device is moved upward so as not to affect the foaming and curing process of the mortar. After the product thus obtained is cured, it is removed from the bottom plate of the formwork.
Cut horizontally at a height of 450 mm and measure the air bubble entrainment coefficient. The product obtained in this example is not heavy and has the air bubbles inherent in lightweight cellular concrete, and the air bubble inclusion coefficient per square meter is 48 in all areas, making it a lightweight cellular concrete product with uniform air bubbles. Become. As shown in the above examples, according to the present invention, the lightweight cellular concrete product has no coarse air bubbles, does not become heavy, has the air bubbles inherent in lightweight cellular concrete, and has a uniform air bubble state. is obtained. That is, the (partial) heavy mortar found in the conventional mortar vibration method can be minimized to the extent that there is no practical problem. Further, since the vibration is applied during pouring into the mold, no additional time is required for applying the vibration. Furthermore, compared to the conventional method of vibrating the mortar after pouring it into the mold, the method of the present invention of vibrating the injection port can be implemented with simpler equipment.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明方法の実施に適用する装置の側
面略図であり、第2図はその平面図である。第3
図は本発明の実施に用いる装置の他の例を示す側
面略図であり、第4図はその平面図である。 図中において、1はミキサー、2は注入管、3
と8は注入口装置、4は注入口昇降装置、5と1
0は型枠、6と9は注入口先端部、7はバイブレ
ーターである。
FIG. 1 is a schematic side view of an apparatus applied to carry out the method of the present invention, and FIG. 2 is a plan view thereof. Third
The figure is a schematic side view showing another example of the apparatus used for implementing the present invention, and FIG. 4 is a plan view thereof. In the figure, 1 is a mixer, 2 is an injection pipe, 3
and 8 are the inlet device, 4 is the inlet lifting device, 5 and 1
0 is a mold, 6 and 9 are injection inlet tips, and 7 is a vibrator.

Claims (1)

【特許請求の範囲】[Claims] 1 軽量気泡コンクリートモルタルスラリーをミ
キサーより連続的に型枠に注入するに際し、上部
に開放部のある注入口装置をモルタルスラリー注
入管とは別体に設け、ミキサーよりモルタルスラ
リー注入管を経て型枠に連続的に注入しつつある
注入口装置自体を振動させ、その振動によりスラ
リーに振動加速度を与えながら連続注入すること
を特徴とする軽量気泡コンクリートのモルタル注
入方法
1. When continuously injecting lightweight aerated concrete mortar slurry into the formwork from a mixer, an injection port device with an open part at the top is provided separately from the mortar slurry injection pipe, and the mortar slurry is poured from the mixer through the mortar slurry injection pipe into the formwork. A method for pouring mortar into lightweight aerated concrete, which is characterized by vibrating the pouring device itself, which is continuously pouring into the slurry, and continuously pouring the slurry while applying vibrational acceleration to the slurry.
JP19611283A 1983-10-21 1983-10-21 Mortar injection method of light-weight aerated concrete Granted JPS6089305A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19611283A JPS6089305A (en) 1983-10-21 1983-10-21 Mortar injection method of light-weight aerated concrete

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19611283A JPS6089305A (en) 1983-10-21 1983-10-21 Mortar injection method of light-weight aerated concrete

Publications (2)

Publication Number Publication Date
JPS6089305A JPS6089305A (en) 1985-05-20
JPH0353083B2 true JPH0353083B2 (en) 1991-08-14

Family

ID=16352434

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19611283A Granted JPS6089305A (en) 1983-10-21 1983-10-21 Mortar injection method of light-weight aerated concrete

Country Status (1)

Country Link
JP (1) JPS6089305A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0521370Y2 (en) * 1986-03-03 1993-06-01
JPH07232311A (en) * 1994-02-25 1995-09-05 Kurosaki Refract Co Ltd Method for casting refractory material under reduced pressure and vibration
JP7150296B2 (en) * 2017-11-02 2022-10-11 株式会社NejiLaw Air bubble miniaturization defoaming device and filling device
JP2023009056A (en) * 2022-09-20 2023-01-19 株式会社NejiLaw Manufacturing method of solidification body and solidification body manufactured using the method

Also Published As

Publication number Publication date
JPS6089305A (en) 1985-05-20

Similar Documents

Publication Publication Date Title
JPH0213882B2 (en)
US1787449A (en) Method of forming and molding concrete
JPH0353083B2 (en)
US2253730A (en) Process of molding concrete
US2526174A (en) Method of casting concrete pipes and the like
CN109304796A (en) A kind of construction technology of concrete steel formwork
JPH0547377B2 (en)
CN212764016U (en) Prevent prefabricated case roof beam template of centre form come-up
JPS6243952B2 (en)
JPS5920970Y2 (en) Bubble elimination device for brake cast concrete plate surface
JPH0821094A (en) Bar vibrator and vibration deforming method using it
JP3815806B2 (en) Method for producing lightweight cellular concrete board
JPS61149319A (en) Preparation of thermosetting resin castings
JP4981475B2 (en) Method for producing lightweight cellular concrete panel
JPS62194364A (en) Method for forming dense layer on surface of hardened concrete
JPH0260484B2 (en)
SU1395512A1 (en) Apparatus for placing concrete mix into mould
RU2064408C1 (en) Method of moulding building blocks
EP0376353A1 (en) A method and device for casting concrete products
SU1564542A1 (en) Method of determining filler water absorption in cement paste
JPS6410322B2 (en)
JPH02102176A (en) Production of alc
SU1663543A1 (en) Method of determining concrete mix compaction time
JP2003251622A (en) Method for manufacturing of concrete product
SU1666264A1 (en) Method for mold making from cold-hardening sands