JP3909721B2 - Manufacturing method of thin plate lightweight lightweight concrete building material - Google Patents

Manufacturing method of thin plate lightweight lightweight concrete building material Download PDF

Info

Publication number
JP3909721B2
JP3909721B2 JP08575597A JP8575597A JP3909721B2 JP 3909721 B2 JP3909721 B2 JP 3909721B2 JP 08575597 A JP08575597 A JP 08575597A JP 8575597 A JP8575597 A JP 8575597A JP 3909721 B2 JP3909721 B2 JP 3909721B2
Authority
JP
Japan
Prior art keywords
slurry
thin plate
resistance value
concrete building
building material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP08575597A
Other languages
Japanese (ja)
Other versions
JPH10258422A (en
Inventor
肇 加藤
光生 須田
好隆 山本
Original Assignee
クリオン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by クリオン株式会社 filed Critical クリオン株式会社
Priority to JP08575597A priority Critical patent/JP3909721B2/en
Publication of JPH10258422A publication Critical patent/JPH10258422A/en
Application granted granted Critical
Publication of JP3909721B2 publication Critical patent/JP3909721B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Producing Shaped Articles From Materials (AREA)
  • Manufacturing Of Tubular Articles Or Embedded Moulded Articles (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、間仕切り壁、外壁、野地板あるいは鉄筋構造の被覆などに使用される薄板状オートクレーブ養生軽量気泡コンクリート建材の製造方法の改良に関するものである。
【0002】
【従来の技術】
オートクレーブ養生軽量気泡コンクリート建材は、軽量で断熱性があるとともに、優れた耐火性を有する建材として用いられている。このうち、板厚50mm以下の薄板状のものは、木材なみの高い加工性を有するため、住宅や小規模店舗の壁の他、屋根下地材、あるいは梁や柱の耐火被覆材等に使用されている。
【0003】
その製造方法は、次の通りである。まず、珪石粉末、石灰粉末、セメントおよびアルミニウム粉末等を混合してなる原料混合物に水を添加して泥漿状(スラリー)とする。次に、支持具となるセット棒に網状補強材を挟持させ、その網状補強材を配置した型枠内に前記スラリーを所定量注入する。次いでスラリーがアルミニウムの発泡により、体積を増して半硬化状態に達し、網状補強材を覆う様になる。その後、セット棒を引抜き、次いで更に硬化が進んだ段階で脱型して網状補強材間をピアノ線等により切断し、その後オートクレーブ養生して製造する。
【0004】
しかし、通常セット棒の抜取り穴は空洞として残るが、オートクレーブ養生軽量気泡コンクリート建材が薄板状のものになると、製品に残るこの抜取り穴に水が溜まり雨漏りの原因となる。また、板厚が薄くなるほど抜取り穴跡の空洞の占める体積が周りのマトリックス部分に対して相対的に増加するので、強度的に不均質な建材となる。このように、このセット棒の抜取り穴跡の空洞は薄板状オートクレーブ養生軽量気泡コンクリート建材にとって特に悪影響を与えるものであるので、この抜取り穴跡の空洞を後からモルタル等を充填して埋めた建材が以前から市販されている。更には、モルタル等を充填する手間を省くため、次のように簡単な操作でこの問題を解決する提案も過去になされている。
【0005】
すなわち、型枠内に所定量注入されたスラリーの発泡終了後、なお、スラリーが流動性を保持する間に網状補強材を挟持するセット棒を引抜くというものである(特公昭63−43208号公報参照)。このタイミングでセット棒を引抜くことにより、その後、半硬化状態のスラリーに残った抜取り穴は自然に崩壊して充填され、中実となるという効果が得られるとこの提案は述べている。
【0006】
【発明が解決しようとする課題】
しかし、この方法を追試してみると、抜取り穴が完全に中実となる場合と、完全には中実とはならない場合がある事が判明した。さらには、抜取り穴が完全に中実となる場合でも、抜取り穴の跡が周りの組織より嵩密度の高い組織となっている場合が多くあることもわかった。この不均一は熱的にも機械的にも好ましいものではない。本発明者らがこの実験結果について検討したところ、凝結硬化は必ずしも発泡と連動するものではなく、いろいろなオートクレーブ養生軽量気泡コンクリート原料の配合や気象条件等によってそれぞれ違った状態で進行することが判明した。
【0007】
そのため、条件によっては、発泡終了時、又はその後では、支持具抜き取りの時期を既に過ぎていて、抜取り穴を中実に充填し得ないことが多々あることも分かった。以上の事から、本発明者らは、このような発泡を指標としたセット用支持具の抜取りの時期設定は適切ではなく、スラリーの凝結過程を適切に評価する事によりこのような不安定な状態を解消することができ、しかも、網状補強材の偏在などもなく、より健全な薄板状オートクレーブ養生軽量気泡コンクリート建材を確実に製造する方法を開発するに至ったものである。
【0008】
【課題を解決するための手段】
以上のような課題を解決するために、発明者らは網状補強材を埋設した薄板状軽量気泡コンクリート建材の製造方法において、型枠内に注入した原料スラリーの凝結段階において、凝結硬化状態を把握し、その凝結硬化状態を前記網状補強材のセット用支持具を抜き取るタイミングの指標として前記支持具を抜き取り、前記支持具の抜取り穴を原料スラリーの自然流動によって中実となすことを特徴とする薄板状軽量気泡コンクリート建材の製造方法を提案する。
【0009】
発明者らは、前述の従来の技術の矛盾点について鋭意研究した結果、凝結硬化を指標として、セット用支持具の抜取り時期を設定すれば、常に抜取り穴を中実に充填する事ができ、更には、市販の建材にみられる抜取り穴の充填が周りのマトリックス部分の嵩密度と異なる状態を解消することもでき、より健全な薄板状オートクレーブ養生軽量気泡コンクリート建材を確実に製造することができるとの知見を得た。しかも、このようにして製造した板厚50mm以下の薄板状オートクレーブ養生軽量気泡コンクリート建材は、網状補強材の偏在が極めて少ない事が確認され、本発明に至ったものである。
【0010】
なお、本発明における網状補強材として、市販の金網またはラス網が使用できる。規格品としては、金網には、JISに規定する溶接金網、クリンプ金網、きっ甲金網、織金網、工業用織金網等があり、ラス網としては、同じくJISに規定するメタルラス、エキスパンドメタル等が使用できる。
【0011】
また、発明者らは、泥漿内移動抵抗値測定法によりスラリー凝結硬化状態を把握する事を提案する。発明者らはスラリー凝結硬化状態を把握するための値として泥漿内移動抵抗値、すなわちスラリー内の補強材等を移動させる力に対するスラリーの抵抗値を測定する方法を確立した。
【0012】
発泡中のスラリーに金属棒を静かに沈下させ、その抵抗により硬化状態を把握することは製造現場にてしばしば試みられている。スラリーに金属棒を静かに沈下させた場合、金属棒には、下向きに重力がかかるが、金属棒が沈下するにつれて、金属棒下のスラリーは圧縮され、その圧縮抗力を生ずるようになる。さらに金属棒の側面にスラリーが付着し、その金属棒が埋没するにつれてスラリーの粘性による剪断摩擦抵抗力も増してくる。そして、前記圧縮抗力及び剪断摩擦抵抗力の合計と重力が均衡した時点で金属棒は停止する。この金属棒が停止した時点での金属棒のスラリー上面から突出した部分の長さはスラリー凝結硬化が進むほど長くなるので、この長さの値によりスラリー凝結硬化状態を把握することができる。
【0013】
この方法を利用して網状補強材の自重に起因する力や、スラリーの発泡に伴って補強材を移動させる力に対する抵抗を直径2.6mm,長さ800mmの鋼棒を用いてテストした所、このような条件は、相当に硬化が進行した段階の把握には有効であるが、本件網状補強材の移動に相当する抵抗力の把握は困難であった。鋼棒を順次軽くして測定を試みた所、これにも限界が認められ、さらに軽く、径の大きな金属棒による測定が有効なスラリーの凝結状態における網状補強材の移動に対する抵抗力に対応するとの知見を得た。
【0014】
泥漿内移動抵抗値測定法;
発泡中の原料スラリー上面より直径4mm、長さ350mm、重さ12gの金属棒を静かに沈下させ、自然に停止した場合、その金属棒のスラリー上面から突出した部分の長さを泥漿内移動抵抗値とする。
この測定法によれば、網状補強材のスラリー内移動力に対する抵抗にほぼ対応する抵抗値が得られる。
【0015】
次に、発明者らは網状補強材を埋設した薄板状軽量気泡コンクリート建材の製造方法において、型枠内に注入した原料スラリーの凝結段階において、泥漿内移動抵抗値が50mm以上250mm以下となるスラリーの凝結硬化状態で、前記網状補強材のセット用支持具を抜き取ることにより、その支持具の抜取り穴を原料スラリーの自然流動によって中実となすことを特徴とする薄板状軽量気泡コンクリート建材の製造方法を提供する。
【0016】
泥漿内移動抵抗値が50mm未満の状態でセット用支持具を抜き取ると、その後、網状補強材は大きく偏在する。ひどい場合には、網状補強材間の切断予定位置に達するまで偏在し、後にピアノ線等による切断が不可能になる。また、泥漿内移動抵抗値が250mmを越える状態で前記セット用支持具を抜き取ると、その支持具の抜取り穴を原料スラリーの自然流動によって中実となすことができず、抜取り穴が一部又は完全に残ってしまう。したがって、支持具の抜取り穴が原料スラリーの自然流動によって中実となり、しかも、網状補強材の偏在が少ない、確実に実用に耐え得る製品を製造するためには、泥漿内移動抵抗値が50mm以上250mm以下となる状態で前記セット用支持具を抜き取る必要がある。
【0018】
さらに、前記発明において泥漿内移動抵抗値が190mm以下となるスラリーの凝結硬化状態で、前記網状補強材のセット用支持具を抜き取ると、抜取り穴跡部分の組織が周囲の組織に比べ嵩密度の高くない均質健全な薄板状軽量気泡コンクリート建材を得ることができる。この場合も、必ずしも毎回、泥漿内移動抵抗値測定法により測定する必要がないこと等は同様である。
【0019】
発明者らは、網状補強材が埋設された薄板状軽量気泡コンクリート建材において、網状補強材支持具の抜取り穴跡が中実であり、その抜取り穴跡の嵩密度が0.55g/cm3 以下であることを特徴とする薄板状軽量気泡コンクリート建材を提供する。この薄板状軽量気泡コンクリート建材は、型枠内に注入した原料スラリーの凝結段階において、泥漿内移動抵抗値が50mm以上190mm以下となるスラリー凝結硬化状態にて、前記網状補強材のセット用支持具を抜き取ることにより、その支持具の抜取り穴を原料スラリーの自然流動によって中実となす等の製造方法により製造することができる。
【0020】
この薄板状軽量気泡コンクリート建材は、製品に残るセット棒の抜取り穴に水が溜まり雨漏りの原因となることがなく、強度的に均質な建材となる。また、抜取り穴跡部分の組織の気泡は周りの組織と不連続な模様になっているので区別はつくが、その組織の嵩密度は周囲の組織の嵩密度と変わらないので、強度的にも熱的にも均質な建材となる。
なお、本明細書においてマトリックス部分とは薄板状オートクレーブ養生軽量気泡コンクリート建材のうち、補強材、埋設金具およびそれらの防錆材を除いた部分であり、通常ケイ酸カルシウムを主体としたマトリックスと気泡とによりオートクレーブ養生気泡コンクリートを形成する部分である。
【0021】
[実験例]
以上の構成とその結果を実験例により示す。
15か月に及ぶ種々の実機による実験のうち表1に示すような3例の実験について、発泡高さ(型枠底面からスラリー上面までの距離)と泥漿内移動抵抗値を時間を追って測定した結果を例示する。その実験の内容について説明すると、まず、原料に水を添加混合してスラリーとなし、次に、図1に示すように支持具となる一対の直径5mmの棒状のセット棒1に網状補強材2を挟持させ、さらに、その網状補強材2を配置した型枠3内に前記スラリーを型枠の中ほどまで注入した。
【0022】
なお、全ての実験例において珪石粉末(秩父産)、ポルトランドセメント(秩父小野田社製)、生石灰粉末(吉沢石灰社製)以外の原料は凝結硬化体原料回収屑を外割で30%(固形分換算)及び発泡剤として平均粒径30μmのアルミニウム粉末(大和アルミ社製)を0.06%添加し、実験した。また、本実験例では網状補強材として網目の呼寸法が32mm×16mmのメタルラスを使用した。
【0023】
【表1】

Figure 0003909721
【0024】
上述のように型枠内に注入されたスラリーは、発泡し、型枠上部まで体積増加しスラリー面が上昇する。この高さの測定を併せ、発泡と前後して凝結硬化する状態を、図2に示すような方法で泥漿内移動抵抗値として測定した。
まず、図2(1)のように前記型枠等に鉛直になるように、すなわちその中心線が水平面(H.P.)と垂直な方向になるように支持された内面が滑らかな円筒ガイド4に直径4mm、長さ350mm、重さ12gの金属棒5を挿入し、スラリー上面6から静かに沈下させ、結果図2(2)のように自然に停止した時点で金属棒5がスラリー上面6から突出している部分の長さ(泥漿内移動抵抗値R:単位mm)を測定してスラリーの網状補強材の移動に対する抵抗と対応する凝結硬化状態の指標値とした。
【0025】
実験例1、実験例2、実験例3のそれぞれの結果について経過時間と泥漿内移動抵抗値及びスラリーの発泡高さの関係について図3のグラフにあらわした。図3においてRは泥漿内移動抵抗値、Hはスラリーの発泡高さである。また、R1、H1は実験例1の、R2、H2は実験例2の、R3、H3は実験例3の泥漿内移動抵抗値及びスラリーの発泡高さである。
【0026】
次に、図3において、結果を次の様に表示した。すなわち、セット用支持具の抜取り穴が製品に残った場合を◎印で示し、網状補強材の偏在が大きかったり、後に網状補強材の間を切断することが不可能な場合を×印で示した。さらに、抜取り穴跡の組織が周りの組織と同様の発泡組織で、同程度の嵩密度の領域を実線で、抜取り穴跡の組織が周りの組織と異なり嵩密度の高い組織となっている領域を破線で示した。なお、時間の単位は分、泥漿内移動抵抗値及び発泡高さの単位はmmである。
【0027】
図3から、実験例3の配合においては、発泡終了後、すなわち、発泡高さが最高点に達した後にセット用支持具を抜取った場合でも中実とすることができる機会があるが、実験例1および2の配合の条件下ではセット用支持具を発泡終了後、すなわち、発泡高さが最高点に達した後ではすでに抜取り穴を自然流動により完全に中実とすることができないことがわかる。すなわち、前記泥漿内移動抵抗値が50mm以上250mm以下となる状態でセット用支持具を抜き取る必要があることがわかる。
【0028】
さらに実験例1、実験例2において、このスラリー凝結状態がいろいろな泥漿内移動抵抗値を示す時点で前記セット棒を抜き、最後に脱型して網状補強材同士の間をピアノ線により切断した。その後オートクレーブ養生してできた製品の、それぞれのセット棒の抜跡の嵩密度を測定した。この場合、気泡の大きさを考慮し、また、マトリックス部分の組織が採取時に壊れない範囲で測定するために、少なくとも、一辺が3mmの立方体以上の体積を有する試験片が必要である。さらに、セット棒の存在した位置から離れた部分の組織はもはや通常のマトリックス部分と考えられるので、セット棒の存在した位置から少なくとも1mm以内の部分を採取す必要がある。
【0029】
本発明では、セット棒の抜跡の嵩密度の測定は、抜取り穴跡のうち、製品の前記発泡高さ方向中央に相当する部分から、直径はセット棒の直径より1mm大きく、高さが50mmの円筒状の切取片を採取し、その嵩密度を測定することとする。実験例1、実験例2においても、この方法で嵩密度を測定し、泥漿内移動抵抗値と対照して図4に示した。その単位はg/cm3 である。なお、明らかにピアノ線による切断が不可能な場合、及び切断中にピアノ線が切れた場合は、凝結スラリーの切断はせず、養生後にカッターで網ごと切断して偏在をチェックした。図4において、Rは泥漿内移動抵抗値、Dは嵩密度であり、D1は実験例1の、D2は実験例2の結果における嵩密度である。実線、破線の領域は図3と同様である。
【0030】
図4によると泥漿内移動抵抗値が50〜190mmの抜き取りにおいては嵩密度が0.50〜0.55g/cm3 の範囲となりほぼ周囲の組織と変わらないのに対し、泥漿内移動抵抗値が190mmを越えると抜取り跡の嵩密度も急激に高くなり、0.55g/cm3 を越え、0.70g/cm3 まで高くなることがわかる。なお、泥漿内移動抵抗値が250mmを越えると原料スラリーの自然流動によって中実となすことができず、中空の抜取り穴が残る。
【0031】
また、図3に示す下向きの矢印は各実験例における、発泡終了時とその時の泥漿内移動抵抗値との対応関係を示している。さらに、表1には発泡終了時の泥漿内移動抵抗値の値を示した。図3及び表1によると、発泡終了時の泥漿内移動抵抗値が各実験例ごとにそれぞれ異なっていることがわかる。すなわち、スラリー凝結硬化の度合いは、原料配合、条件等によってそれぞれ異なることが示されている。
【0032】
【実施例】
[実施例1]
珪石粉末(秩父産)60%、ポルトランドセメント(秩父小野田社製)25%、生石灰粉末(吉沢石灰社製)11%、凝結硬化体原料回収屑を外割で30%(固形分換算)及び発泡剤としてアルミニウム粉末(大和アルミ社製)0.06%を添加してなる原料スラリーを用い、実験例1と同様の条件でスラリーを発泡させた。その後、泥漿内移動抵抗値が160mm(スラリー投入後27分)の時にセット用支持具を抜いて、更に硬化後脱型して網状補強材間を切断し、オートクレーブ養生して薄板状軽量気泡コンクリート建材を製造した。
結果、支持具の抜取り跡は中実で、しかも抜取り穴跡のマトリックス部分の組織の嵩密度を測定したところ最高0.53g/cm3 であり、周りの組織とは区別がつかなかった。しかも、網状補強材の偏在が極めて少なく、健全な状態であった。
【0033】
[実施例2]
珪石粉末(秩父産)70%、ポルトランドセメント(秩父小野田社製)15%、生石灰粉末(吉沢石灰社製)11%、凝結硬化体原料回収屑を外割で30%(固形分換算)及び発泡剤としてアルミニウム粉末(大和アルミ社製)を添加してなる原料スラリーを用い、実験例2と同様の条件でスラリーを発泡させた。その後、泥漿内移動抵抗値が220mm(スラリー投入後55分)の時にセット用支持具を抜いて、更に硬化後脱型して網状補強材間を切断し、オートクレーブ養生して薄板状軽量気泡コンクリート建材を製造した。
結果、支持具の抜き取りあとは中実であり、網状補強材の偏在が極めて少なく、健全な状態であった。しかし、抜取り穴跡のマトリックス部分の組織の嵩密度を測定したところ最高0.64g/cm3 であった。
【0034】
[比較例]
実施例1と同じ原料スラリーの配合条件で泥漿内移動抵抗値が270mm(スラリー投入後38分)の時にセット用支持具を抜いて、更に硬化後脱型して網状補強材間を切断し、その後オートクレーブ養生して薄板状軽量気泡コンクリート建材を製造した。
結果、網状補強材の偏在は極めて少なく、健全な状態であったが、支持具の抜取り跡には抜取り穴が空洞のまま残っていた。
【0035】
【発明の効果】
以上のように、本発明の製造方法によれば、いろいろな製造条件においても抜取り穴跡が完全に中実となるため、常に強度的に均質であり、しかも、網状補強材の偏在が極めて少ない薄板状オートクレーブ養生軽量気泡コンクリート建材を得ることができる。さらには、抜取り穴跡部分の組織の嵩密度が周囲の組織の嵩密度と変わらず、熱的にも良好な薄板状オートクレーブ養生軽量気泡コンクリート建材を得ることもできる。また、本発明の薄板状オートクレーブ養生軽量気泡コンクリート建材は抜取り穴跡の組織の嵩密度が周囲の組織の嵩密度と変わらないため、強度的にも、熱的にもより良好な建材である。
【図面の簡単な説明】
【図1】製造方法を示す図。
【図2】(1)(2) 泥漿内移動抵抗値測定法を示す図。
【図3】時間に対する泥漿内移動抵抗値および発泡高さを示すグラフ。
【図4】泥漿内移動抵抗値と抜取り跡の嵩密度との関係を示すグラフ。
【符号の説明】
1 セット棒
2 網状補強材
3 型枠
4 円筒ガイド
5 金属棒
6 スラリー上面
R 泥漿内移動抵抗値[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an improvement in a method for producing a thin plate-like autoclave-cured lightweight aerated concrete building material used for partition walls, outer walls, field boards, or coverings of reinforcing steel structures.
[0002]
[Prior art]
Autoclaved lightweight lightweight concrete building materials are light and heat-insulating, and are used as building materials with excellent fire resistance. Of these, thin plates with a thickness of 50 mm or less have high workability similar to wood, so they are used for roof base materials, fireproof coverings for beams and columns, etc. in addition to walls of houses and small stores. ing.
[0003]
The manufacturing method is as follows. First, water is added to a raw material mixture obtained by mixing silica stone powder, lime powder, cement, aluminum powder and the like to form a slurry (slurry). Next, a mesh-like reinforcing material is sandwiched between set bars serving as support tools, and a predetermined amount of the slurry is injected into a mold in which the mesh-like reinforcing material is arranged. The slurry then expands in volume due to aluminum foaming and reaches a semi-cured state, covering the mesh reinforcement. Thereafter, the set bar is pulled out, and then demolded at a stage where the curing has further proceeded, and the reticulated reinforcing material is cut with a piano wire or the like, and then autoclaved and manufactured.
[0004]
However, the extraction hole of the set rod usually remains as a cavity, but if the autoclave-cured lightweight cellular concrete building material becomes a thin plate, water accumulates in the extraction hole remaining in the product and causes rain leakage. In addition, as the plate thickness decreases, the volume occupied by the cavity of the extracted hole traces increases relative to the surrounding matrix portion, so that the building material is inhomogeneous in strength. As described above, the cavity of the extraction hole trace of this set bar has a particularly adverse effect on the thin plate-shaped autoclave curing lightweight cellular concrete building material. Therefore, the construction material in which the cavity of the extraction hole trace is filled with mortar or the like later is filled. Has been commercially available for some time. Furthermore, in order to save the trouble of filling mortar or the like, proposals have been made in the past to solve this problem with a simple operation as follows.
[0005]
That is, after foaming of a predetermined amount of the slurry injected into the mold is finished, the set rod for holding the mesh reinforcing material is pulled out while the slurry maintains fluidity (Japanese Patent Publication No. 63-43208). See the official gazette). This proposal states that by pulling out the set rod at this timing, the extraction holes remaining in the semi-cured slurry are naturally collapsed and filled, and become solid.
[0006]
[Problems to be solved by the invention]
However, when this method was re-examined, it was found that the sampling hole might be completely solid, or it might not be completely solid. Furthermore, it has been found that even when the extracted hole is completely solid, the trace of the extracted hole is often a structure having a higher bulk density than the surrounding structure. This non-uniformity is not desirable both thermally and mechanically. When the present inventors examined this experimental result, it turned out that setting hardening does not necessarily work with foaming, but progresses in different states depending on various autoclave curing lightweight cellular concrete raw materials, weather conditions, etc. did.
[0007]
For this reason, depending on the conditions, it has also been found that at the end of foaming or thereafter, the timing for removing the support has already passed, and the extraction hole cannot be filled solidly in many cases. From the above, the present inventors are not appropriate to set the extraction timing of the support for setting using such foaming as an index, and are unstable by appropriately evaluating the setting process of the slurry. This has led to the development of a method for reliably producing a more sound thin plate-like autoclave-cured lightweight aerated concrete building material that can eliminate the state and that is free from uneven distribution of the mesh reinforcement.
[0008]
[Means for Solving the Problems]
In order to solve the problems as described above, the inventors have grasped the setting and hardening state at the setting stage of the raw slurry injected into the mold in the manufacturing method of the thin plate-like lightweight cellular concrete building material in which the mesh reinforcement is embedded. Then, the condensation hardening state is taken as an index of the timing for extracting the support member for setting the mesh reinforcing material, and the support tool is extracted, and the extraction hole of the support device is made solid by the natural flow of the raw slurry. We propose a method for manufacturing thin lightweight lightweight concrete building materials.
[0009]
As a result of earnestly researching the contradictions of the above-mentioned conventional techniques, the inventors have been able to always fill the extraction hole with solidity by setting the extraction time of the support for the set using the setting hardening as an index. Can eliminate the situation where filling of sampling holes found in commercially available building materials is different from the bulk density of the surrounding matrix part, and it is possible to reliably produce a more healthy thin plate autoclave curing lightweight cellular concrete building material I got the knowledge. Moreover, it was confirmed that the thin plate-like autoclave-cured lightweight cellular concrete building material having a thickness of 50 mm or less produced in this way has extremely little uneven distribution of the net-like reinforcing material, and thus the present invention has been achieved.
[0010]
Note that a commercially available wire net or lath net can be used as the net reinforcing material in the present invention. As standard products, there are metal meshes such as welded wire meshes, crimped wire meshes, tortoise shell wire meshes, woven wire meshes, industrial woven wire meshes, etc. stipulated in JIS. Can be used.
[0011]
In addition, the inventors propose to grasp the slurry coagulation hardening state by the method for measuring the movement resistance value in the slurry. The inventors have established a method for measuring the resistance value of the slurry against the movement resistance value in the slurry, that is, the force for moving the reinforcing material or the like in the slurry as a value for grasping the state of slurry condensation and hardening.
[0012]
It is often attempted at the manufacturing site to gently sink a metal rod into the slurry during foaming and grasp the cured state by its resistance. When the metal rod is gently sunk in the slurry, gravity is applied to the metal rod downwards, but as the metal rod sinks, the slurry under the metal rod is compressed and generates its compressive drag. Furthermore, the slurry adheres to the side surface of the metal rod, and the shear friction resistance due to the viscosity of the slurry increases as the metal rod is buried. The metal rod stops when the total of the compression drag and shear friction resistance and the gravity are balanced. Since the length of the portion of the metal rod protruding from the upper surface of the slurry at the time when the metal rod stops becomes longer as the slurry condensation hardening proceeds, the slurry condensation hardening state can be grasped from the value of this length.
[0013]
Using this method, the resistance to the force due to the net weight of the mesh reinforcement and the force to move the reinforcement with foaming of the slurry was tested using a steel rod having a diameter of 2.6 mm and a length of 800 mm. Such a condition is effective for grasping the stage where the curing has progressed considerably, but it is difficult to grasp the resistance corresponding to the movement of the present mesh reinforcement. The measurement was attempted with lighter steel rods in order, but there was also a limit to this, and the measurement with a metal rod with a lighter and larger diameter corresponds to the resistance to the movement of the mesh reinforcement in the condensing state of the slurry. I got the knowledge.
[0014]
Method of measuring resistance to movement in the slurry;
When a metal rod with a diameter of 4 mm, a length of 350 mm, and a weight of 12 g is gently submerged from the upper surface of the raw material slurry being foamed and stopped naturally, the length of the portion of the metal rod protruding from the upper surface of the slurry is the resistance to movement in the slurry. Value.
According to this measurement method, a resistance value substantially corresponding to the resistance of the mesh reinforcement to the moving force in the slurry can be obtained.
[0015]
Next, in the method for producing a thin plate-shaped lightweight cellular concrete building material in which a net-like reinforcing material is embedded, the inventors have a slurry in which the movement resistance value in the slurry becomes 50 mm or more and 250 mm or less in the setting stage of the raw material slurry injected into the mold. The thin plate-shaped lightweight cellular concrete building material is characterized in that by pulling out the support for setting the reticulated reinforcing material in the state of condensation hardening, the extraction hole of the support is made solid by the natural flow of the raw slurry. Provide a method.
[0016]
If the set support is pulled out in a state where the movement resistance value in the slurry is less than 50 mm, then the mesh reinforcing material is greatly unevenly distributed. In a severe case, it is unevenly distributed until reaching the planned cutting position between the mesh reinforcements, and later cutting with a piano wire or the like becomes impossible. Further, if the set support is extracted in a state where the movement resistance value in the slurry exceeds 250 mm, the extraction hole of the support cannot be made solid due to the natural flow of the raw slurry, and the extraction hole is partially or It will remain completely. Therefore, in order to produce a product that can withstand practical use with less unevenness of the mesh reinforcement due to the natural flow of the raw material slurry, the removal hole in the support has a movement resistance value in the slurry of 50 mm or more. It is necessary to remove the set support tool in a state of 250 mm or less.
[0018]
Further, in the invention, when the support for setting the mesh reinforcing material is extracted in a state of condensation hardening of the slurry having a movement resistance value in the slurry of 190 mm or less, the structure of the extracted hole trace portion has a bulk density compared to the surrounding structure. It is possible to obtain a thin plate-like lightweight cellular concrete building material which is not high and is healthy. In this case as well, it is the same that it is not always necessary to measure by the method of measuring the movement resistance value in the slurry.
[0019]
The inventors of the present invention, in the thin plate-shaped lightweight cellular concrete building material in which the mesh reinforcing material is embedded, the sampling hole trace of the mesh reinforcing material support is solid, and the bulk density of the sampling hole trace is 0.55 g / cm 3 or less. A thin plate-like lightweight cellular concrete building material is provided. This thin plate-like lightweight cellular concrete building material is a support for setting the mesh reinforcing material in a slurry condensation hardening state in which the movement resistance value in the slurry becomes 50 mm or more and 190 mm or less in the setting stage of the raw material slurry injected into the mold. Can be manufactured by a manufacturing method such as making the extraction hole of the support tool solid by the natural flow of the raw slurry.
[0020]
This thin plate-shaped lightweight cellular concrete building material is a building material that is homogeneous in strength without water collecting in the extraction holes of the set rod remaining in the product and causing rain leakage. In addition, the tissue bubbles in the extracted hole traces can be distinguished from the surrounding tissue because they are discontinuous, but the bulk density of the tissue is not different from the bulk density of the surrounding tissue. Thermally homogeneous building material.
In the present specification, the matrix portion is a portion of the thin plate-like autoclave-cured lightweight aerated concrete building material excluding the reinforcing material, the embedded metal fitting and the rust preventive material, and is usually a matrix and a cell mainly composed of calcium silicate. This is the part that forms autoclaved cellular concrete.
[0021]
[Experimental example]
The above configuration and the results are shown by experimental examples.
Of the experiments using various actual machines over 15 months, the foaming height (distance from the bottom of the mold to the top surface of the slurry) and the movement resistance value in the slurry were measured over time for three examples as shown in Table 1. The results are illustrated. The contents of the experiment will be described. First, water is added to and mixed with the raw material to form a slurry, and then, as shown in FIG. Further, the slurry was poured to the middle of the mold in the mold 3 in which the mesh reinforcing material 2 was disposed.
[0022]
In all experimental examples, raw materials other than silica powder (produced by Chichibu), Portland cement (produced by Chichibu Onoda Co., Ltd.) and quicklime powder (produced by Yoshizawa Lime Co., Ltd.) account for 30% (solid content) Conversion) and 0.06% of an aluminum powder (manufactured by Daiwa Aluminum Co., Ltd.) having an average particle size of 30 μm was added as a foaming agent, and an experiment was conducted. In this experimental example, a metal lath having a mesh size of 32 mm × 16 mm was used as the mesh reinforcing material.
[0023]
[Table 1]
Figure 0003909721
[0024]
As described above, the slurry injected into the mold foams, expands to the upper part of the mold, and the slurry surface rises. In combination with this height measurement, the state of coagulation and hardening before and after foaming was measured as the value of movement resistance in the slurry by the method shown in FIG.
First, as shown in FIG. 2 (1), a cylindrical guide having a smooth inner surface supported so as to be perpendicular to the mold or the like, that is, its center line is perpendicular to the horizontal plane (HP). 4, a metal rod 5 having a diameter of 4 mm, a length of 350 mm, and a weight of 12 g is inserted and gently submerged from the upper surface 6 of the slurry. As a result, when the metal rod 5 stops spontaneously as shown in FIG. The length of the portion protruding from 6 (moving resistance value in mud R: unit mm) was measured and used as an index value of the setting and hardening state corresponding to the resistance to the movement of the mesh reinforcement of the slurry.
[0025]
The relationship between the elapsed time, the movement resistance value in the slurry, and the foaming height of the slurry for each result of Experimental Example 1, Experimental Example 2, and Experimental Example 3 is shown in the graph of FIG. In FIG. 3, R is the movement resistance value in the slurry, and H is the foaming height of the slurry. In addition, R1 and H1 are the movement resistance value in slurry and the foaming height of slurry in Experimental Example 1, R2 and H2 are in Experimental Example 2, and R3 and H3 are in Experimental Example 3.
[0026]
Next, in FIG. 3, the results are displayed as follows. In other words, the symbol ◎ indicates that the hole for removing the set support tool remains in the product, and the symbol X indicates that the mesh reinforcement is unevenly distributed or cannot be cut between the mesh reinforcements later. It was. Furthermore, the extracted hole trace structure is the same foamed structure as the surrounding structure, the same bulk density area is indicated by a solid line, and the extracted hole trace structure is a high bulk density structure unlike the surrounding structure. Is indicated by a broken line. In addition, the unit of time is minute, and the unit of the movement resistance value in the slurry and the foaming height is mm.
[0027]
From FIG. 3, in the formulation of Experimental Example 3, there is an opportunity that can be made solid even after the foaming is completed, that is, when the set support is removed after the foaming height reaches the highest point, Under the conditions of the experimental examples 1 and 2, after the foaming of the set support is completed, that is, after the foaming height reaches the highest point, the extraction hole cannot be made completely solid by natural flow. I understand. That is, it can be seen that the set support tool needs to be removed in a state where the movement resistance value in the slurry is 50 mm or more and 250 mm or less.
[0028]
Furthermore, in Experimental Example 1 and Experimental Example 2, when the slurry condensation state showed various movement resistance values in the slurry, the set rod was pulled out, and finally demolded to cut between the mesh reinforcements with a piano wire. . Thereafter, the bulk density of the traces of each set bar of the product obtained by curing the autoclave was measured. In this case, a test piece having a volume of at least a cube having a side of 3 mm is required at least in order to perform measurement in a range where the structure of the matrix portion does not break during collection in consideration of the size of bubbles. Furthermore, the tissue away from the position where the set bar was present is no longer considered as a normal matrix part, so it is necessary to extract a part within at least 1 mm from the position where the set bar was present.
[0029]
In the present invention, the measurement of the bulk density of the trace of the set bar is carried out by measuring the diameter of the extracted hole trace from the portion corresponding to the center of the foam height direction of the product by 1 mm larger than the diameter of the set bar and 50 mm in height. A cylindrical cut piece is taken and its bulk density is measured. Also in Experimental Example 1 and Experimental Example 2, the bulk density was measured by this method and shown in FIG. 4 in contrast to the movement resistance value in the slurry. The unit is g / cm 3 . In addition, when cutting with a piano wire was clearly impossible, and when the piano wire was cut during cutting, the condensed slurry was not cut, and after curing, the entire net was cut with a cutter to check the uneven distribution. In FIG. 4, R is the movement resistance value in the slurry, D is the bulk density, D1 is the result of Experimental Example 1, and D2 is the bulk density of Experimental Example 2. The solid line and broken line regions are the same as in FIG.
[0030]
According to FIG. 4, in the extraction with the movement resistance value in the slurry of 50 to 190 mm, the bulk density is in the range of 0.50 to 0.55 g / cm 3 , which is almost the same as the surrounding tissue. the bulk density of the traces withdrawal amount exceeds 190mm becomes abruptly high, exceeding the 0.55 g / cm 3, it can be seen that the higher up 0.70 g / cm 3. If the movement resistance value in the slurry exceeds 250 mm, it cannot be solid due to the natural flow of the raw slurry, and a hollow extraction hole remains.
[0031]
Moreover, the downward arrow shown in FIG. 3 shows the correspondence between the end of foaming and the movement resistance value in the slurry at that time in each experimental example. Further, Table 1 shows the value of the movement resistance value in the slurry at the end of foaming. According to FIG. 3 and Table 1, it can be seen that the movement resistance value in the slurry at the end of foaming is different for each experimental example. That is, it is shown that the degree of slurry condensation hardening varies depending on the raw material composition, conditions, and the like.
[0032]
【Example】
[Example 1]
Silica stone powder (produced by Chichibu) 60%, Portland cement (produced by Chichibu Onoda Co., Ltd.) 25%, quick lime powder (produced by Yoshizawa Lime Co., Ltd.) 11%, 30% of solidified hardened material recovered scrap (in solid content) and foaming The raw material slurry obtained by adding 0.06% of aluminum powder (manufactured by Daiwa Aluminum Co., Ltd.) as an agent was foamed under the same conditions as in Experimental Example 1. After that, when the moving resistance value in the slurry is 160 mm (27 minutes after adding the slurry), the set support is pulled out, further cured and demolded, cut between the mesh reinforcements, cured by autoclave, and thin plate-shaped lightweight cellular concrete. Building materials were manufactured.
As a result, the extraction trace of the support was solid, and when the bulk density of the structure of the matrix portion of the extraction hole trace was measured, it was 0.53 g / cm 3 at the maximum, which was indistinguishable from the surrounding structure. Moreover, the uneven distribution of the net-like reinforcing material was extremely small, and it was in a healthy state.
[0033]
[Example 2]
Silica stone powder (produced by Chichibu) 70%, Portland cement (produced by Chichibu Onoda Co.) 15%, quick lime powder (produced by Yoshizawa Lime Co., Ltd.) 11% The slurry was foamed under the same conditions as in Experimental Example 2 using a raw slurry obtained by adding aluminum powder (manufactured by Daiwa Aluminum Co., Ltd.) as an agent. After that, when the moving resistance value in the slurry is 220 mm (55 minutes after adding the slurry), the set support is pulled out, further cured and demolded, cut between the mesh reinforcements, cured by autoclave, and thin plate-shaped lightweight cellular concrete. Building materials were manufactured.
As a result, the support was solid after being extracted, and the uneven distribution of the net-like reinforcing material was extremely small, and it was in a healthy state. However, when the bulk density of the structure of the matrix portion of the extracted hole trace was measured, the maximum was 0.64 g / cm 3 .
[0034]
[Comparative example]
Under the same mixing conditions of the raw material slurry as in Example 1, when the movement resistance value in the slurry is 270 mm (38 minutes after adding the slurry), the set support is pulled out, and after hardening, the mold is removed to cut between the mesh reinforcements. Thereafter, autoclaving was performed to produce a thin plate-shaped lightweight cellular concrete building material.
As a result, the uneven distribution of the net-like reinforcing material was extremely small and was in a healthy state, but the extraction hole remained in the extraction trace of the support.
[0035]
【The invention's effect】
As described above, according to the manufacturing method of the present invention, the extracted hole traces are completely solid even under various manufacturing conditions, so that the strength is always uniform and the uneven distribution of the net-like reinforcing material is extremely small. A thin plate-shaped autoclave curing lightweight cellular concrete building material can be obtained. Furthermore, the bulk density of the structure of the extracted hole trace portion is not different from the bulk density of the surrounding structure, and a thin plate-like autoclave-cured lightweight aerated concrete building material that is thermally good can also be obtained. In addition, the thin plate-like autoclave-cured lightweight cellular concrete building material of the present invention is a better building material in terms of strength and heat because the bulk density of the structure of the extracted hole trace is not different from the bulk density of the surrounding tissue.
[Brief description of the drawings]
FIG. 1 shows a manufacturing method.
FIGS. 2A and 2B are diagrams showing a method for measuring a movement resistance value in a slurry.
FIG. 3 is a graph showing the movement resistance value in the slurry and the foaming height with respect to time.
FIG. 4 is a graph showing the relationship between the movement resistance value in the slurry and the bulk density of the sampling trace.
[Explanation of symbols]
1 set rod 2 reticulated reinforcement 3 mold 4 cylindrical guide 5 metal rod 6 slurry upper surface R movement resistance value in slurry

Claims (3)

網状補強材を埋設した薄板状軽量気泡コンクリート建材の製造方法において、型枠内に注入した原料スラリーの凝結段階において、泥漿内移動抵抗値によりスラリー凝結硬化状態を把握し、その凝結硬化状態を前記網状補強材のセット用支持具を抜き取るタイミングの指標として前記支持具を抜き取り、前記支持具の抜取り穴を原料スラリーの自然流動によって中実となすことを特徴とする薄板状軽量気泡コンクリート建材の製造方法。In the method of manufacturing a thin plate-like lightweight cellular concrete building material in which a mesh reinforcement is embedded, in the condensing stage of the raw slurry injected into the mold, the slurry congealing hardening state is grasped by the movement resistance value in the slurry , and the congealing hardening state is described above. Production of a thin plate-shaped lightweight cellular concrete material characterized in that the support tool is extracted as an index of the timing for extracting the support member for setting the mesh reinforcing material, and the extraction hole of the support material is made solid by the natural flow of the raw material slurry. Method. 前記泥漿内移動抵抗値が50mm以上250mm以下となるスラリーの凝結硬化状態で、前記網状補強材のセット用支持具を抜き取ることを特徴とする請求項1に記載の薄板状軽量気泡コンクリート建材の製造方法。 The thin plate-shaped lightweight cellular concrete building material according to claim 1, wherein the support member for setting the mesh reinforcing material is pulled out in a state of condensation hardening of the slurry having a movement resistance value in the slurry of 50 mm or more and 250 mm or less. Method. 前記泥漿内移動抵抗値が50mm以上190mm以下となるスラリーの凝結硬化状態で、前記網状補強材のセット用支持具を抜き取る請求項1に記載の薄板状軽量気泡コンクリート建材の製造方法。 The method for producing a thin plate-like lightweight cellular concrete building material according to claim 1, wherein the support for setting the mesh reinforcing material is pulled out in a state of condensation hardening of the slurry having a movement resistance value in the slurry of 50 mm or more and 190 mm or less .
JP08575597A 1997-03-19 1997-03-19 Manufacturing method of thin plate lightweight lightweight concrete building material Expired - Fee Related JP3909721B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP08575597A JP3909721B2 (en) 1997-03-19 1997-03-19 Manufacturing method of thin plate lightweight lightweight concrete building material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP08575597A JP3909721B2 (en) 1997-03-19 1997-03-19 Manufacturing method of thin plate lightweight lightweight concrete building material

Publications (2)

Publication Number Publication Date
JPH10258422A JPH10258422A (en) 1998-09-29
JP3909721B2 true JP3909721B2 (en) 2007-04-25

Family

ID=13867684

Family Applications (1)

Application Number Title Priority Date Filing Date
JP08575597A Expired - Fee Related JP3909721B2 (en) 1997-03-19 1997-03-19 Manufacturing method of thin plate lightweight lightweight concrete building material

Country Status (1)

Country Link
JP (1) JP3909721B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001348261A (en) * 2000-06-01 2001-12-18 Asahi Kasei Corp Production process of alc thin plate

Also Published As

Publication number Publication date
JPH10258422A (en) 1998-09-29

Similar Documents

Publication Publication Date Title
US9993941B2 (en) Methods and systems for the formation and use of reduced weight building blocks forms
CN103061432A (en) Construction method of lightweight, energy-saving, heat preservation, and heat insulation nonbearing wall body
JP6981797B2 (en) Hydraulic composition and anchor element fixing method using the same
JPH02503810A (en) Prestressed structural member of steel reinforced concrete structure and method for manufacturing this member
JP3909721B2 (en) Manufacturing method of thin plate lightweight lightweight concrete building material
AU2010257396A1 (en) A method of forming protrusions on a masonry block
KR101596637B1 (en) concrete lintel for steel and manufacturing method thereof
JP2010196345A (en) Bamboo-reinforced concrete secondary molded product, and method for molding the concrete secondary molded product
CN106007510A (en) Manufacturing method of porous volcanic aggregate concrete sleeper
CN114274306A (en) Production process of prefabricated steel structure exterior wall cladding
US10150705B2 (en) Dry application papercrete
JP6963082B2 (en) Anchor element fixing method
JPS6343208B2 (en)
JP3548257B2 (en) Lightweight aerated concrete panel
JP5302666B2 (en) Method for producing lightweight cellular concrete panel
JP4194398B2 (en) Manufacturing method of ALC panel
Visser Mechanical and structural characterisation of extrusion moulded SHCC
JP2008256523A (en) Form and form unit for shotcrete specimen, and method of manufacturing shotcrete specimen
Makara Static and Fatigue Behaviour of Steel and Synthetic Fibre Reinforced Concrete
CN117188649A (en) Method for reinforcing masonry structure
De Pauw et al. Replacement of shear reinforcement by steel fibres in pretensioned concrete beams
JPH0987052A (en) Lightweight foamed concrete board and its production
JP3562872B2 (en) Manufacturing method of lightweight cellular concrete
JP4115570B2 (en) Method for producing lightweight cellular concrete panel
JP2010058998A (en) Filler for rod pin extracting hole and method for producing autoclaved lightweight concrete panel using the same

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060413

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060418

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060509

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20060524

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070118

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070119

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100202

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100202

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110202

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110202

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees