JP3562872B2 - Manufacturing method of lightweight cellular concrete - Google Patents

Manufacturing method of lightweight cellular concrete Download PDF

Info

Publication number
JP3562872B2
JP3562872B2 JP16954395A JP16954395A JP3562872B2 JP 3562872 B2 JP3562872 B2 JP 3562872B2 JP 16954395 A JP16954395 A JP 16954395A JP 16954395 A JP16954395 A JP 16954395A JP 3562872 B2 JP3562872 B2 JP 3562872B2
Authority
JP
Japan
Prior art keywords
mortar
rod
bar
weight
mold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP16954395A
Other languages
Japanese (ja)
Other versions
JPH0872034A (en
Inventor
重夫 椎橋
美智明 金田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Construction Materials Corp
Original Assignee
Asahi Kasei Construction Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Construction Materials Corp filed Critical Asahi Kasei Construction Materials Corp
Priority to JP16954395A priority Critical patent/JP3562872B2/en
Publication of JPH0872034A publication Critical patent/JPH0872034A/en
Application granted granted Critical
Publication of JP3562872B2 publication Critical patent/JP3562872B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Producing Shaped Articles From Materials (AREA)
  • Manufacturing Of Tubular Articles Or Embedded Moulded Articles (AREA)

Description

【0001】
【産業上の利用分野】
本発明は石灰質原料及び珪酸質原料を主原料とし、鉄筋や金網(ラス網)等の補強筋で補強され、オートクレーブ養生した軽量気泡コンクリートの製造法に関するものである。
【0002】
【従来の技術】
軽量気泡コンクリート(以下、ALCという)製品は、型枠中に鉄筋などの補強筋を所要量、所要形状に配列し、石灰質原料及び珪酸質原料を粉砕したものに適量の水、気泡剤等を加えて混合したスラリーを型枠に注入して発泡硬化させ、多孔質化したものをオートクレーブ養生して製造する。モルタルスラリーは型枠に注入後は、殆ど気泡を含まないが、ごく短時間で気泡剤が発泡し始め、スラリーは水和反応により徐々に硬化し始める。粘度上昇したスラリーは発生した気泡を安定に保持し、徐々に体積を増して所定の体積まで膨張する。
【0003】
図9及び図10に示したように、型枠4内には、水平方向に主筋1、垂直方向に副筋2から成る複数のU字筋構造の補強筋3が配置されている。モルタルスラリーの発泡終了直前に、スラリーの上面部は、型枠内に配置した補強筋の最上部の主筋を通過するときに、気泡剤によって発泡した小気泡の合一が著しく、補強筋の最上部の主筋の真上に気泡溜まりが生成し、著しい品質低下の原因となっていた。
【0004】
このため、特開昭63−256405号公報ではモルタルスラリーを型枠に注入後、発泡硬化中に棒状や板状のガス抜き片等をスラリー中に挿入し、補強筋上部に発生した粗大気泡を除去しようとするものであるが、一部は残留し、粗大空隙が部分的に残る。特開昭64−9704号公報はガス抜き片等を挿入後長さ方向に水平移動することによってスラリー中に発生した気泡を除去しようとするものであるが、粗大気泡を充分除去することはできない。特公平2−11552号公報は棒状のガス抜き片を振動させることにより粗大気泡のモルタル上面への浮上を促進させるものであるが、部分的に粗大気泡が残留する。
【0005】
【発明が解決しようとする課題】
上記のような製造方法では、図8に示すように、補強筋たる主筋1付近に気泡溜まり7が生じやすく、一部はモルタル粘度が低いうちにモルタル表面へ浮上し消滅するものの、殆どはそのまま残留して硬化するためそれが空隙となってパネルの外観や部分的な強度を悪化させる問題があった。
【0006】
そこで、本発明はモルタル粘度上昇を遅らせるための水又は水溶液をモルタル上面に散布することにより、モルタルが発泡しながら補強筋上部の鉄筋を通過するときに鉄筋周囲に回り込み易くなり、モルタルの低粘度化を促し、モルタルが鉄筋を通過する時に発生する粗大気泡を効率良く除去することができるようにする。さらにモルタル中に脱ガス用挿入体を挿入することにより補強筋上部及びその近傍のモルタル粘度を低下させ、発生した粗大気泡をモルタル表面へ浮上させ易くし、なおかつ、脱ガス用挿入体の軸に水平なモルタル上面方向への移動をも容易にすることにより粗大気泡を消滅させようとするものである。つまり、型枠内に配した補強筋の上部に蓄積する余分なガスを上方に逃し、パネル内部における粗大気泡の残存を減少させることを目的とするものである。
【0007】
【課題を解決するための手段】
すなわち本発明は、複数の補強筋が配置された型枠内に、軽量気泡コンクリート用モルタルスラリーを注入し、モルタル表面に水又はモルタル粘度上昇を遅らせる水溶液を散布し、発泡させた後、補強筋の上部のモルタル中に脱ガス用挿入体を挿入し、水平移動させながら補強筋上部の粗大気泡を除去することを特徴とする軽量気泡コンクリートの製造法である。
【0008】
【作用】
本発明によれば、モルタルが発泡しながら補強筋上部の鉄筋を通過する前にモルタル表面にモルタル粘度上昇を遅らせるための水又は水溶液を散布し、次に、補強筋上部の鉄筋を通過した後、モルタル中に脱ガス用挿入体を挿入し水平移動することにより、主筋上部に発生した気泡溜まり中の余分のガスを上方に逃すかあるいは小さな気泡に破壊分解することができ、気泡安定剤等を使用しなくともALCの品質を効率よく、改善することができる。
【0009】
【実施例】
次に実施例によって本発明をさらに詳細に説明する。
図1は、本発明により製造されたALCパネルを示す断面図であり、図2はモルタルスラリー注入後、その上面に水を散布した状態を示す図であり、図3は脱ガス用挿入体を差し込む位置を示す図である。
【0010】
図2において、型枠4内にU字形の補強筋3が所定の間隔で配置されている。この中にモルタルスラリー5が注入され、その後、支持フレーム16に取り付けた散水棒6から型枠4内の一部又は全体にモルタル粘度上昇を遅らせる作用をする水又は水溶液が散水される。モルタル5上部には、水分層10が形成される。また図3に示すように、型枠4内に注入されたモルタル5が型枠上部まで発泡した後、支持フレーム16に取り付けられた駆動手段を有する脱ガス用挿入体8が補強筋3上部に対応した位置に挿入される。脱ガス用挿入体を差し込む位置は、補強筋の最上部の主筋の配置精度、脱ガス用挿入体の差し込み精度を考慮しても主筋の中心に対して±5mm以内であることが必要である。また、差し込む脱ガス用挿入体の深さは主筋の中心から上方に20mm以下に脱ガス用挿入体先端が到達することが必要である。支持フレーム16には駆動手段の配線を取り付けることができる。
【0011】
本発明に用いる補強筋3は、図1のように主筋1と副筋2を格子状に溶接してなる1枚のものでも、主筋1と副筋2を格子状に溶接してなる1枚をU字形に折り曲げたものでも、主筋1と副筋2を格子状に溶接してなるもの2枚を間にスペーサーを入れて溶接した篭状のものでも、又はラス網状のもの等でもよい。この補強筋3は、また、鉄筋の直径としては1〜10mmのものが好ましく、特に、2〜5mmのものが好ましい。鉄筋の直径が細すぎると軽量気泡コンクリートの曲げ強度が充分でなく、太すぎると補強筋上部の粗大気泡がさらに大きくなる。これらの補強筋は、図9、図10に示すように複数の補強筋3を型枠4内に配置する。型枠4に設置した固定した補強筋保持枠13に補強筋保持棒14が支持されており、該補強筋保持棒14によって補強筋3を保持し固定する。この状態の型枠内にALC用モルタルが硬化した後、回転させることにより簡単に取り外しができるようになされている。
【0012】
本発明の軽量気泡コンクリート用モルタルスラリーの組成としては、珪酸質原料、石灰質原料、水及び発泡剤等を主成分とするものからなり、例えば、セメント、生石灰、珪石、石膏、解砕屑、水、金属アルミ等からなるものが用いられ、適宜その割合を選択して使用する。
本発明の散布とは、型枠内に注入されたモルタルスラリーの上面全体に届くように、散水棒から放出するものである。
【0013】
本発明で用いる脱ガス用挿入体としては、回転運動を与えたときにモルタルの粘度を低下させる形状のものであれば良く、棒材又は棒状回転体又は棒状振動体等が挙げられる。棒材とは断面が円形、正方形、長方形、多角形の細長い棒体又はそれに撹拌羽根等を取り付けたものを意味し、型枠に設置されている補強筋の主筋上部に発生した気泡を破壊しうる程度の大きさ、太さ、表面凹凸があればよい。直径としては3〜15mm程度が好ましく、特に、7〜11mmが好ましい。材質は、発泡硬化したモルタルスラリー粘度に耐え、変形しないものであればよい。さらに、前記棒材が回転手段により回転する棒状回転体でもよく、また、前記棒材が振動手段により振動する棒状振動体であってもよい。
【0014】
前記棒状回転体とは、表面の形状が凹凸であり、ガスをモルタル上面に移動し易くするもので、図6の様な溝状螺旋棒状回転体11や図7の攪拌羽根状回転体12に示すようなドリルビットあるいはスクリュウ型撹拌羽根などが好ましい。またこれらの回転体の回転軸の他端には駆動手段として、例えば、電動機、エンジン等が取り付けてあり、回転軸を通じて棒材先端に回転運動を伝達するものが好ましい。
【0015】
棒状回転体の直径としては3〜15mm程度が好ましく、特に、直径7〜11mmが好ましい。材質は、発泡硬化したモルタルスラリー粘度に耐え、変形しないものであればよい。
棒状回転体の回転数の範囲は、200〜2000rpmが好ましい、特に、500〜1300rpmが好ましい。棒状回転体の回転数が低いとモルタルの粘度低下が充分でなく粗大気泡が若干残存し、また、回転数が高くなるとモルタル上部からの空気の巻き込みがあり部分的に粗大気泡が残存する。また、棒状回転体の回転方向は時計方向あるいは反時計方向のどちらでも良いが、粗大気泡の巻き上げ効果の大きい方が好ましい。
【0016】
前記棒状振動体とは、振動軸に対して垂直振動又は水平振動を行うときにガスがモルタル上面に移動し易くなるような形状のものであればよく、棒状あるいは棒状振動軸側面に振動腕を取り付けた構造のものが好ましい。この振動腕の形状としては平板、曲板、棒、算盤玉状等であればよく、平板としては長方形、正方形、菱形等が好ましい。
【0017】
また、棒状振動体の垂直振動とは、振動方向が振動軸に対して垂直方向であり、その振幅、振動数は、粗大気泡の脱泡が認められる範囲が適当であり、振幅としては0.1mm〜10.0mmが好ましく、特に、0.5〜5.0mmが好ましい。振動数の範囲は、毎秒10回〜毎秒200回が好ましく、特に、毎秒30回〜毎秒100回が好ましい。垂直振動を与える駆動方法としては、例えば、棒状回転体の振動発生部に振動を与える起振器が内蔵されており、振動発生部が円筒形であり、その振動発生方式が偏心重錘方式、遊星運動方式等からなっているものが好ましい。
【0018】
棒状振動体の水平振動とは、振動方向が振動伝達軸の長手方向であり、その振幅、振動数の範囲は、振幅が0.1mm〜3.0mm、振動数が毎秒1回〜50回が好ましく、特に、振幅が0.5mm〜2.0mm、振動数が毎秒10回〜30回が好ましい。水平振動を行う振動装置としては、例えば、振動伝達部の他端に起振器を取り付けた構成からなっているものが好ましい。
【0019】
本発明でモルタル粘度上昇を遅らせるために散布する水又は水溶液の例としては、例えば非イオン系の界面活性剤ポリオキシエチレンソルビタンエステル(例えば、日本乳化剤(株)の商品名:Newcol 82、Newcol 85)等や、アルキルスルフォン酸塩系(例えば、花王(株)の商品名:マイティー150、マイティーV2)、メラミン樹脂スルフォン酸塩系(例えば、日本合成ゴム(株)の商品名:ダイナフローG2)、ポリイソプリレンスルフォン酸塩系(例えば、日本合成ゴム(株)の商品:サンフローZ105)、リグニンスルフォン酸塩系(例えば、日本製紙(株)の商品名:サンフロー、サンフローR)、ポリカルボン酸塩系(例えば、日本合成ゴム(株)の商品名:ダイナフローP)等のセメント減水剤といった種々の界面活性剤やセメント硬化遅延剤として使われるクエン酸等の水溶液、更に消泡剤として使われるシリコーン等の水溶液(例えば、花王(株)のアンチフォームE−200)等がある。
【0020】
また、水を使用する場合には、水系エマルジョンの形態で使用することができる。そのような水系エマルジョンとしてアクリル樹脂(例えば、旭化成工業(株)の商品名:モルタック)等がある。
前述した製造方法におけるモルタルスラリー上部に散布する水等の量は、型枠に注入したモルタルスラリーの体積1ml当たり0.005〜0.5mlの範囲で散布することが好ましく、特に0.005〜0.3mlが好ましい。水等の散布量がモルタルの体積1ml当たり0.005よりも少なくなると、重質化部の形成が不充分であり、またモルタルの体積1ml当たり0.5mlを越えると逆に補強筋の上部に粗大な空隙が生じたり、嵩減りの度合いが激しくなりパネルの上端部で外観が見苦しくなるという問題を生じる。
【0021】
なお、水溶液等を使用する場合は、1〜20wt%濃度(固形分濃度)に調節したものを上記の量使用すればよい。
また、前記したモルタル粘度上昇を遅らせるために散布する水又は水溶液を散布する時期としては、モルタル上面が主筋上部を通過する前であり、10分以内が好ましく、特に5分以内が好ましい。
【0022】
図11はアルミ粉を発泡剤として使用したモルタルを型枠に注入したときの発泡剤と時間の関係の1例を示す図である。発泡率のカーブは、一般に初期に急激に立ち上がり、次第に緩やかになり飽和する。
本発明における前記棒状回転体又は棒状振動体を差し込む時期は、型枠内のモルタルの発泡がほぼ完了した時点、即ち、発泡率カーブが飽和領域に達する時点(図11の例ではA点付近)から、モルタルが流動状態を維持している間までが好ましい。
【0023】
モルタル発泡がほぼ完了する時点は、発泡剤としてのアルミ粉の粒径、形状等により大幅に変化するが、通常モルタルを型枠に注入してから5分〜40分程度である。また、モルタルが流動状態を維持している時期はモルタル組成によって変化するが、通常モルタルを型枠に注入してから30分〜70分程度である。
上記モルタルがほぼ完了する時点及び流動状態を維持している期間は使用するアルミ粉、モルタル組成が定まれば実験により簡単に求めることができる。
【0024】
なお、流動状態か否かは、例えば、モルタル中に棒状回転体又は棒状振動体を差し込んで水平に移動させ、その軌跡が直ちに消滅するか否かで判断できる。
前記のようにして脱ガス用挿入体を最上部の主筋の真上に差し込んだ後、主筋の長さ方向に水平に移動する事によって、主筋の真上に生成した気泡溜まり中の余分のガスを上方に逃がすかあるいは小さい気泡に破壊分解する。
【0025】
前記脱ガス用挿入体は、主筋列毎に主筋の間隔に合わせて支持片に取り付け、各接点に存在する気泡を一列づつ除去していってもよいし、前記支持片を複数個、支持フレームに取り付け、複数列の主筋上部を一度に処理しうるようにしてもよい。
【0026】
【実施例1】
図3に示した通り、補強筋3を等間隔に配置し、型枠4に固定した。
上記型枠4に、珪石35重量%、セメント30重量%、生石灰8重量%、石膏2重量%、解砕屑25重量%としたものを100重量部に水70重量部、アルミ0.06重量部を添加混練したALC用モルタルスラリーを注入し、1分後にモルタル表面に水2.5重量部(この量は型枠中で発泡終了したモルタルの体積1ml当たり0.025mlの水溶液に相当する。)を散布した。モルタルを型枠に注入後30分経過したときに、図6の棒状回転体11を、主筋1の真上に挿入し、主筋に平行に直線移動させ、主筋上部の気泡溜まりを除去し、モルタルの流動性が維持している33分後までに終了した。前記ALC用モルタルが所定の硬度に達した後、図1のY−Y’のところをピアノ線により切断し、オートクレーブ養生した。
【0027】
得られたALCの上部表面には図5のように重質化部分9が並んでおり、粗大気泡の露出は見られず、好ましいものであった。この製品を図1のX−X’線で切断し、切断面を観察したところ、図4のように主筋1の上部が重質化した以外は内部にも粗大気泡は生成されていなかった。
【0028】
【実施例2】
珪石50重量%、普通ポルトランドセメント35重量%、生石灰10重量%、石膏5重量%としたものを100重量部に水70重量部、アルミ0.06重量部を混練して、モルタルスラリーを作った。
このモルタルスラリーを幅600mm、長さ600mm、高さ600mmの型枠に注入し、3分後にポリアルキルスルホン酸ソーダ(商品名:マイティー150、花王(株)製)の1.1%水溶液1.5重量部この量は型枠中で発泡終了したモルタルの体積1ml当たり0.015mlの水溶液に相当する。)を散布した。モルタルを型枠に注入後30分経過したときに、図6の棒状回転体11を、主筋1の真上に挿入し、主筋に平行に直線移動させ、主筋上部の気泡溜まりを除去し、モルタルの流動性が維持している34分経過後までに終了した。前記モルタルが所定の硬度に達した後、ピアノ線により切断し、オートクレーブ養生した。
【0029】
得られたALC表面には粗大気泡の露出は見られず、好ましいものであった。このALCを実施例1と同様にして切断し、切断面を観察したところ、内部にも粗大気泡は生成されていなかった。
【0030】
【実施例3】
図3に示したとおり、補強筋を等間隔に配置し、型枠に固定した。
上記型枠に、珪石35重量%、セメント30重量%、生石灰8重量%、石膏2重量%、解砕屑25重量%としたものを100重量部に水70重量部、アルミ0.06重量部を添加混練したモルタルスラリーを注入し、1分後にモルタル表面に水1.5重量部(この量は型枠中で発泡終了したモルタルの体積1ml当たり0.015mlの水溶液に相当する。)を散布した。モルタルを型枠に注入後30分経過したときに、棒材8を、主筋1の真上に挿入し、主筋に平行に直線移動させ、主筋上部の気泡溜まりを除去し、モルタルの流動性が維持している33分後までに終了した。前記モルタルが所定の硬度に達した後、ピアノ線により切断し、オートクレーブ養生した。
【0031】
得られたALC表面には粗大気泡の露出は見られず、好ましいものであった。このALCを実施例1と同様にして切断し、切断面を観察したところ、内部にも粗大気泡は生成されていなかった。
【0032】
【実施例4】
珪石50重量%、普通ポルトランドセメント35重量%、生石灰10重量%、石膏5重量%としたものを100重量部に水70重量部、アルミ0.06重量部を混練して、モルタルスラリーを作った。
このモルタルスラリーを幅600mm、長さ600mm、高さ600mmの型枠に注入し、2分後にモルタル表面に水3.0重量部(この量は型枠中で発泡終了したモルタルの体積1ml当たり0.03mlの水溶液に相当する。)を散布した。モルタルを型枠に注入後25分経過したときに、棒材8を、主筋1の真上に挿入し、主筋に平行に直線移動させ、主筋上部の気泡溜まりを除去し、モルタルの流動性が維持している28分後までに終了した。前記モルタルが所定の硬度に達した後、ピアノ線により切断し、オートクレーブ養生した。
【0033】
得られたALC表面には粗大気泡の露出は見られず、好ましいものであった。このALCを実施例1と同様にして切断し、切断面を観察したところ、内部にも粗大気泡は生成されていなかった。
【0034】
【実施例5】
珪石45重量%、普通ポルトランドセメント40重量%、生石灰10重量%、石膏5重量%としたものを100重量部に水70重量部、アルミ0.06重量部を混練して、モルタルスラリーを作った。
このモルタルスラリーを幅600mm、長さ600mm、高さ600mmの型枠に注入し、4分後にモルタル表面に水2.0重量部(この量は型枠中で発泡終了したモルタルの体積1ml当たり0.015の水溶液に相当する。)を散布した。モルタルを型枠に注入後30分経過したときに、棒状振動体を、主筋1の真上に挿入し、主筋に平行に直線移動させ、主筋上部の気泡溜まりを除去し、モルタルの流動性が維持している33分後までに終了した。前記モルタルが所定の硬度に達した後、ピアノ線により切断し、オートクレーブ養生した。
【0035】
得られたALC表面には粗大気泡の露出は見られず、好ましいものであった。このALCを実施例1と同様にして切断し、切断面を観察したところ、内部にも粗大気泡は生成されていなかった。
【0036】
【比較例1】
実施例1の方法において、棒材を主筋上部に挿入し、気泡溜まり除去を行った以外は全て同様の方法でALCを作製した。
得られたALC表面には主筋に沿って粗大気泡の露出が観察され、好ましくないものであった。これを実施例1と同様にして切断し、切断面を観察したところ、パネル内部にも粗大気泡が生成していることがわかった。
【0037】
【発明の効果】
本発明では、複数の補強筋が配置された型枠内に、軽量気泡コンクリート用モルタルスラリーを注入し、モルタル表面にモルタル粘度上昇を遅らせるための水又は水溶液を散布することで、モルタルが発泡しながら補強筋上部の鉄筋を通過する時に発生する粗大気泡を効率良く除去することができ、さらにモルタル発泡終了後補強筋の上部に脱ガス用挿入体を挿入し、水平移動させながら、補強筋上部及びその近傍に部分的に残った粗大気泡をモルタル表面へ浮上させ、粗大気泡を殆ど残留することなく消滅させることができる。つまり、型枠内に配した補強筋の上部に蓄積した気泡溜まりを簡単に除去でき、表面近傍の巣や内部の粗大気泡を無くし、外観も強度上も好ましいALCパネルを製造することができる。
【図面の簡単な説明】
【図1】本発明により製造されたALCパネルを示す断面図である。
【図2】本発明のモルタルスラリー注入後、その上面に水を散布した状態を示す断面図である。
【図3】本発明の脱ガス用挿入体を差し込む位置を示す断面図である。
【図4】図1のx−x’で切断した断面図である。
【図5】図1のY−Y’で切断した断面図である。
【図6】本発明の棒状回転体の正面図である。
【図7】本発明の棒状回転体の他の例を示した正面図である。
【図8】従来のパネルを主筋に対して垂直方向に切断した断面図である。
【図9】型枠に補強筋を配置し、主筋に対して垂直方向から見た断面図である。
【図10】型枠に補強筋を配置し、主筋に対して水平方向から見た断面図である。
【図11】型枠に注入されたモルタルの発泡率と時間の関係の一例を示す図である。
【符号の説明】
1 主筋
2 副筋
3 補強筋
4 型枠
5 モルタル
6 散水棒
7 気泡溜まり
8 脱ガス用挿入体
9 重質化部分
10 水分層
11 溝状螺旋棒状回転体
12 撹拌羽根状回転体
13 羽根
14 補強筋保持枠
15 補強筋保持棒
16 支持フレーム
[0001]
[Industrial applications]
The present invention relates to a method for producing lightweight aerated concrete, which is mainly composed of calcareous raw materials and siliceous raw materials, is reinforced with reinforcing bars such as reinforcing bars and wire meshes (laser nets), and is autoclaved.
[0002]
[Prior art]
Light-weight cellular concrete (hereinafter referred to as ALC) products have reinforcing bars such as reinforcing bars arranged in a required amount and in a required shape in a formwork, and pulverized calcareous and siliceous raw materials and water and foaming agents. In addition, the mixed slurry is poured into a mold frame, foamed and hardened, and the porous material is autoclaved and manufactured. The mortar slurry contains almost no air bubbles after being injected into the mold, but the foaming agent starts to foam in a very short time, and the slurry gradually starts to harden due to the hydration reaction. The slurry having the increased viscosity stably holds the generated bubbles, gradually increases in volume and expands to a predetermined volume.
[0003]
As shown in FIG. 9 and FIG. 10, a plurality of U-shaped reinforcing bars 3 each including a main bar 1 in a horizontal direction and a sub bar 2 in a vertical direction are arranged in the mold 4. Immediately before the completion of the foaming of the mortar slurry, when the upper surface of the slurry passes through the main reinforcing bar at the top of the reinforcing bars arranged in the mold, the small bubbles foamed by the foaming agent are remarkably coalesced. A bubble pool was formed just above the upper main bar, causing a significant deterioration in quality.
[0004]
For this reason, in JP-A-63-256405, after pouring a mortar slurry into a mold, a bar-shaped or plate-shaped degassing piece or the like is inserted into the slurry during foam hardening, and coarse bubbles generated at the upper part of the reinforcing bar are removed. Although it is to be removed, a part remains and a coarse void partially remains. JP-A-64-9704 attempts to remove bubbles generated in the slurry by horizontally moving in the longitudinal direction after inserting a degassing piece or the like, but cannot sufficiently remove coarse bubbles. . Japanese Patent Publication No. 2-11552 discloses a method of vibrating a bar-shaped degassing piece to promote floating of coarse bubbles to the upper surface of the mortar, but coarse bubbles partially remain.
[0005]
[Problems to be solved by the invention]
In the manufacturing method as described above, as shown in FIG. 8, air bubbles 7 are likely to be generated near the main reinforcing bar 1, and some float and disappear on the mortar surface while the mortar viscosity is low. There is a problem that the resin hardens and remains as a void, thereby deteriorating the appearance and partial strength of the panel.
[0006]
Therefore, the present invention sprays water or an aqueous solution on the mortar upper surface to delay the increase in the mortar viscosity, so that the mortar easily wraps around the reinforcing bar when passing through the reinforcing bar above the reinforcing bar while foaming, and has a low viscosity of the mortar. Mortar, and coarse bubbles generated when the mortar passes through the rebar can be efficiently removed. Furthermore, by inserting the degassing insert into the mortar, the mortar viscosity in the upper part of the reinforcing bar and its vicinity is reduced, and the generated large bubbles are easily floated on the mortar surface. The purpose is to eliminate coarse bubbles by also facilitating movement in the direction of the horizontal mortar upper surface. That is, it is an object of the present invention to release excess gas accumulated in the upper part of the reinforcing bars arranged in the mold upward to reduce the remaining of large bubbles inside the panel.
[0007]
[Means for Solving the Problems]
That is, the present invention is directed to a mold in which a plurality of reinforcing bars are arranged, injecting a mortar slurry for lightweight cellular concrete, spraying water or an aqueous solution for delaying a rise in mortar viscosity on the mortar surface, and foaming the reinforcing bars. A method for producing lightweight cellular concrete, characterized in that a degassing insert is inserted into a mortar at the upper part of the reinforced concrete and horizontal movement is performed to remove coarse bubbles at the upper part of the reinforcing bar.
[0008]
[Action]
According to the present invention, water or an aqueous solution for delaying a mortar viscosity increase is sprayed on the mortar surface before the mortar passes through the reinforcing bar above the reinforcing bar while foaming, and then after passing through the reinforcing bar above the reinforcing bar. By inserting the degassing insert into the mortar and moving horizontally, the excess gas in the bubble pool generated above the main muscle can be released upward or broken down and broken down into small bubbles. ALC quality can be efficiently and efficiently improved without using.
[0009]
【Example】
Next, the present invention will be described in more detail by way of examples.
FIG. 1 is a cross-sectional view showing an ALC panel manufactured according to the present invention, FIG. 2 is a view showing a state in which water is sprayed on the upper surface of a mortar slurry after injection, and FIG. It is a figure which shows the insertion position.
[0010]
In FIG. 2, U-shaped reinforcing bars 3 are arranged at predetermined intervals in a mold 4. The mortar slurry 5 is injected therein, and then water or an aqueous solution that acts to delay the increase in the mortar viscosity is sprayed from a water spray rod 6 attached to the support frame 16 to a part or the whole of the mold 4. A water layer 10 is formed on the mortar 5. Further, as shown in FIG. 3, after the mortar 5 injected into the mold 4 has foamed to the upper part of the mold, a degassing insert 8 having a driving means attached to the support frame 16 is provided at the upper part of the reinforcing bar 3. Inserted at the corresponding position. The insertion position of the degassing insert needs to be within ± 5 mm with respect to the center of the main muscle, taking into account the placement accuracy of the top main muscle of the reinforcement and the insertion accuracy of the degassing insert. . Also, the depth of the degassing insert to be inserted needs to reach the tip of the degassing insert not more than 20 mm above the center of the main muscle. The wiring of the driving means can be attached to the support frame 16.
[0011]
The reinforcing bar 3 used in the present invention may be a single bar formed by welding the main bar 1 and the sub bar 2 in a grid as shown in FIG. 1, or a single bar obtained by welding the main bar 1 and the sub bar 2 in a grid. May be bent into a U-shape, a cage formed by welding the main bar 1 and the sub bar 2 in a lattice shape, a cage formed by welding a spacer between them, or a lath net shape. The reinforcing bar 3 preferably has a diameter of 1 to 10 mm, more preferably 2 to 5 mm as a diameter of a reinforcing bar. If the diameter of the reinforcing bars is too small, the bending strength of the lightweight cellular concrete is not sufficient, and if it is too large, the coarse cells above the reinforcing bars become larger. As for these reinforcing bars, a plurality of reinforcing bars 3 are arranged in the mold 4 as shown in FIGS. A reinforcing bar holding rod 14 is supported by a fixed reinforcing bar holding frame 13 installed on the formwork 4, and the reinforcing bar 3 is held and fixed by the reinforcing bar holding bar 14. After the ALC mortar is hardened in the mold in this state, it can be easily removed by rotating it.
[0012]
The composition of the mortar slurry for lightweight cellular concrete of the present invention is composed of a material mainly composed of a siliceous raw material, a calcareous raw material, water and a foaming agent, for example, cement, quicklime, silica stone, gypsum, crushed debris, water, A material made of metal aluminum or the like is used, and its ratio is appropriately selected and used.
The spraying according to the present invention is to discharge the water from the watering rod so as to reach the entire upper surface of the mortar slurry poured into the mold.
[0013]
The degassing insert used in the present invention may have any shape as long as the viscosity of the mortar is reduced when a rotary motion is given, and examples thereof include a rod material, a rod-shaped rotating body, and a rod-shaped vibrating body. A bar means a long, narrow bar with a circular, square, rectangular, or polygonal cross section, or a bar with stirring blades attached to it.It breaks air bubbles generated above the main bars of reinforcing bars installed on the formwork. What is necessary is just to have a size, thickness, and surface irregularities of a certain degree. The diameter is preferably about 3 to 15 mm, particularly preferably 7 to 11 mm. The material may be any material that can withstand the viscosity of the foam-hardened mortar slurry and does not deform. Further, the bar may be a rod-shaped rotating body that is rotated by a rotating means, or the bar may be a rod-shaped vibrating body that is vibrated by a vibrating means.
[0014]
The rod-shaped rotator has an uneven surface and facilitates the movement of gas to the upper surface of the mortar. The rod-shaped rotator has a grooved spiral rod-shaped rotator 11 as shown in FIG. 6 and a stirring blade-shaped rotator 12 as shown in FIG. A drill bit or a screw-type stirring blade as shown is preferable. Further, as the driving means, for example, an electric motor, an engine, or the like is attached to the other end of the rotating shaft of the rotating body, and it is preferable that the rotating body transmits the rotating motion to the tip of the rod through the rotating shaft.
[0015]
The diameter of the rod-shaped rotating body is preferably about 3 to 15 mm, particularly preferably 7 to 11 mm. The material may be any material that can withstand the viscosity of the foam-hardened mortar slurry and does not deform.
The rotation speed of the rod-shaped rotator is preferably in the range of 200 to 2000 rpm, and more preferably in the range of 500 to 1300 rpm. When the rotation speed of the rod-shaped rotating body is low, the viscosity of the mortar is not sufficiently reduced, and coarse bubbles slightly remain. When the rotation speed is high, air is entrapped from the upper portion of the mortar, and coarse bubbles partially remain. The rotation direction of the rod-shaped rotator may be either clockwise or counterclockwise, but it is preferable that the effect of rolling up coarse bubbles is greater.
[0016]
The rod-shaped vibrator may have any shape so that the gas can easily move to the upper surface of the mortar when performing vertical or horizontal vibration with respect to the vibration axis. An attached structure is preferred. The shape of the vibrating arm may be a flat plate, a curved plate, a bar, an abacus ball or the like, and the flat plate is preferably a rectangle, a square, a rhombus, or the like.
[0017]
The vertical vibration of the rod-shaped vibrator means that the vibration direction is perpendicular to the vibration axis, and the amplitude and frequency of the vibration are appropriately within a range in which coarse bubbles can be removed. It is preferably from 1 mm to 10.0 mm, and particularly preferably from 0.5 to 5.0 mm. The frequency range is preferably from 10 times per second to 200 times per second, and particularly preferably from 30 times per second to 100 times per second. As a driving method for giving vertical vibration, for example, a vibrator for giving vibration to the vibration generating part of the rod-shaped rotating body is built in, the vibration generating part is cylindrical, and the vibration generating method is an eccentric weight method, Those having a planetary motion system or the like are preferable.
[0018]
The horizontal vibration of the rod-shaped vibrator means that the vibration direction is the longitudinal direction of the vibration transmission shaft, and the amplitude and frequency range are 0.1 mm to 3.0 mm in amplitude and 1 to 50 times in frequency per second. Preferably, the amplitude is particularly 0.5 to 2.0 mm, and the frequency is 10 to 30 times per second. As the vibration device that performs horizontal vibration, for example, a device having a configuration in which an exciter is attached to the other end of the vibration transmission unit is preferable.
[0019]
Examples of water or an aqueous solution that is sprayed to delay the increase in mortar viscosity in the present invention include, for example, a nonionic surfactant polyoxyethylene sorbitan ester (for example, trade names of Nippon Emulsifier Co., Ltd .: Newcol 82, Newcol 85). ), Alkyl sulfonates (eg, Kao Corporation: Mighty 150, Mighty V2), melamine resin sulfonates (eg, Nippon Synthetic Rubber Co., Ltd .: Dynaflow G2) Polyisoprene sulfonate (for example, product of Nippon Synthetic Rubber Co., Ltd .: Sunflow Z105), lignin sulfonate (for example, product name of Nippon Paper Industries: Sunflow, Sunflow R) And water reducing agents such as polycarboxylates (for example, trade name: Dynaflow P of Nippon Synthetic Rubber Co., Ltd.). Aqueous solution of citric acid used as various surfactants and cement retarder, further aqueous solution such as silicone used as a defoaming agent (e.g., antifoam E-200 of Kao Corporation), and the like.
[0020]
When water is used, it can be used in the form of an aqueous emulsion. As such an aqueous emulsion, there is an acrylic resin (for example, trade name: Mortac of Asahi Kasei Kogyo Co., Ltd.) and the like.
The amount of water or the like sprayed on the upper portion of the mortar slurry in the above-mentioned production method is preferably in the range of 0.005 to 0.5 ml per 1 ml of the volume of the mortar slurry injected into the mold, and particularly preferably 0.005 to 0. 0.3 ml is preferred. If the amount of water sprayed is less than 0.005 per 1 ml of mortar, the formation of heavy parts is insufficient, and if it exceeds 0.5 ml per 1 ml of mortar, There is a problem that coarse voids are formed or the degree of bulk reduction is severe, and the appearance is difficult to see at the upper end of the panel.
[0021]
When an aqueous solution or the like is used, the amount adjusted to a concentration of 1 to 20 wt% (solid content concentration) may be used in the above amount.
The time when the water or aqueous solution to be sprayed to delay the increase in the mortar viscosity is before the upper surface of the mortar passes over the upper part of the main muscle, preferably within 10 minutes, particularly preferably within 5 minutes.
[0022]
FIG. 11 is a diagram showing an example of the relationship between the foaming agent and time when mortar using aluminum powder as a foaming agent is injected into a mold. The curve of the foaming rate generally rises sharply in the early stages, gradually becomes gentler and saturates.
The time when the rod-shaped rotating body or the rod-shaped vibrating body is inserted in the present invention is at the time when the mortar in the mold is substantially foamed, that is, when the foaming rate curve reaches a saturation region (around the point A in the example of FIG. 11). To from the time when the mortar maintains the fluid state.
[0023]
The point at which mortar foaming is substantially completed varies greatly depending on the particle size, shape, and the like of the aluminum powder as the foaming agent, but is usually about 5 to 40 minutes after the mortar is injected into the mold. Further, the period when the mortar maintains the fluid state varies depending on the mortar composition, but is usually about 30 to 70 minutes after the mortar is injected into the mold.
The time at which the mortar is almost completed and the period during which the mortar is maintained can be easily determined by experiments once the aluminum powder to be used and the mortar composition are determined.
[0024]
The flow state can be determined by, for example, inserting a rod-shaped rotating body or a rod-shaped vibrating body into a mortar, moving the rod-shaped vibrating body horizontally, and immediately determining whether or not the trajectory disappears.
After inserting the degassing insert just above the top main muscle as described above, by moving horizontally in the length direction of the main muscle, excess gas in the bubble pool generated just above the main muscle Escapes upwards or breaks down into small bubbles.
[0025]
The degassing insert may be attached to a support piece in accordance with the interval of the main muscle for each main muscle row, and air bubbles present at each contact may be removed one by one, or a plurality of the support pieces, a support frame, , So that a plurality of rows of main bars can be processed at once.
[0026]
Embodiment 1
As shown in FIG. 3, the reinforcing bars 3 were arranged at equal intervals and fixed to the formwork 4.
The mold 4 was made of 35% by weight of silica, 30% by weight of cement, 8% by weight of quicklime, 2% by weight of gypsum, and 25% by weight of crushed debris. Is added and kneaded, and 1 minute later, 2.5 parts by weight of water is applied to the surface of the mortar after 1 minute (this amount corresponds to 0.025 ml of an aqueous solution per 1 ml of the volume of the mortar that has been foamed in the mold). Was sprayed. When 30 minutes have passed after the mortar was injected into the mold, the rod-shaped rotating body 11 of FIG. 6 was inserted just above the main bar 1 and linearly moved in parallel with the main bar, thereby removing the air pockets above the main bar. The process was completed by 33 minutes after the fluidity of the sample was maintained. After the mortar for ALC reached a predetermined hardness, the portion taken along the line YY ′ in FIG. 1 was cut with a piano wire and cured in an autoclave.
[0027]
As shown in FIG. 5, heavier portions 9 were arranged on the upper surface of the obtained ALC, and no exposure of coarse bubbles was observed, which was preferable. This product was cut along the line XX ′ in FIG. 1 and the cut surface was observed. As shown in FIG. 4, except that the upper part of the main bar 1 was heavier, no coarse bubbles were generated inside.
[0028]
Embodiment 2
A mortar slurry was prepared by kneading 50% by weight of silica stone, 35% by weight of ordinary Portland cement, 10% by weight of quicklime, and 5% by weight of gypsum with 100 parts by weight of 70 parts by weight of water and 0.06 parts by weight of aluminum. .
This mortar slurry is poured into a mold having a width of 600 mm, a length of 600 mm and a height of 600 mm, and after 3 minutes, a 1.1% aqueous solution of sodium polyalkylsulfonate (trade name: Mighty 150, manufactured by Kao Corporation). 5 parts by weight This amount corresponds to 0.015 ml of an aqueous solution per 1 ml of the volume of the mortar that has been foamed in the mold. ) Was sprayed. When 30 minutes have passed after the mortar was injected into the mold, the rod-shaped rotating body 11 of FIG. 6 was inserted just above the main bar 1 and linearly moved in parallel with the main bar, thereby removing the air pockets above the main bar. The process was completed by 34 minutes after the fluidity of the sample was maintained. After the mortar reached a predetermined hardness, it was cut with a piano wire and autoclaved.
[0029]
Exposure of coarse bubbles was not observed on the obtained ALC surface, which was preferable. This ALC was cut in the same manner as in Example 1 and the cut surface was observed. As a result, no coarse bubbles were generated inside.
[0030]
Embodiment 3
As shown in FIG. 3, the reinforcing bars were arranged at equal intervals and fixed to the mold.
100 parts by weight of 35% by weight of silica stone, 30% by weight of cement, 8% by weight of quicklime, 2% by weight of gypsum and 25% by weight of crushed debris, 70 parts by weight of water and 0.06 parts by weight of aluminum The added and kneaded mortar slurry was injected, and after 1 minute, 1.5 parts by weight of water (this amount corresponds to 0.015 ml of an aqueous solution per 1 ml of the volume of the mortar that had been foamed in the mold) was sprayed on the mortar surface. . When 30 minutes have passed after the mortar was poured into the mold, the rod 8 was inserted directly above the main bar 1 and linearly moved in parallel with the main bar to remove the air pockets at the upper portion of the main bar, and the fluidity of the mortar was reduced. It was completed by 33 minutes after the maintenance. After the mortar reached a predetermined hardness, it was cut with a piano wire and autoclaved.
[0031]
Exposure of coarse bubbles was not observed on the obtained ALC surface, which was preferable. This ALC was cut in the same manner as in Example 1 and the cut surface was observed. As a result, no coarse bubbles were generated inside.
[0032]
Embodiment 4
A mortar slurry was prepared by kneading 50% by weight of silica stone, 35% by weight of ordinary Portland cement, 10% by weight of quicklime, and 5% by weight of gypsum with 100 parts by weight of 70 parts by weight of water and 0.06 parts by weight of aluminum. .
This mortar slurry is poured into a mold having a width of 600 mm, a length of 600 mm, and a height of 600 mm, and after 2 minutes, 3.0 parts by weight of water is applied to the surface of the mortar (this amount is 0 wt. .03 ml of an aqueous solution). Twenty-five minutes after the mortar was poured into the mold, the rod 8 was inserted just above the main bar 1 and moved linearly in parallel with the main bar to remove the air pockets at the top of the main bar. It was completed by 28 minutes after maintaining. After the mortar reached a predetermined hardness, it was cut with a piano wire and autoclaved.
[0033]
Exposure of coarse bubbles was not observed on the obtained ALC surface, which was preferable. This ALC was cut in the same manner as in Example 1 and the cut surface was observed. As a result, no coarse bubbles were generated inside.
[0034]
Embodiment 5
A mortar slurry was prepared by kneading 45% by weight of silica stone, 40% by weight of ordinary Portland cement, 10% by weight of quick lime, and 5% by weight of gypsum with 100 parts by weight of 70 parts by weight of water and 0.06 parts by weight of aluminum. .
This mortar slurry is poured into a mold having a width of 600 mm, a length of 600 mm, and a height of 600 mm. After 4 minutes, 2.0 parts by weight of water is applied to the surface of the mortar. .015 aqueous solution). When 30 minutes have passed after the mortar was poured into the mold, the rod-shaped vibrator was inserted directly above the main bar 1 and moved linearly in parallel with the main bar, removing the air bubbles at the top of the main bar and reducing the fluidity of the mortar. It was completed by 33 minutes after the maintenance. After the mortar reached a predetermined hardness, it was cut with a piano wire and autoclaved.
[0035]
Exposure of coarse bubbles was not observed on the obtained ALC surface, which was preferable. This ALC was cut in the same manner as in Example 1 and the cut surface was observed. As a result, no coarse bubbles were generated inside.
[0036]
[Comparative Example 1]
An ALC was produced in the same manner as in Example 1 except that the rod was inserted into the upper part of the main bar and the air pockets were removed.
Exposure of coarse bubbles was observed along the main streaks on the obtained ALC surface, which was not preferable. This was cut in the same manner as in Example 1, and the cut surface was observed. As a result, it was found that coarse bubbles were also generated inside the panel.
[0037]
【The invention's effect】
In the present invention, mortar is foamed by injecting a mortar slurry for lightweight cellular concrete into a formwork in which a plurality of reinforcing bars are arranged, and spraying water or an aqueous solution on the mortar surface to delay mortar viscosity rise. Large bubbles generated when passing through the reinforcing bar above the reinforcing bar can be removed efficiently, and after the mortar foaming is completed, an insert for degassing is inserted into the upper portion of the reinforcing bar, and while moving horizontally, the upper portion of the reinforcing bar is moved. In addition, the coarse bubbles partially left in the vicinity thereof are floated on the mortar surface, and the coarse bubbles can be eliminated without remaining. That is, it is possible to easily remove the air bubbles accumulated on the upper part of the reinforcing bars arranged in the mold, eliminate nests near the surface and coarse internal air bubbles, and produce an ALC panel having a favorable appearance and strength.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view showing an ALC panel manufactured according to the present invention.
FIG. 2 is a cross-sectional view showing a state in which water is sprayed on an upper surface of the mortar slurry after the mortar slurry of the present invention is injected.
FIG. 3 is a cross-sectional view showing a position where the degassing insert of the present invention is inserted.
FIG. 4 is a sectional view taken along line xx ′ of FIG. 1;
FIG. 5 is a sectional view taken along the line YY ′ of FIG. 1;
FIG. 6 is a front view of the rod-shaped rotating body of the present invention.
FIG. 7 is a front view showing another example of the rod-shaped rotating body of the present invention.
FIG. 8 is a cross-sectional view of a conventional panel cut in a direction perpendicular to a main bar.
FIG. 9 is a cross-sectional view in which reinforcing bars are arranged on a formwork and viewed from a direction perpendicular to main bars.
FIG. 10 is a cross-sectional view in which reinforcing bars are arranged on a formwork and viewed from a horizontal direction with respect to main bars.
FIG. 11 is a diagram showing an example of the relationship between the foaming rate of mortar injected into a mold and time.
[Explanation of symbols]
REFERENCE SIGNS LIST 1 Main bar 2 Secondary bar 3 Reinforcing bar 4 Formwork 5 Mortar 6 Watering rod 7 Bubble reservoir 8 Degassing insert 9 Weighted portion 10 Water layer 11 Groove-shaped spiral rod-shaped rotary body 12 Stirring blade-shaped rotary body 13 Blade 14 Reinforcement Bar holding frame 15 Reinforcing bar holding bar 16 Support frame

Claims (4)

複数の補強筋が配置された型枠内に、軽量気泡コンクリート用モルタルスラリーを注入し、モルタル表面にモルタル粘度上昇を遅らせるための水又は水溶液を散布し、発泡させた後、脱ガス用挿入体を補強筋の上部のモルタル中に挿入し、水平移動させながら補強筋上部の粗大気泡を除去することを特徴とする軽量気泡コンクリートの製造法。Inject the mortar slurry for lightweight cellular concrete into the formwork in which a plurality of reinforcing bars are arranged, spray water or an aqueous solution on the mortar surface to delay the increase in mortar viscosity, foam, and then insert for degassing. A method for producing lightweight cellular concrete, characterized by inserting a mortar into a mortar above a reinforcing bar and horizontally moving it to remove coarse bubbles above the reinforcing bar. 脱ガス用挿入体が棒材であり、補強筋の上部のモルタル中に棒材を挿入し、水平移動させながら補強筋上部の粗大気泡を除去する請求項1記載の軽量気泡コンクリートの製造法。2. The method for producing lightweight cellular concrete according to claim 1, wherein the degassing insert is a rod, and the rod is inserted into a mortar above the reinforcing bar, and coarse bubbles above the reinforcing bar are removed while moving horizontally. 脱ガス用挿入体が棒状回転体であり、棒状回転体を補強筋の上部のモルタル中に挿入し、回転運動を加えて、水平移動させながら補強筋上部の粗大気泡を除去する請求項1記載の軽量気泡コンクリートの製造法。2. The degassing insert is a rod-shaped rotator, and the rod-shaped rotator is inserted into a mortar above the reinforcing bars, and a rotary motion is applied to remove horizontal bubbles above the reinforcing bars while moving horizontally. Manufacturing method of lightweight cellular concrete. 脱ガス用挿入体が棒状振動体であり、補強筋の上部のモルタル中に棒状振動体を挿入し、振動を加え、水平移動させながら補強筋上部の粗大気泡を除去する請求項1記載の軽量気泡コンクリートの製造法。2. The lightweight as set forth in claim 1, wherein the degassing insert is a rod-shaped vibrator, and the coarse vibrator on the upper part of the reinforcement is removed by inserting the rod-like vibrator into the mortar above the reinforcement, applying vibration, and moving horizontally. Manufacturing method for cellular concrete.
JP16954395A 1994-07-08 1995-07-05 Manufacturing method of lightweight cellular concrete Expired - Lifetime JP3562872B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16954395A JP3562872B2 (en) 1994-07-08 1995-07-05 Manufacturing method of lightweight cellular concrete

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP6-157485 1994-07-08
JP15748594 1994-07-08
JP16954395A JP3562872B2 (en) 1994-07-08 1995-07-05 Manufacturing method of lightweight cellular concrete

Publications (2)

Publication Number Publication Date
JPH0872034A JPH0872034A (en) 1996-03-19
JP3562872B2 true JP3562872B2 (en) 2004-09-08

Family

ID=26484920

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16954395A Expired - Lifetime JP3562872B2 (en) 1994-07-08 1995-07-05 Manufacturing method of lightweight cellular concrete

Country Status (1)

Country Link
JP (1) JP3562872B2 (en)

Also Published As

Publication number Publication date
JPH0872034A (en) 1996-03-19

Similar Documents

Publication Publication Date Title
JP3585293B2 (en) Manufacturing method of lightweight cellular concrete
JP3562872B2 (en) Manufacturing method of lightweight cellular concrete
JP2018145089A (en) Method for finely dividing air bubble in ready-mixed concrete
DE10131360B4 (en) Process for the production of porous concrete insulation panels
JP4981475B2 (en) Method for producing lightweight cellular concrete panel
KR0130405B1 (en) Treatment of light weight foam concrete panel
JP4083248B2 (en) Method for producing lightweight cellular concrete
JPH1177630A (en) Manufacture of lightweight cellular concrete
JP3791939B2 (en) Method for producing lightweight cellular concrete board
JP3234298B2 (en) A method for removing air bubbles above the main bars of lightweight cellular concrete
JPS6410322B2 (en)
JP5302666B2 (en) Method for producing lightweight cellular concrete panel
RU2064408C1 (en) Method of moulding building blocks
JP4115570B2 (en) Method for producing lightweight cellular concrete panel
JP2005138360A (en) Leveling device, filling device and concrete structure manufacturing method
JPS6243952B2 (en)
JP2812172B2 (en) Method and apparatus for injecting raw material slurry for ALC production
JP3909721B2 (en) Manufacturing method of thin plate lightweight lightweight concrete building material
JP2509155B2 (en) Slope protection structure
JP3548257B2 (en) Lightweight aerated concrete panel
JP4194398B2 (en) Manufacturing method of ALC panel
JPH094229A (en) Device and method for stopping spouting of ready mixed concrete
JPH0822544B2 (en) Method for manufacturing lightweight foam concrete
JPS609708A (en) Method of mixing and injecting light aerated concrete slurry
JPH0215499B2 (en)

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040518

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040601

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040601

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080611

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090611

Year of fee payment: 5

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090611

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090611

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100611

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110611

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110611

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120611

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120611

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130611

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130611

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140611

Year of fee payment: 10

EXPY Cancellation because of completion of term