JPS6410322B2 - - Google Patents

Info

Publication number
JPS6410322B2
JPS6410322B2 JP56116481A JP11648181A JPS6410322B2 JP S6410322 B2 JPS6410322 B2 JP S6410322B2 JP 56116481 A JP56116481 A JP 56116481A JP 11648181 A JP11648181 A JP 11648181A JP S6410322 B2 JPS6410322 B2 JP S6410322B2
Authority
JP
Japan
Prior art keywords
slurry
raw material
rod
semi
bubbles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56116481A
Other languages
Japanese (ja)
Other versions
JPS5820767A (en
Inventor
Yoshiki Fujimura
Takashi Mimura
Hideaki Sato
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ONODA EE ERU SHII KK
ONODA SEMENTO KK
Original Assignee
ONODA EE ERU SHII KK
ONODA SEMENTO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ONODA EE ERU SHII KK, ONODA SEMENTO KK filed Critical ONODA EE ERU SHII KK
Priority to JP56116481A priority Critical patent/JPS5820767A/en
Publication of JPS5820767A publication Critical patent/JPS5820767A/en
Publication of JPS6410322B2 publication Critical patent/JPS6410322B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Producing Shaped Articles From Materials (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は製品の表面に気泡むらのない平滑な軽
量気泡コンクリートを製造する方法に関するもの
である。 軽量気泡コンクリートは軽量、耐火、断熱など
の性質が優れているため近時盛んに用いられるよ
うになつてきた。この軽量気泡コンクリートは内
部空隙が全容積の80%程度あるため、呼吸性があ
り、また耐久性を与えるため通常屋外に使用する
気泡コンクリートの表面には防水用の吹付材を吹
付けたシートを貼付けることが行われている。し
かるに、特に吹付材の場合は吹付厚さは1〜2mm
程度であるので、気泡むらがあると均一に吹付け
することはできない。また屋内にあつては防水施
工なしで使用することがあり、気泡コンクリート
の素地表面がそのまゝ露出することになるので、
素地表面の気泡は小さく、かつ均一に分散してい
ることが強く要求されている。 軽量気泡コンクリートは一般にALCと呼ばれ
るものであつて、周知のようにケイ酸質原料、石
灰質原料、その他の結合材、必要に応じ各種の添
加剤を加えた原料中のCaO:SiO2モル比が0.8以
下になるように調合したもの(以下この混合物を
調合原料という)に、適量の水とアルミニウム金
属粉末を加えて混練し、スラリー状にし、このス
ラリーを型枠に注入し、発泡凝固させた後、得ら
れた半可塑物を脱型し、これを線径0.6〜1.2mmの
鋼線で所望寸法に切断した後、この半可塑物をオ
ートクレーブ中で高温高圧で蒸気養生して製造さ
れる。この際アルミニウム金属粉末とスラリー中
のアルカリ分との反応により生成する水素ガスに
より形成される気泡は通常直径2mm以下の球状で
あるが、特に混練水としてオートクレーブ内の機
械装置に由来する灯油或いはエマルジヨン化した
灯油等が微量含まれる回収水を使用する場合、ま
たは起泡性の表面活性剤を混練水に添加した場
合、さらにケイ酸質原料中に粘土鉱物が混入して
いる場合、または微晶質の石英粒が多いケイ石を
使用した場合などには、スラリー混練中に空気が
スラリー中に巻込まれて残留するばかりでなく発
生した水素ガスも同時に巻込まれて気泡径5mm以
上の粗大気泡が形成された半可塑物が出来る。そ
れ故生成された半可塑物を鋼線で切断した切断表
面に、これらの粗大気泡が露出し、製品の商品価
値は低下する。またこのような場合吹付材などで
製品表品を防水施工する場合でも、この粗大気泡
を吹付材により充填することは困難であり、外観
上見苦しいばかりでなく、製品の耐久性の点から
も問題がある。 本発明者等はこのような軽量気泡コンクリート
の欠点を解決せんとし鋭意研究した結果、調合原
料のスラリー粘度を特定範囲に調製すると共に得
られたスラリーを型枠に注入後直ちに特定範囲の
振動加速度の棒状バイブレーターをスラリー中に
挿入し、スラリーに特定時間振動エネルギーを与
えることにより、粗大気泡は脱泡され、気泡むら
のない、微細気泡が均一に分布した製品が得られ
ることを知見した。 次に実験した結果について説明する。 この実験に使用した調合原料はそれぞれ重量部
で示してケイ石粉砕物60、生石灰粉末10、普通ポ
ルトランドセメント30の混合物で、この混合物
100に対し、500ppmの灯油或いはエマルジヨン化
した灯油が含まれるオートクレーブからの回収水
の水量を次の第1表および第2表に示す粘度が得
られるように変えて混練し、次いでアルミニウム
金属粉末を0.07重量部添加混練し、第1〜2表に
示す6種の粘度のスラリーを調製した。次にこれ
らのスラリーを巾150cm×長さ600cm×高さ70cmの
型枠に高さ36cmになるように注入し、直ちに第1
および第2表に示す各種の振動加速度の棒状バイ
ブレーターを型枠中央部のスラリー深度35cmの所
まで挿入し、60秒間振動エネルギーをスラリーに
与えた後抜出し、スラリーを発泡凝固せしめた。
次に凝固した半可塑物の圧縮強度が500g/cm2
に硬化したものを型枠から取りはずし、径0.8mm
のピアノ線で厚さ10cm×巾60cm×長さ300cmのパ
ネル状に切断し、それぞれの半可塑物をオートク
レーブに入れて養生した後製品表面各部における
5mm以上の粗大気泡が零となる棒状バイブレータ
ーからの距離および棒状バイブレーターからの距
離5mm以上の粗大気泡が零となつに要する加振時
間との関係を求めて第1表および第2表の結果を
得た。
The present invention relates to a method for producing smooth lightweight cellular concrete without unevenness of bubbles on the surface of the product. Lightweight aerated concrete has become popular in recent years because it has excellent properties such as light weight, fire resistance, and heat insulation. This lightweight aerated concrete has internal voids of about 80% of its total volume, making it breathable, and to give it durability, the surface of the aerated concrete used outdoors is usually covered with a sheet sprayed with waterproof spraying material. pasting is being done. However, especially in the case of sprayed materials, the sprayed thickness is 1 to 2 mm.
Therefore, if there are uneven bubbles, it will not be possible to spray uniformly. In addition, when used indoors, it may be used without waterproofing, and the base surface of the aerated concrete will be exposed as it is.
It is strongly required that the air bubbles on the surface of the substrate be small and uniformly dispersed. Lightweight aerated concrete is generally called ALC, and as is well known, the CaO:SiO 2 molar ratio in the raw material, which includes silicic raw materials, calcareous raw materials, other binders, and various additives as necessary, is 0.8 or less (hereinafter, this mixture is referred to as the mixed raw material), an appropriate amount of water and aluminum metal powder were added and kneaded to form a slurry, and this slurry was poured into a mold and foamed and solidified. After that, the obtained semi-plastic material is demolded and cut into desired dimensions using a steel wire with a wire diameter of 0.6 to 1.2 mm, and then this semi-plastic material is steam-cured at high temperature and high pressure in an autoclave to produce the product. . At this time, the bubbles formed by the hydrogen gas generated by the reaction between the aluminum metal powder and the alkaline content in the slurry are usually spherical with a diameter of 2 mm or less, but in particular, kerosene or emulsion originating from the mechanical equipment in the autoclave is used as the kneading water. When using recovered water that contains small amounts of kerosene, etc., when foaming surfactants are added to the kneading water, when clay minerals are mixed in the silicic acid raw materials, or when using microcrystalline When using silica stone with many high-quality quartz grains, not only air gets caught in the slurry and remains during slurry kneading, but also generated hydrogen gas is also drawn in, resulting in coarse bubbles with a bubble diameter of 5 mm or more. A formed semi-plastic is produced. Therefore, these coarse air bubbles are exposed on the cut surface of the produced semi-plastic material with a steel wire, reducing the commercial value of the product. In such cases, even when waterproofing the surface of the product using spray material, it is difficult to fill these coarse air bubbles with spray material, which not only looks unsightly, but also poses problems in terms of product durability. There is. The inventors of the present invention have conducted intensive research to solve the drawbacks of lightweight aerated concrete, and as a result, they have adjusted the slurry viscosity of the mixed raw materials to a specific range, and immediately after pouring the resulting slurry into the formwork, vibration acceleration within a specific range has been achieved. It was discovered that by inserting a rod-shaped vibrator into the slurry and applying vibrational energy to the slurry for a specific period of time, coarse air bubbles can be defoamed and a product with uniform distribution of fine air bubbles without unevenness can be obtained. Next, the experimental results will be explained. The raw materials used in this experiment were a mixture of 60 parts by weight of crushed silica, 10 parts of quicklime powder, and 30 parts of ordinary Portland cement.
100, the amount of recovered water from an autoclave containing 500 ppm of kerosene or emulsified kerosene was mixed so as to obtain the viscosity shown in Tables 1 and 2 below, and then aluminum metal powder was mixed. 0.07 parts by weight was added and kneaded to prepare slurries having six viscosities shown in Tables 1 and 2. Next, pour these slurries into a mold of width 150cm x length 600cm x height 70cm to a height of 36cm, and immediately
Rod-shaped vibrators with various vibration accelerations shown in Table 2 were inserted into the center of the mold to a slurry depth of 35 cm, and after applying vibrational energy to the slurry for 60 seconds, they were pulled out to foam and solidify the slurry.
Next, the solidified semi-plastic material with a compressive strength of 500 g/ cm2 was removed from the formwork, and the diameter was 0.8 mm.
After cutting the semi-plastic material into panels of 10 cm thickness x 60 cm width x 300 cm length using piano wire, and curing each semi-plastic material in an autoclave, use a rod-shaped vibrator to eliminate coarse air bubbles of 5 mm or more on each part of the product surface. The relationship between the distance and the vibration time required for the coarse bubbles at a distance of 5 mm or more from the rod-shaped vibrator to disappear was determined, and the results shown in Tables 1 and 2 were obtained.

【表】 なお第1表中の振動加速度の記載、例えば54G
は重力加速度の54倍の振動エネルギーを与えたこ
とを示し、〔(2πf)2a÷重力加速度〕で求めたもの
である。 式中f……棒状バイブレーターの振動数、a…
…棒状バイブレーターの振巾を示す。 また第2表中の粘度はB型粘度計で測定した。
[Table] The description of vibration acceleration in Table 1, for example 54G
indicates that a vibrational energy of 54 times the gravitational acceleration was applied, and was calculated as [(2πf) 2 a ÷ gravitational acceleration]. In the formula, f...the frequency of the rod-shaped vibrator, a...
...Indicates the swing width of the rod-shaped vibrator. Further, the viscosities in Table 2 were measured using a B-type viscometer.

【表】 なお第1表および第2表中の振動加速度54G…
…386Gはそれぞれ次記する棒状バイブレーター
を使用して振動エネルギーを与えたことを示す。
振動加速度は(2πf)2×a/重力加速度で示す。 上記式中f……棒状バイブレーターの振動数、
a……棒状バイブレーターの振巾、を示す。
[Table] The vibration acceleration 54G in Tables 1 and 2...
...386G indicates that vibration energy was applied using the rod-shaped vibrator described below.
The vibration acceleration is expressed as (2πf) 2 ×a/gravitational acceleration. In the above formula, f...the frequency of the rod-shaped vibrator,
a... Indicates the swing width of the rod-shaped vibrator.

【表】 また粘度はB型粘度計で測定した。 なお比較実験例として上記実験例に使用した調
合原料と同じ原料を使用し、この調合原料に対し
上記実験例に使用したものと同じ水質の回収水を
添加混練し、次いで同量のアルミニウム金属粉末
を添加混練して上記実験例と同じ粘度範囲のスラ
リーを造つた。 次にこのスラリーを上記と同じ大きさの型枠に
注入し、発泡凝固せしめ、生成した半可塑物をパ
ネル状に切断して後オートクレーブに入れて養生
した。得られたパネル/m2の表面積に存在する径
5mm以上の粗大気泡の数を計数し、第3表の結果
を得た。
[Table] The viscosity was also measured using a B-type viscometer. As a comparative experimental example, the same raw material as the mixed raw material used in the above experimental example was used, and recovered water of the same quality as that used in the above experimental example was added and kneaded to this mixed raw material, and then the same amount of aluminum metal powder was added. was added and kneaded to produce a slurry having the same viscosity range as in the above experimental example. Next, this slurry was poured into a mold of the same size as above, foamed and solidified, and the resulting semi-plastic material was cut into panels and then placed in an autoclave for curing. The number of coarse bubbles with a diameter of 5 mm or more existing on the surface area of the obtained panel/m 2 was counted, and the results shown in Table 3 were obtained.

【表】 上記結果より比較例においては製品表面の粗大
気泡の数が多く、製品の商品価値は減少した。 以上の実験結果より、調合原料スラリー中の粗
大気泡の脱泡はスラリーの粘度とスラリーに加え
る振動加速度により影響され、粗大気泡を一定時
間内に脱泡せしめるにはスラリー粘度に応じてス
ラリーに加える振動加速度を大きくする必要があ
ること、また振動加速度を大にすれば棒状バイブ
レーターの挿入間隔を大にすることができること
が認められる。 本発明は、これらの知見に基くものであつて、
ケイ酸質原料、石灰質原料、その他の結合材より
なる調合原料に水と発泡剤とを添加混練して常法
により軽量気泡コンクリートを製造するに当り、
調合原料のスラリー粘度を300〜2000cpsに調製し
たものを型枠に注入後、直ちにこのスラリー中に
棒状バイブレーターを挿入し、短時間スラリーに
重力加速度の50〜390倍、好ましくは190〜280倍
の振動加速度を加えた後、棒状バイブレーターを
抜き出し、スラリーを自由発泡して凝固せしめた
後、半可塑物を所定寸法に切断し、この切断され
た半可塑物をオートクレーブ養生することを特徴
する軽量気泡コンクリートの製造方法である。 本発明においてスラリー粘度が300cps未満のと
きはスラリー中に巻き込まれた気泡がスラリー上
面に浮上して脱泡するが、水素ガスにより形成さ
れる気泡までもスラリー上面に浮上し脱泡するの
で、良質の製品を造ることができない。これに対
しスラリー粘度が2000cpsを超えるときは、型枠
に注入されたスラリー中の残留気泡を短時間内に
浮上脱泡せしめることが出来ないので、この場合
も良質の製品を造ることができない。 次にスラリーに与える振動加速度は重力加速度
の50〜390倍、好まくは190〜280倍であり、50倍
未満では振動の伝播距離が短かく、かつ粗大気泡
を浮上脱気せしめるのに要する時間が長くなるの
で経済的でない。また重力加速度の390倍を超え
る振動加速度を与えると振動エネルギーがスラリ
ーに吸収される割合が増すため、振動エネルギー
の増加に比例して脱泡効果が比例しなくなり、平
衡状態になる。 また調合原料スラリーに棒状バイブレーターを
挿入する深さはバイブレーターの先端が型枠の底
面より3〜50mm程度はなした位置に設定し、また
スラリーに加速度を与える時間は10〜90秒程度で
スラリーの粘度に影響され、粘度が低い程加振時
間を短かくすることができる。振動エネルギーを
与える時間が長過ぎると巻き込まれた粗大気泡が
脱泡されるばかりでなく、発生した水素ガスの気
泡も脱泡されるようになるので好ましくない。 実施例 結晶粒径が5μ以下の石英を30%程度含有する
珪石粉末(ブレーン3000cm2/g)60重量部(以下
たんに部と表現する)と生石灰粉末(88μ節残分
5%)10部と普通ポルトランドセメント30部とを
混合し、この混合物100部に対し清水70部を加え、
1分間混練後、アルミニウム金属粉末0.07部を添
加し、さらに1分間混練して粘度500cps(B型粘
度計による測定値)のスラリーを造つた。 このスラリーを巾150cm、長さ600cm、高さ70cm
の型枠に高さ36cmになるように注入し、直ちに振
動数1200回/分振巾1.2mm、振動加速度が重力加
速度の193倍の棒状バイブレーター(林バイブレ
ーター社製、B28F型)4本を型枠巾中央部にほ
ぼ等間隔になるように、スラリー深度35cmの所ま
で同時に挿入し、30秒間加振した。 その後棒状バイブレーターを抜き出し、スラリ
ーを発泡凝固せしめた。 次に凝固した半可塑物の圧縮強度が500g/cm2
程度に硬化したものを型枠からはずし、径0.8mm
のピアノ線で厚さ10cm×巾60cm×長さ300cmのパ
ネル状に切断し、それぞれの半可塑物をオートク
レーブに入れて養生した。 得られた製品表面には径5mm以上の粗大気泡は
全く認められず、平滑を表面を呈していた。 また、清水70部の代りに油分を500ppm含有す
るオートクレーブからの回収水を70部使用した場
合でもほぼ同様な結果が得られた。 次に比較例として、振動加速度を与えないで、
その他の条件を同じにして造つた製品表面には径
5mm以上の粗大気泡が多数現われていた。製品表
面に現われた径5mm以上の粗大気泡を計数したと
ころ1m2当り80個も数えられた。 このように本発明方法によると、油分を微量含
有するオートクレーブからの回収水を混練水とし
て使用したり、起泡性の表面活性剤を混練水に添
加した場合や、ケイ酸質原料中に粘土鉱物が混入
している場合、或いは微晶質の石英粒多いケイ石
を使用した場合でも、軽量気泡コンクリートの素
地表面の気泡を小さく、かつ均一に分散させるこ
とができる。
[Table] From the above results, the number of coarse bubbles on the product surface was large in the comparative example, and the commercial value of the product decreased. From the above experimental results, the defoaming of coarse bubbles in the raw material slurry is influenced by the viscosity of the slurry and the vibration acceleration applied to the slurry, and in order to defoam the coarse bubbles within a certain period of time, the amount of foam added to the slurry is determined according to the viscosity of the slurry. It is recognized that it is necessary to increase the vibration acceleration, and that if the vibration acceleration is increased, the insertion interval of the rod-shaped vibrators can be increased. The present invention is based on these findings, and
When producing lightweight cellular concrete by a conventional method by adding water and a foaming agent to a mixed raw material consisting of silicic raw materials, calcareous raw materials, and other binders,
Immediately after pouring a slurry of mixed raw materials into a mold with a viscosity of 300 to 2000 cps, a rod-shaped vibrator is inserted into the slurry, and the slurry is subjected to a gravitational acceleration of 50 to 390 times, preferably 190 to 280 times, for a short period of time. After applying vibration acceleration, the rod-shaped vibrator is extracted, the slurry is free-foamed and solidified, the semi-plastic material is cut into predetermined dimensions, and the cut semi-plastic material is cured in an autoclave. It is a method of manufacturing concrete. In the present invention, when the slurry viscosity is less than 300 cps, air bubbles caught in the slurry float to the top surface of the slurry and are defoamed, but even bubbles formed by hydrogen gas float to the top surface of the slurry and are defoamed. products cannot be manufactured. On the other hand, when the slurry viscosity exceeds 2000 cps, the remaining air bubbles in the slurry injected into the mold cannot be floated up and defoamed within a short period of time, so a high-quality product cannot be manufactured in this case either. Next, the vibration acceleration applied to the slurry is 50 to 390 times, preferably 190 to 280 times, the gravitational acceleration.If it is less than 50 times, the vibration propagation distance is short and the time required to float and degas the coarse air bubbles. It is not economical because it takes a long time. Furthermore, if a vibration acceleration exceeding 390 times the gravitational acceleration is applied, the rate at which vibration energy is absorbed by the slurry increases, so that the defoaming effect becomes unequal in proportion to the increase in vibration energy, resulting in an equilibrium state. In addition, the depth at which the rod-shaped vibrator is inserted into the raw material slurry is set so that the tip of the vibrator is approximately 3 to 50 mm away from the bottom of the formwork, and the time to apply acceleration to the slurry is approximately 10 to 90 seconds. It is influenced by the viscosity, and the lower the viscosity, the shorter the excitation time can be. If the vibration energy is applied for too long, not only the trapped coarse air bubbles will be defoamed, but also the generated hydrogen gas bubbles will be defoamed, which is not preferable. Example 60 parts by weight of silica powder (blane 3000cm 2 /g) containing about 30% quartz with a crystal grain size of 5μ or less (hereinafter referred to as "parts") and 10 parts of quicklime powder (88μ section residue 5%) and 30 parts of ordinary Portland cement, add 70 parts of fresh water to 100 parts of this mixture,
After kneading for 1 minute, 0.07 part of aluminum metal powder was added, and kneading was further continued for 1 minute to produce a slurry with a viscosity of 500 cps (measured using a B-type viscometer). This slurry is 150cm wide, 600cm long, and 70cm high.
Immediately place four rod-shaped vibrators (manufactured by Hayashi Vibrator Co., Ltd., B28F type) with a frequency of 1200 vibrations/minute width of 1.2 mm and a vibration acceleration of 193 times the acceleration of gravity into the mold to a height of 36 cm. The slurry was simultaneously inserted to a depth of 35 cm at approximately equal intervals in the center of the width of the frame, and vibrated for 30 seconds. Thereafter, the rod-shaped vibrator was taken out and the slurry was foamed and solidified. Next, the compressive strength of the solidified semi-plastic is 500g/cm 2
Remove the material that has hardened to a certain degree from the formwork and make a diameter of 0.8 mm.
They were cut into panels 10 cm thick x 60 cm wide x 300 cm long using piano wire, and each semi-plastic material was placed in an autoclave and cured. No coarse bubbles with a diameter of 5 mm or more were observed on the surface of the obtained product, and the surface was smooth. Furthermore, almost the same results were obtained when 70 parts of water recovered from an autoclave containing 500 ppm of oil was used instead of 70 parts of fresh water. Next, as a comparative example, without applying vibration acceleration,
Many coarse bubbles with a diameter of 5 mm or more appeared on the surface of the product manufactured under the same other conditions. When we counted the coarse bubbles with a diameter of 5 mm or more that appeared on the product surface, we found 80 bubbles per square meter. As described above, according to the method of the present invention, water recovered from an autoclave containing a small amount of oil is used as kneading water, a foaming surfactant is added to the kneading water, and clay is added to the siliceous raw material. Even when minerals are mixed in, or when silica stone containing many microcrystalline quartz grains is used, the air bubbles on the surface of the lightweight cellular concrete can be made small and uniformly dispersed.

Claims (1)

【特許請求の範囲】[Claims] 1 ケイ酸質原料、石灰質原料、その他の結合材
よりなる調合原料に水と発泡剤とを添加混練して
常法により軽量気泡コンクリートを製造するに当
り、調合原料のスラリー粘度を300〜2000CpSに
調製したものを型枠に注入後、直ちにこのスラリ
ー中に棒状バイブレーターを挿入し、短時間スラ
リーに重力加速度の50〜390倍の振動加速度を加
えた後棒状バイブレーターを抜き出し、スラリー
を自由発泡して凝固せしめた後、半可塑物を所定
寸法に切断し、この切断された半可塑物をオート
クレーブ養生することを特徴とする軽量気泡コン
クリートの製造方法。
1. When manufacturing lightweight aerated concrete using a conventional method by adding and kneading water and a blowing agent to a mixed raw material consisting of a siliceous raw material, a calcareous raw material, and other binders, the slurry viscosity of the mixed raw material is adjusted to 300 to 2000 CpS. Immediately after pouring the prepared material into the mold, a rod-shaped vibrator was inserted into the slurry, and after applying vibrational acceleration of 50 to 390 times the gravitational acceleration to the slurry for a short time, the rod-shaped vibrator was taken out and the slurry was foamed freely. A method for producing lightweight aerated concrete, which comprises cutting the semi-plastic material into predetermined dimensions after solidification, and curing the cut semi-plastic material in an autoclave.
JP56116481A 1981-07-27 1981-07-27 Manufacture of lightweight foamed concrete Granted JPS5820767A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56116481A JPS5820767A (en) 1981-07-27 1981-07-27 Manufacture of lightweight foamed concrete

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56116481A JPS5820767A (en) 1981-07-27 1981-07-27 Manufacture of lightweight foamed concrete

Publications (2)

Publication Number Publication Date
JPS5820767A JPS5820767A (en) 1983-02-07
JPS6410322B2 true JPS6410322B2 (en) 1989-02-21

Family

ID=14688170

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56116481A Granted JPS5820767A (en) 1981-07-27 1981-07-27 Manufacture of lightweight foamed concrete

Country Status (1)

Country Link
JP (1) JPS5820767A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04108919U (en) * 1991-03-04 1992-09-21 関東自動車工業株式会社 Press type structure

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6011312A (en) * 1983-07-01 1985-01-21 旭化成株式会社 Method of injecting light aerated concrete-slurry
JPS6011313A (en) * 1983-07-01 1985-01-21 旭化成株式会社 Manufacture of light aerated concrete
JPS6076312A (en) * 1983-10-04 1985-04-30 旭化成株式会社 Method and device for injecting raw-material slurry of light-weight aerated concrete

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04108919U (en) * 1991-03-04 1992-09-21 関東自動車工業株式会社 Press type structure

Also Published As

Publication number Publication date
JPS5820767A (en) 1983-02-07

Similar Documents

Publication Publication Date Title
US4462835A (en) Lightweight building material and method of producing the same
US4124669A (en) Aerated concrete process
EP0069095A1 (en) A method in the manufacture of steam-cured inorganic insulating material of extremely low volumetric weight and having good heat-insulating properties
JPS6410322B2 (en)
US3144346A (en) Calcium silicate hydrate products
US2153837A (en) Insulating concrete construction
DE10131360B4 (en) Process for the production of porous concrete insulation panels
JP4981475B2 (en) Method for producing lightweight cellular concrete panel
JP3215733B2 (en) Method for producing concrete or mortar molding
RU2177926C1 (en) Method of manufacturing arbolite
SU1675283A1 (en) Composition for manufacturing porous materials and method for manufacturing porous materials
JPH0640780A (en) Lightweight aerated concrete
JP3562872B2 (en) Manufacturing method of lightweight cellular concrete
JP2812172B2 (en) Method and apparatus for injecting raw material slurry for ALC production
JPS6243952B2 (en)
SU1178731A1 (en) Raw mixture for producing finish sound-absorbing plates
JP3791939B2 (en) Method for producing lightweight cellular concrete board
SU673626A1 (en) Method of making gas-concrete articles
JP2004058307A (en) Method for manufacturing light-weight foam block
JPH0816036B2 (en) Method for manufacturing lightweight foam concrete
JPH0152356B2 (en)
SU1133251A1 (en) Raw mix for making ornamental acoustic material
JPH07115965B2 (en) Method for manufacturing steam-cured lightweight cellular concrete
JPH0429631B2 (en)
JPS6344714B2 (en)