JP4981475B2 - Method for producing lightweight cellular concrete panel - Google Patents

Method for producing lightweight cellular concrete panel Download PDF

Info

Publication number
JP4981475B2
JP4981475B2 JP2007034857A JP2007034857A JP4981475B2 JP 4981475 B2 JP4981475 B2 JP 4981475B2 JP 2007034857 A JP2007034857 A JP 2007034857A JP 2007034857 A JP2007034857 A JP 2007034857A JP 4981475 B2 JP4981475 B2 JP 4981475B2
Authority
JP
Japan
Prior art keywords
mold
slurry
period
foaming
rocking
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007034857A
Other languages
Japanese (ja)
Other versions
JP2008195014A (en
JP2008195014A5 (en
Inventor
勤 堀田
義幸 後藤
Original Assignee
クリオン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by クリオン株式会社 filed Critical クリオン株式会社
Priority to JP2007034857A priority Critical patent/JP4981475B2/en
Publication of JP2008195014A publication Critical patent/JP2008195014A/en
Publication of JP2008195014A5 publication Critical patent/JP2008195014A5/ja
Application granted granted Critical
Publication of JP4981475B2 publication Critical patent/JP4981475B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、鉄筋が配設された型枠内で原料スラリーを発泡させて、軽量気泡コンクリートパネル(以下ALCパネルという)を製造する方法に関する。   The present invention relates to a method for producing a lightweight cellular concrete panel (hereinafter referred to as ALC panel) by foaming a raw material slurry in a formwork provided with reinforcing bars.

一般に、ALCパネルの製造にあたっては、鉄筋が格子状に組まれてなる補強鉄筋を型枠内に配設し、石灰質原料と珪酸質原料との混合物にアルミニウム粉末、界面活性剤水溶液等を加えた原料スラリーを前記型枠内に打設し、アルミニウム粉末を発泡させて気泡を形成し、原料スラリーを体積膨張させつつ硬化させる。そして、発泡が終了した半硬化体を脱型し、所定厚さにスライスした後にオートクレーブ養生させ、本硬化したパネルの小口表層部を切除して、所要寸法のALCパネルを完成する。 In general, when manufacturing an ALC panel, reinforcing reinforcing bars in which reinforcing bars are assembled in a lattice shape are arranged in a mold, and aluminum powder, an aqueous surfactant solution, or the like is added to a mixture of calcareous raw materials and siliceous raw materials. The raw material slurry is placed in the mold, the aluminum powder is foamed to form bubbles, and the raw material slurry is hardened while volumetrically expanding. Then, the semi-cured body after foaming is removed from the mold, sliced to a predetermined thickness, and then autoclaved , and the surface layer portion of the main cured panel is cut out to complete the ALC panel having the required dimensions.

ところで、原料スラリーの発泡過程では、スラリー上面が補強鉄筋のうちの最上部の鉄筋を通過するときに、この鉄筋に気泡が当って潰れ、気泡から出たガスが最上部鉄筋の上側に集合して発泡巣(粗大空洞部)を形成する。図7(a)に示すように、この発泡巣4は最上部鉄筋3の上面から約70mm〜80mmの高さまで成長し、ALCパネル51の切断面51aの強度に悪影響を与える。ALCパネル51を鉄筋3の延伸方向に切断すると、図7(b)に示すように、発泡巣4が小口面51bに露出し、ALCパネル51の外観を低下させ、商品価値を下げる。 By the way, in the foaming process of the raw material slurry, when the upper surface of the slurry passes through the uppermost reinforcing bar of the reinforcing reinforcing bars, the reinforcing bars are crushed by bubbles, and the gas emitted from the bubbles gathers on the upper side of the uppermost reinforcing bars. To form a foamed nest (coarse cavity). As shown in FIG. 7A, the foamed nest 4 grows to a height of about 70 mm to 80 mm from the upper surface of the uppermost reinforcing bar 3 and adversely affects the strength of the cut surface 51 a of the ALC panel 51 . When the ALC panel 51 is cut in the extending direction of the reinforcing bar 3, as shown in FIG. 7 (b), the foaming nest 4 is exposed to the fore edge surface 51b, the appearance of the ALC panel 51 is lowered, and the commercial value is lowered.

従来、この種の発泡巣の生成を抑えるために、以下のような方法が提案されている。
特許文献1:棒状振動体を最上部鉄筋近くの原料スラリー中に挿入して回転または水平移動させ、スラリーの粘度を低下させ、余分なガスを上方へ逃がす方法。
特許文献2:水または水溶液を最上部鉄筋近くの原料スラリー中に注入し、スラリーの粘度上昇を遅らせ、余分なガスを上方へ逃がす方法。
特許文献3:空気を原料スラリーの表面に吹き付け、スラリーの表層部を波動させて撹拌し、スラリーを均一に体積膨張させる方法。
Conventionally, the following methods have been proposed to suppress the generation of this type of foamed nest.
Patent Document 1: A method in which a rod-shaped vibrating body is inserted into a raw material slurry near the uppermost reinforcing bar and rotated or horizontally moved to reduce the viscosity of the slurry and allow excess gas to escape upward.
Patent Document 2: A method of injecting water or an aqueous solution into a raw material slurry near the uppermost rebar, delaying the viscosity increase of the slurry, and allowing excess gas to escape upward.
Patent Document 3: A method in which air is blown onto the surface of a raw material slurry, and the surface layer portion of the slurry is waved and stirred to uniformly expand the slurry.

特許文献4:打設直後の原料スラリーに棒状バイブレーターで振動を与え、スラリーの混練中に巻き込まれた粗大気泡をスラリー上面から脱泡する方法。
特許文献5:原料スラリー中の発泡剤が発泡を開始する前の段階で、鉄筋を振動させ、スラリーの打設時に混入した気泡を排出する方法。
特許文献6:発泡剤が少量部分発泡している発泡初期段階で、型枠の底板を振動させ、スラリーの打設時に巻き込まれた気泡を脱泡する方法。
Patent Document 4: A method in which raw material slurry immediately after placement is vibrated with a rod-like vibrator, and coarse bubbles entrained during slurry kneading are defoamed from the upper surface of the slurry.
Patent Document 5: A method in which the reinforcing bars are vibrated and the air bubbles mixed when the slurry is placed are discharged before the foaming agent in the raw material slurry starts foaming.
Patent Document 6: A method of vibrating a bottom plate of a mold in the initial stage of foaming in which a small amount of foaming agent is partially foamed to defoam air bubbles entrained during slurry placement.

特開平8−72035号公報JP-A-8-72035 特開平7−277854号公報Japanese Unexamined Patent Publication No. 7-277854 特開平9−110548号公報Japanese Patent Laid-Open No. 9-110548 特開昭58−20767号公報JP-A-58-20767 特開昭2001−232622号公報JP-A-2001-232622 特開昭60−141683号公報JP-A-60-141683

ところが、従来方法によると次のような問題点があった。
特許文献1:棒状振動体をスラリー中に挿入するため、振動によりALC特有の気泡が潰れ、潰れた気泡が最上部鉄筋の上側に新たな粗大気泡を形成する。
特許文献2:注水チューブをスラリー中に挿入するため、チューブによって正常な気泡が潰れ、チューブの周辺に粗大気泡が発生する。
特許文献3:空気による撹拌作用はスラリー表層部に限られるため、より深い位置の最上部鉄筋の上側で発泡巣の成長を抑制できない。
However, the conventional method has the following problems.
Patent Document 1: Since a rod-shaped vibrating body is inserted into a slurry, bubbles specific to ALC are crushed by vibration, and the crushed bubbles form new coarse bubbles above the uppermost reinforcing bars.
Patent Document 2: Since the water injection tube is inserted into the slurry, normal bubbles are crushed by the tube, and coarse bubbles are generated around the tube.
Patent Document 3: Since the stirring action by air is limited to the slurry surface layer portion, the growth of the foaming nest cannot be suppressed above the uppermost reinforcing bar at a deeper position.

特許文献4:スラリーの混練中に巻き込まれた粗大気泡はスラリー打設直後の振動により脱泡できるが、スラリー自体が生成した粗大気泡は粘度が高くなった段階のスラリーに振動を与えても脱泡することが困難である。
特許文献5:同様、凝結が進み粘度が高くなった段階のスラリーに鉄筋を介して振動を与えても粗大気泡を排出することは困難である。
特許文献6:型枠の底板に与えた振動は最上部鉄筋付近で大幅に減衰するため、スラリー上面が最上部鉄筋を越えた後に生成する発泡巣の成長を抑えることができない。
Patent Document 4: Coarse bubbles entrained during slurry kneading can be defoamed by vibration immediately after the slurry is placed, but coarse bubbles generated by the slurry itself can be removed even if the slurry at a stage where the viscosity is increased is vibrated. Difficult to foam.
Patent Document 5: Similarly, it is difficult to discharge coarse bubbles even if vibration is applied to the slurry at a stage where condensation has progressed and the viscosity has increased via a reinforcing bar.
Patent Document 6: Since vibration applied to the bottom plate of the formwork is greatly damped in the vicinity of the uppermost reinforcing bar, the growth of the foaming nest generated after the upper surface of the slurry exceeds the uppermost reinforcing bar cannot be suppressed.

本発明の目的は、上記課題を解決し、ALC特有の気泡の成長を妨げることなく、最上部鉄筋の上側における発泡巣の生成を効果的に抑制できるALCパネルの製造方法を提供することにある。   An object of the present invention is to provide a method for manufacturing an ALC panel that solves the above-described problems and can effectively suppress the formation of a foaming nest above the uppermost reinforcing bar without hindering the growth of bubbles unique to ALC. .

上記の課題を解決するために、本発明のALCパネルの製造方法は、補強鉄筋が配設された型枠内で、珪石、セメント及び生石灰の粒子とアルミニウム粉末とを含み、アルミニウム粉末とアルカリ物質との反応に伴ってALC特有の気泡を発生する原料スラリーを発泡させ、原料スラリーの上面が補強鉄筋の最上部鉄筋を越えた後における一部期間を少なくとも含む揺動期間に、型枠を揺動加速度0.01m/s 〜0.1m/s 揺動し、該揺動により原料スラリーの凝結を遅らせて、最上部鉄筋の上側における発泡巣の生成を抑制することを特徴とする。このように型枠を揺動すると、原料スラリーを液状化させてその凝結を遅らせることができるので、液状化したスラリー中に気泡を分布させて最上部鉄筋と接触しにくくすることができ、もって最上部鉄筋の上側における発泡巣の生成を抑制することができる。 In order to solve the above-mentioned problems, an ALC panel manufacturing method of the present invention includes silica particles, cement and quicklime particles and aluminum powder in a formwork provided with reinforcing reinforcing bars , and includes aluminum powder and alkaline substance. The raw material slurry that generates ALC-specific air bubbles is foamed in response to the reaction with the material, and the formwork is shaken during a rocking period including at least a part of time after the upper surface of the raw material slurry exceeds the uppermost reinforcing bar of the reinforcing steel bar. swings in dynamic acceleration 0.01m / s 2 ~0.1m / s 2 , delaying coagulation of the raw material slurry by the swing, which comprises suppressing the formation of foam nest in the upper top rebar . By swinging the formwork in this way, the raw slurry can be liquefied and the condensation thereof can be delayed, so that bubbles can be distributed in the liquefied slurry and can be made difficult to contact with the uppermost reinforcing bar. Generation of a foaming nest on the upper side of the uppermost reinforcing bar can be suppressed.

[1]型枠の揺動距離
ここで、型枠の揺動距離は、特に限定されないが、型枠の揺動方向長さの0.3%〜10%であるのが好ましい。型枠の大きさは、特に限定されないが、例えば、実際の製造設備で使用する標準的な型枠は長さが6000mm程度、幅が1500mm程度のものである。この型枠を長さ方向へ揺動する場合の距離は、0.3%で18mm程度、10%で600mm程度である。幅方向へ揺動する場合の距離は、0.3%で4.5mm程度、10%で150mm程度である。
[1] Oscillation distance of mold frame Here, the oscillation distance of the mold frame is not particularly limited, but is preferably 0.3% to 10% of the length of the mold frame in the oscillation direction. The size of the mold is not particularly limited. For example, a standard mold used in an actual manufacturing facility has a length of about 6000 mm and a width of about 1500 mm. The distance when the mold is swung in the length direction is about 18 mm at 0.3% and about 600 mm at 10%. The distance when swinging in the width direction is about 4.5 mm at 0.3% and about 150 mm at 10%.

型枠の揺動距離が揺動方向長さの0.3%〜10%であると、型枠内で原料スラリーの全体が大きく揺れ、スラリーの凝結が遅れ、気泡がスラリー中に均一に分布しやすくなる。揺動距離が0.3%未満になると、スラリーの移動距離が不足し、凝結が進行し、気泡の流動性が低下し、発泡巣が生成しやすくなる傾向がある。揺動距離が10%を超えると、凝結を遅らせる効果は変わらないが、揺動設備が大規模になる。小型の揺動設備で凝結を効果的に遅らせることができる点で、型枠の揺動距離は1%〜5%であるのがより好ましい。   When the rocking distance of the mold is 0.3% to 10% of the length in the rocking direction, the whole raw material slurry shakes greatly in the mold, the slurry condensing is delayed, and bubbles are uniformly distributed in the slurry. It becomes easy to do. When the rocking distance is less than 0.3%, the moving distance of the slurry is insufficient, the condensation progresses, the flowability of the bubbles is lowered, and the foamed nest tends to be generated. When the rocking distance exceeds 10%, the effect of delaying the setting does not change, but the rocking equipment becomes large-scale. The rocking distance of the mold is more preferably 1% to 5% in that the setting can be effectively delayed with a small rocking equipment.

[2]型枠の揺動方向
型枠の揺動方向は、特定の方向に限定されず、原料スラリーが型枠内で動けばよく、型枠の長さ方向、幅方向、斜め方向、上下方向のいずれでもよく、水平面内で回転してもよい。
[2] Swing direction of mold frame The swing direction of the mold frame is not limited to a specific direction, and it is sufficient that the raw slurry moves within the mold frame. The length direction, the width direction, the diagonal direction, and the vertical direction of the mold frame Any of the directions may be used, and the rotation may be performed in a horizontal plane.

[3]型枠の揺動加速度
型枠の揺動加速度は0.001m/s〜0.2m/sであるのが好ましい。一般に、型枠内に打設された原料スラリーは珪石、セメント、生石灰等の粒子同士の摩擦力により混合に抵抗している状態にある。この状態で、型枠を揺動してスラリーを揺らすと、粒子間の接触が切れ、水がスラリー中に均一に分布するので、スラリーを液状化させ、スラリーの凝結速度を自然発泡時のそれよりも遅らせることができる。しかし、型枠の揺動加速度が0.001m/s未満であると、スラリーが型枠の揺動に追従し、粒子同士が接触を保ち、凝結が進行してスラリーの粘度が低下しにくくなる傾向となる。
[3] formwork rocking acceleration of the swinging acceleration formwork are preferably 0.001m / s 2 ~0.2m / s 2 . In general, the raw material slurry placed in the mold is in a state in which mixing is resisted by the frictional force between particles such as silica, cement, and quicklime. In this state, swinging the formwork and shaking the slurry breaks the contact between the particles, and water is evenly distributed in the slurry. Therefore, the slurry is liquefied and the setting speed of the slurry is that of natural foaming. Than can be delayed. However, if the swing acceleration of the mold is less than 0.001 m / s 2 , the slurry follows the swing of the mold, the particles keep in contact with each other, and condensation progresses, so that the viscosity of the slurry is less likely to decrease. Tend to be.

一方、原料スラリーはアルミニウム粉末とアルカリ物質との反応に伴ってALC特有の気泡を発生する。この気泡は衝撃や振動に対し非常に脆いため、気泡の成長過程ではスラリーに与える衝撃を極力低く抑えたい。型枠の揺動加速度が0.2m/sを超えると、衝撃によって正常な気泡が破壊されやすくなる。スラリー粘度を低下させかつ破泡を確実に防止できる点で、型枠の揺動加速度は0.01m/s〜0.1m/sであるのがより好ましいことから、本発明ではこの範囲を採用したOn the other hand, the raw material slurry generates ALC-specific bubbles with the reaction between the aluminum powder and the alkaline substance. Since these bubbles are very fragile to shocks and vibrations, we want to keep the impact on the slurry as low as possible during the bubble growth process. When the rocking acceleration of the mold exceeds 0.2 m / s 2 , normal bubbles are easily destroyed by impact. In that it can reliably prevent and foam breaking to lower the slurry viscosity, the rocking acceleration of the mold is because more preferably in the range of 0.01m / s 2 ~0.1m / s 2 , the range in the present invention Adopted .

[4]型枠の揺動期間
型枠の揺動期間は、原料スラリーの上面が補強鉄筋の最上部鉄筋を越えた後における一部期間のみでもよいし、この一部期間に加えてその前、後又は前後の所定期間を含んでもよい。
この一部期間は、原料スラリーの上面が補強鉄筋のうちの最上部鉄筋を20mm越えてから発泡終了高さより10mm低い位置に達するまでの期間(本明細書では同期間で揺動による発泡巣抑制作用が最もよく奏されることから「最適期間」という。)から選ばれる少なくとも30mmの範囲の期間であることが好ましい。この最適期間は、原料スラリーが自然発泡するときに発泡巣が成長する期間に対応するものであり、この期間に揺動させることが最も効果的であることから規定している。次に、始期と終期に分けて詳述する。
[4] Mold swinging period The mold swinging period may be only a partial period after the upper surface of the raw material slurry exceeds the uppermost reinforcing bar of the reinforcing reinforcing bars, or in addition to this partial period and before that. A predetermined period before or after may be included.
This partial period is a period from when the upper surface of the raw material slurry exceeds 20 mm from the uppermost reinforcing bar to the position where it is 10 mm lower than the foaming end height (in this specification, suppression of the foaming nest due to oscillation during the same period) It is preferably a period in the range of at least 30 mm selected from the “optimum period” since the effect is best exhibited. This optimum period corresponds to the period during which the foamed nest grows when the raw material slurry spontaneously foams, and is defined because it is most effective to swing during this period. Next, it will be described in detail for the beginning and the end.

[4−1]最適期間の始期について
発泡巣の生成時期は原料スラリーの配合や発泡終了高さによって相違するが、通常、図1(a)に示すように、原料スラリー2の上面が最上部鉄筋3を超えた後に、その鉄筋3と衝突して潰れた気泡が鉄筋3の真上に発泡巣4を生成し始める。ただし、スラリー2の上面が最上部鉄筋3を20mm越える前の発泡過程では、スラリー2の粘度が低く、スラリー2と共に上昇してくる内部気泡は鉄筋3と接触しても破泡することがないため、発泡巣4が発生しにくい。よって、この段階では、型枠を揺動しても発泡巣抑制の意味が薄い。従って、最適期間の始期は、スラリー2の上面が最上部鉄筋3を20mm越える頃である。
[4-1] About the beginning of the optimum period The generation time of the foaming nest varies depending on the composition of the raw material slurry and the height of the foaming end. Usually, as shown in FIG. After exceeding the reinforcing bar 3, the air bubbles collided with the reinforcing bar 3 and start to form a foamed nest 4 immediately above the reinforcing bar 3. However, in the foaming process before the upper surface of the slurry 2 exceeds the uppermost reinforcing bar 3 by 20 mm, the viscosity of the slurry 2 is low, and the internal bubbles rising together with the slurry 2 do not break even when contacting with the reinforcing bar 3. Therefore, the foaming nest 4 is difficult to occur. Therefore, at this stage, even if the mold is swung, the meaning of foaming nest suppression is weak. Therefore, the start of the optimum period is when the upper surface of the slurry 2 exceeds the uppermost reinforcing bar 3 by 20 mm.

[4−2]最適期間の終期について
発泡巣は原料スラリーの凝結の進行、つまりスラリー粘度の上昇に伴って成長する。図1(b)に示すように、スラリー2の上面がさらに上昇すると、最上部鉄筋3周辺のスラリー粘度が上昇し、破泡が進行し、発泡巣4が成長を続ける。図1(c)に示すように、スラリー2の上面が発泡終了高さ(H)に近づく頃には、最上部鉄筋3周辺のスラリー粘度が相当高くなるため、破泡が昂進し、発泡巣4が最上部鉄筋3の上に大きな空隙4aとして形成される。これ以降、スラリー2は比較的長い時間をかけて僅かに上昇し、発泡を終了する。発泡終了間際に型枠を揺動しても、最上部鉄筋3周辺のスラリー粘度は低下しにくいため発泡巣抑制の意味が薄い。従って、最適期間の終期は、スラリー2の上面が発泡終了高さ(H)より10mm低い位置に達する頃である。
[4-2] End of Optimal Period Foaming nests grow as the raw material slurry congeals, that is, as the slurry viscosity increases. As shown in FIG. 1 (b), when the upper surface of the slurry 2 further rises, the slurry viscosity around the uppermost reinforcing bar 3 rises, bubble breakage progresses, and the foam nest 4 continues to grow. As shown in FIG. 1C, when the upper surface of the slurry 2 approaches the foaming end height (H), the viscosity of the slurry around the uppermost reinforcing bar 3 becomes considerably high, so that foam breaks up, 4 is formed as a large gap 4 a on the uppermost reinforcing bar 3. Thereafter, the slurry 2 slightly rises over a relatively long time and finishes foaming. Even if the mold is swung just before the end of foaming, the viscosity of the slurry around the uppermost reinforcing bar 3 is unlikely to decrease, so it is less meaningful to suppress the foaming nest. Therefore, the end of the optimum period is when the upper surface of the slurry 2 reaches a position 10 mm lower than the foaming end height (H).

[4−3]最適期間から選ばれる一部期間の範囲について
上記の最適期間のうちから適宜選ばれる一部期間において型枠を揺動すれば、発泡巣抑制効果が得られるが、その一部期間の範囲(スラリー上面の進行でみた範囲)は30mm以上であることが好ましく、50mm以上であることがより好ましい。30mm未満の期間でのみ型枠を揺動させると、発泡巣を抑制できる部分のみならず抑制できない部分が生じる傾向となる。一方、同範囲の上限は、スラリーの発泡終了高さが最上部鉄筋からどの程度上位になるかによって制限され、例えば140mm上位になる場合には同範囲を110mmまでで設定できるが、例えば70mm上位になる場合には同範囲は40mmまでとなる。
[4-3] Range of a partial period selected from the optimal period If the formwork is swung in a partial period appropriately selected from the above optimal periods, a foaming nest suppression effect can be obtained. The range of the period (range as viewed from the progress of the upper surface of the slurry) is preferably 30 mm or more, and more preferably 50 mm or more. When the mold is swung only during a period of less than 30 mm, not only the portion that can suppress the foaming nest but also the portion that cannot be suppressed tends to be generated. On the other hand, the upper limit of the same range is limited by how much the foam end height of the slurry is higher than the uppermost reinforcing bar. For example, when the upper limit is 140 mm, the same range can be set up to 110 mm. In this case, the same range is up to 40 mm.

[5]連続的揺動と間欠的揺動
上記一部期間において、型枠を休まず連続的に揺動してもよく、休止時間を設定して間欠的に揺動してもよい。但し、間欠的揺動の場合、該揺動の合計時間は一部期間の50%以上とし、かつ該揺動の一回の休止時間は2分以下とすることが望ましい。この合計揺動時間が50%未満になると、連続的に揺動した場合と比較し、スラリーの凝結が進み、液状化が進行しにい傾向となる。また、2分を超えて型枠の揺動を休止させると、スラリーの凝結が進み、粘度上昇を抑えにくい傾向となる。
[5] Continuous rocking and intermittent rocking During the partial period, the mold may be rocked continuously without resting, or may be rocked intermittently by setting a pause time. However, in the case of intermittent rocking, it is desirable that the total time of the rocking is 50% or more of a part of the period, and that the pause time of the rocking is 2 minutes or less. When the total rocking time is less than 50%, compared with the case of rocking continuously, the aggregation of the slurry proceeds and liquefaction tends not to proceed. Further, if the swinging of the formwork is stopped for more than 2 minutes, the condensation of the slurry proceeds, and it becomes difficult to suppress the increase in viscosity.

本発明のALCパネルの製造方法によれば、原料スラリーの上面が最上部鉄筋を越えた後における一部期間を少なくとも含む揺動期間に型枠を揺動するので、該揺動により原料スラリーが液状化して凝結が遅れ、気泡の流動性が高まる。このため、気泡がスラリー中に均一に分布し、最上部鉄筋と接触しにくくなる。従って、ALC特有の気泡を潰すことなく、発泡巣の生成をタイミングよく抑制でき、外観と強度共に優れた商品価値の高いALCパネルを製造することができる。   According to the ALC panel manufacturing method of the present invention, the mold is swung during a rocking period including at least a partial period after the upper surface of the raw material slurry exceeds the uppermost reinforcing bar. Liquefaction is delayed and the fluidity of bubbles is increased. For this reason, air bubbles are uniformly distributed in the slurry and are less likely to come into contact with the uppermost reinforcing bar. Therefore, it is possible to suppress the generation of the foaming nest in a timely manner without crushing the air bubbles peculiar to ALC, and it is possible to manufacture an ALC panel having high appearance and strength and having a high commercial value.

本発明の実施形態のALCパネルの製造方法は、図2に示すように、補強鉄筋11が配設された型枠10内で原料スラリー2を発泡させ、原料スラリー2の上面が補強鉄筋11の最上部鉄筋3を20mm越えてから発泡終了高さより10mm低い位置に達するまでの最適期間から選ばれる30mm以上の範囲の一部期間を少なくとも含む揺動期間に、型枠10を揺動し、該揺動により原料スラリー2の凝結を遅らせて、最上部鉄筋3の上側における発泡巣の生成を抑制する。   As shown in FIG. 2, the manufacturing method of the ALC panel according to the embodiment of the present invention foams the raw slurry 2 in the mold 10 in which the reinforcing reinforcing bars 11 are arranged, and the upper surface of the raw slurry 2 is the reinforcing reinforcing bars 11. The mold 10 is swung during a rocking period including at least a partial period in a range of 30 mm or more selected from an optimal period from exceeding the uppermost reinforcing bar 3 by 20 mm to reaching a position 10 mm lower than the foaming end height, The settling of the raw material slurry 2 is delayed by swinging, and the formation of the foaming nest on the upper side of the uppermost reinforcing bar 3 is suppressed.

次に、上記製造方法を実施例に基づいて詳細に説明する。この実施例では、図3、図4に示すような試験的な型枠10を使用して、三枚のALCパネル1を製造した。型枠10の大きさは、長さ1000mm、幅350mm、高さ700mmである。ALCパネル1の大きさは、長さ840mm、幅600mm、厚さ100mmである。なお、ALCパネル1は長さ方向を横にし、幅方向を縦にして製作される。   Next, the said manufacturing method is demonstrated in detail based on an Example. In this example, three ALC panels 1 were manufactured using an experimental mold 10 as shown in FIGS. The mold 10 has a length of 1000 mm, a width of 350 mm, and a height of 700 mm. The ALC panel 1 has a length of 840 mm, a width of 600 mm, and a thickness of 100 mm. The ALC panel 1 is manufactured with the length direction being horizontal and the width direction being vertical.

このパネル1の製造にあたり、まず、型枠10の内側に三組の補強鉄筋11をセットした。各補強鉄筋11は、型枠10の長さ方向へ水平に延びる主筋12と、型枠10の高さ方向(パネル1の幅方向)へ垂直に延びる副筋13とで格子状に組まれた2つの鉄筋が、型枠10の幅方向(パネル1の厚さ方向)に延びる連結筋14で連結されて、かご形に構成されている。主筋12、副筋13、連結筋14の太さは直径5mmである。   In manufacturing this panel 1, first, three sets of reinforcing bars 11 were set inside the mold 10. Each reinforcing bar 11 was assembled in a lattice pattern with a main bar 12 extending horizontally in the length direction of the mold 10 and a secondary bar 13 extending vertically in the height direction of the mold 10 (the width direction of the panel 1). Two reinforcing bars are connected to each other by a connecting bar 14 extending in the width direction of the mold 10 (the thickness direction of the panel 1) to form a cage shape. The main muscle 12, the secondary muscle 13, and the connecting muscle 14 are 5 mm in diameter.

そして、等間隔をおいて三組の補強鉄筋11をロッドピン15によりプレート16を介して型枠10に吊り下げた。このとき、原料スラリー2の発泡終了高さを660mmに設定し、該発泡終了高さが主筋12のうちの最上部の鉄筋3より140mm上位になるように、すなわち最上部の鉄筋3が型枠10の底面から520mm高くなるように、プレート16上の調節具17でロッドピン15の高さを調節して補強鉄筋11をセットした。   Then, three sets of reinforcing bars 11 were suspended from the mold frame 10 via the plate 16 by the rod pins 15 at equal intervals. At this time, the foaming end height of the raw slurry 2 is set to 660 mm, and the foaming end height is 140 mm higher than the uppermost reinforcing bar 3 of the main reinforcing bars 12, that is, the uppermost reinforcing bar 3 is in the formwork. The height of the rod pin 15 was adjusted with the adjusting tool 17 on the plate 16 so as to be 520 mm higher than the bottom surface of 10, and the reinforcing steel bars 11 were set.

次に、型枠10の内側に原料スラリー2を打設した。以下の実施例1〜4および比較例1〜5では、原料スラリー2として、珪石粉末40質量部、セメント15質量部、生石灰粉末10質量部、石膏5質量部、クラスト20質量部、ALCの破砕粉末10質量部からなる固形分に対し、外割で70質量部の水と0.06質量部のアルミニウム粉末(発泡剤)とを添加し、ミキサーで十分に混練したモルタルスラリーを使用した。   Next, the raw material slurry 2 was placed inside the mold 10. In Examples 1 to 4 and Comparative Examples 1 to 5 below, as raw material slurry 2, 40 parts by mass of silica powder, 15 parts by mass of cement, 10 parts by mass of quicklime powder, 5 parts by mass of gypsum, 20 parts by mass of crust, crushing of ALC A mortar slurry in which 70 parts by mass of water and 0.06 parts by mass of aluminum powder (foaming agent) were added to the solid content of 10 parts by mass of the powder and kneaded sufficiently with a mixer was used.

続いて、補強鉄筋11が配設された型枠10内で原料スラリー2を発泡させた。この発泡工程では、型枠10を揺動する実施例1〜4の方法と、型枠10を揺動しない比較例1〜5の方法とを適用した。そして、スラリー2の発泡および体積膨張が終了した状態で、高さ660mmのALC半硬化体2を取得し、この半硬化体を脱型後にピアノ線で切断し、通常のオートクレーブ養生により本硬化させて、三枚のALCパネル1を完成した。   Subsequently, the raw material slurry 2 was foamed in the mold 10 provided with the reinforcing reinforcing bars 11. In this foaming step, the methods of Examples 1 to 4 that swing the mold 10 and the methods of Comparative Examples 1 to 5 that do not swing the mold 10 were applied. Then, after the foaming and volume expansion of the slurry 2 are completed, an ALC semi-cured body 2 having a height of 660 mm is obtained. Thus, three ALC panels 1 were completed.

<比較例1>
比較例1では、全発泡期間にわたり型枠10を静止させ、原料スラリー2を自然発泡させる方法を採用した。そして、図5に示すように、発泡期間中に原料スラリー2の発泡高さと強張り(粘度)とを測定した。強張りの測定にあたっては、図6に示すような直径4mm、長さ400mmのアルミ製スケール21を使用し、これを原料スラリー2中に静かに沈下させ、自然に停止したときに、スラリー2の上面より突出する長さを測って貫入値(mm)とした。
<Comparative Example 1>
In Comparative Example 1, a method was adopted in which the mold 10 was kept stationary over the entire foaming period and the raw slurry 2 was naturally foamed. And as shown in FIG. 5, the foaming height and the toughness (viscosity) of the raw material slurry 2 were measured during the foaming period. In measuring the strength, an aluminum scale 21 having a diameter of 4 mm and a length of 400 mm as shown in FIG. 6 is used. When this is gently submerged in the raw slurry 2 and stopped naturally, The length protruding from the upper surface was measured to obtain the penetration value (mm).

また、図7(a)に示すように、完成したALCパネル51を幅方向の任意位置で縦方向に切断するとともに、図7(b)に示すように、パネル51の上端部を横方向に切断し、縦断面51aおよび横断面51bにおける発泡巣4の生成状態を観察した。その結果、図7(a)に示すように、縦断面51aには、発泡巣4が最上部鉄筋3から約70mmの高さまで立ち上がっていた。   Further, as shown in FIG. 7A, the completed ALC panel 51 is cut in the vertical direction at an arbitrary position in the width direction, and the upper end of the panel 51 is turned in the horizontal direction as shown in FIG. 7B. The foamed nest 4 was observed in the longitudinal section 51a and the transverse section 51b. As a result, as shown in FIG. 7A, the foamed nest 4 stood up to a height of about 70 mm from the uppermost reinforcing bar 3 in the longitudinal section 51a.

横断面51bについては、図7(b)に示すように、三枚のALCパネル51を最上部鉄筋3からのかぶり高さTが20mm、30mm、70mmとなるように切断した。そして、切断面に現れた発泡巣4のうち最上部鉄筋3の延伸方向に最も長い発泡巣4の長さXに関し、次の基準に基づいて点数評価した。評価結果を表1に示す。   Regarding the cross section 51b, as shown in FIG. 7B, the three ALC panels 51 were cut so that the cover height T from the uppermost reinforcing bar 3 was 20 mm, 30 mm, and 70 mm. And the score X was evaluated based on the following reference | standard regarding the length X of the foaming nest 4 longest in the extending | stretching direction of the uppermost reinforcing bar 3 among the foaming nests 4 which appeared on the cut surface. The evaluation results are shown in Table 1.

評価基準
X>20mm 4点
20mm≧X>10mm 3点
10mm≧X>5mm 2点
5mm≧X>2mm 1点
発泡巣無し 0点
Evaluation criteria X> 20 mm 4 points 20 mm ≧ X> 10 mm 3 points 10 mm ≧ X> 5 mm 2 points 5 mm ≧ X> 2 mm 1 point No foaming nest 0 points

Figure 0004981475
Figure 0004981475

<実施例1>
実施例1では、図4に示すように、型枠10を台車18の上に載せ、原料スラリー2の上面が最上部鉄筋3を越えた後に、台車18と共に型枠10を試験員によって床面上で揺動した。揺動条件は次の通りである。なお、実際の製造設備では、前述した大型の型枠をローラコンベア等の移動体上に載置し、モータや流体圧シリンダを用いた揺動装置によって駆動することができる。
<Example 1>
In Example 1, as shown in FIG. 4, the mold 10 is placed on the carriage 18, and after the upper surface of the raw material slurry 2 exceeds the uppermost reinforcing bar 3, the mold 10 together with the carriage 18 is placed on the floor surface by the tester. Rocked up. The rocking conditions are as follows. In an actual manufacturing facility, the above-mentioned large formwork can be placed on a moving body such as a roller conveyor and can be driven by a swing device using a motor or a fluid pressure cylinder.

揺動条件
揺動期間:原料スラリー2の上面が最上部鉄筋3を20mm越えてから発泡終了高さより20mm低い位置に達するまでの期間(図2参照)
揺動時間:揺動期間の100%(約20分間休まず連続的に揺動)
揺動方向:最上部鉄筋3の延伸方向と直角を成す水平方向(型枠10の幅方向)
揺動距離:型枠10の幅寸法の約5%(17.5mm程度)
揺動加速度:0.07m/s
揺動周期:120サイクル毎分
Oscillating condition Oscillating period: A period from when the upper surface of the raw material slurry 2 exceeds the uppermost reinforcing bar 3 by 20 mm until it reaches a position 20 mm lower than the foaming end height (see FIG. 2)
Oscillation time: 100% of oscillation period (continuous oscillation without rest for about 20 minutes)
Oscillating direction: horizontal direction perpendicular to the extending direction of the uppermost reinforcing bar 3 (width direction of the mold 10)
Oscillating distance: About 5% (about 17.5 mm) of the width of the mold 10
Swing acceleration: 0.07 m / s 2
Swing cycle: 120 cycles per minute

比較例1と同様、原料スラリー2の発泡期間中にスラリー2の発泡高さと強張りとを測定した。測定結果を図8に示す。また、図9に示すように、完成したALCパネル1を縦、横両方向に切断し、縦断面1aと横断面1bにおける発泡巣4の生成状態を観察し、比較例1と同様に評価した。評価結果を表2に示す。   Similarly to Comparative Example 1, the foaming height and toughness of the slurry 2 were measured during the foaming period of the raw slurry 2. The measurement results are shown in FIG. Further, as shown in FIG. 9, the completed ALC panel 1 was cut in both the vertical and horizontal directions, the formation state of the foamed nest 4 in the vertical cross section 1 a and the horizontal cross section 1 b was observed, and evaluated in the same manner as in Comparative Example 1. The evaluation results are shown in Table 2.

Figure 0004981475
Figure 0004981475

実施例1のALCパネル1では、縦断面1aの発泡巣4が三枚共に最上部鉄筋3から25mm以下の長さに収まっていた(図9a参照)。表2に示すように、横断面1bでは、パネル1のかぶり高さ20mmに長さ2,3mmの発泡巣4が散在していたが、それより上位では発泡巣4が現れず、パネル2,3に関してはどの高さにも発泡巣4が現れていなかった(図9b参照)。表1と表2とを対比すると、型枠10の揺動によって発泡巣4の生成が効果的に抑制されていることが分かる。   In the ALC panel 1 of Example 1, the three foamed nests 4 of the longitudinal section 1a were within a length of 25 mm or less from the uppermost reinforcing bar 3 (see FIG. 9a). As shown in Table 2, in the cross section 1b, the foam nests 4 having a length of 2-3 mm were scattered in the cover height of 20 mm, but the foam nests 4 did not appear above the panel 1, and the panel 2, As for 3, no foamed nest 4 appeared at any height (see FIG. 9b). When Table 1 is compared with Table 2, it can be seen that the formation of the foamed nest 4 is effectively suppressed by the swing of the mold 10.

次に、型枠10の揺動が原料スラリー2に与えた質的な変化を図10、図11に基づいて確認する。図10は、比較例1および実施例1において、原料スラリー2の発泡高さの経時変化を示し、図11は強張りの経時変化を示す。なお、図10及び図11では、図5に示す比較例1の測定データと図8に示す実施例1の測定データとを引用した。   Next, the qualitative change given to the raw material slurry 2 by the swing of the mold 10 is confirmed based on FIGS. FIG. 10 shows the change over time in the foaming height of the raw slurry 2 in Comparative Example 1 and Example 1, and FIG. 11 shows the change over time in the strength. 10 and 11, the measurement data of Comparative Example 1 shown in FIG. 5 and the measurement data of Example 1 shown in FIG. 8 are cited.

図10に示すように、原料スラリー2の発泡高さは、比較例1と実施例1とでほぼ同様に変化しており、有意差が見られない。また、原料スラリーの温度変化も比較例1と実施例1とでほぼ同様であった。このことから、型枠10の揺動が原料スラリー2の水和反応に影響を及ぼしていないことが分かる。これに対し、図11に示すように、原料スラリー2の強張りは、貫入値において実施例1と比較例1とで格段の有意差が見られる。   As shown in FIG. 10, the foaming height of the raw material slurry 2 changes in substantially the same manner between Comparative Example 1 and Example 1, and no significant difference is observed. Moreover, the temperature change of the raw material slurry was almost the same in Comparative Example 1 and Example 1. From this, it can be seen that the swing of the mold 10 does not affect the hydration reaction of the raw slurry 2. On the other hand, as shown in FIG. 11, the strength of the raw material slurry 2 shows a significant difference between Example 1 and Comparative Example 1 in terms of penetration value.

実施例1の貫入値は、型枠揺動期間の初期から比較例1よりも緩やかに上昇し、型枠揺動期間の終期で比較例1の貫入値との間に大きな格差を生じる。また、実施例1の貫入値は、型枠10の揺動が終了した直後に上昇を加速し、原料スラリー2の発泡終了付近で比較例1と同程度の値を示す。これらのことから、型枠10の揺動が、原料スラリー2の発泡期間およびALC半硬化体の硬度に影響を与えることなく、スラリー2の凝結を一時的に遅らせ、発泡巣4の生成を効果的に抑制できていることが分かる。   The penetration value of Example 1 rises more slowly than the comparative example 1 from the beginning of the mold swing period, and a large difference is generated between the penetration value of the comparative example 1 at the end of the mold swing period. Further, the penetration value of Example 1 accelerates the rise immediately after the swing of the mold 10 is finished, and shows a value similar to that of Comparative Example 1 near the end of foaming of the raw slurry 2. From these facts, the rocking of the mold 10 does not affect the foaming period of the raw slurry 2 and the hardness of the ALC semi-cured product, and temporarily delays the setting of the slurry 2, thereby effectively producing the foamed nest 4. It can be seen that it can be suppressed.

<実施例2>
実施例2では、実施例1と同じ型枠10を使用し、原料スラリー2の上面が最上部鉄筋3を越えた後に、図12に示すように、型枠10を実施例1と異なる方向、距離、加速度および周期で揺動し、三枚のALCパネルを完成した。そして、完成したALCパネルを実施例1と同様に縦、横両方向に切断し、縦断面と横断面における発泡巣の生成状態を観察評価した。揺動条件を次に示し、評価結果を表3に示す。
<Example 2>
In Example 2, the same mold 10 as in Example 1 was used, and after the upper surface of the raw material slurry 2 exceeded the uppermost reinforcing bar 3, as shown in FIG. The three ALC panels were completed by rocking with distance, acceleration and period. And the completed ALC panel was cut | disconnected in the vertical and horizontal direction similarly to Example 1, and the production | generation state of the foaming nest in a vertical cross section and a cross section was observed and evaluated. The rocking conditions are shown below, and the evaluation results are shown in Table 3.

揺動条件
揺動期間:原料スラリー2の上面が最上部鉄筋3を20mm越えてから発泡終了高さより20mm低い位置に達するまでの期間(図2参照)
揺動時間:揺動期間の100%(約20分間休まず連続的に揺動)
揺動方向:最上部鉄筋3の延伸方向と一致する方向(型枠10の長さ方向)
揺動距離:型枠10の長さ寸法の約3%(30mm程度)
揺動加速度:0.03m/s
揺動周期:60サイクル毎分
Oscillating condition Oscillating period: A period from when the upper surface of the raw material slurry 2 exceeds the uppermost reinforcing bar 3 by 20 mm until it reaches a position 20 mm lower than the foaming end height (see FIG. 2)
Oscillation time: 100% of oscillation period (continuous oscillation without rest for about 20 minutes)
Oscillating direction: direction that coincides with the extending direction of the uppermost reinforcing bar 3 (length direction of the mold 10)
Swing distance: about 3% of the length of the mold 10 (about 30 mm)
Swing acceleration: 0.03 m / s 2
Swing cycle: 60 cycles per minute

Figure 0004981475
Figure 0004981475

実施例2のALCパネル1も、実施例1とほぼ同様、パネル縦断面の発泡巣が三枚共に最上部鉄筋から25mm以下の長さに収まっていた(図9a参照)。表3に示すように、パネル横断面では、二枚のパネル(パネル1,3)のかぶり高さ20mmに長さ2,3mmの発泡巣4が散在していたが、かぶり高さ30mmと70mmではどのパネルにも発泡巣が現れていなかった(図9b参照)。なお、表2と表3の対比から、型枠10の揺動方向の違いは発泡巣の抑制効果にさほど影響していないことが分かる。   In the ALC panel 1 of Example 2, almost the same as in Example 1, the three foamed nests in the longitudinal section of the panel were within a length of 25 mm or less from the uppermost reinforcing bar (see FIG. 9a). As shown in Table 3, in the cross section of the panel, the foamed nests 4 having a length of 2-3 mm were scattered in the cover height of 20 mm of the two panels (panels 1, 3), but the cover heights of 30 mm and 70 mm Then, no foaming nest appeared in any panel (see FIG. 9b). From the comparison between Table 2 and Table 3, it can be seen that the difference in the swinging direction of the mold 10 does not significantly affect the foaming nest suppression effect.

<実施例3>
実施例3では、実施例1の揺動条件のうち、揺動時間のみが相違する二通りの方法で型枠10を揺動した。
第一の方法では、合計揺動時間が揺動期間の50%(約10分)となるように、一回で2分未満の揺動休止時間を設定して型枠10を間欠的に揺動した。
第二の方法では、50%以上の合計揺動時間を確保したうえで、一回で2分以上の揺動休止時間を設定して型枠10を間欠的に揺動した。図13は揺動時間の変化が原料スラリー2の強張りに与えた影響を示す。
<Example 3>
In Example 3, the mold 10 was swung by two methods of the swing conditions of Example 1 that differed only in swing time.
In the first method, the mold 10 is intermittently rocked by setting a rocking pause time of less than 2 minutes at a time so that the total rocking time is 50% (about 10 minutes) of the rocking period. It moved.
In the second method, after ensuring a total rocking time of 50% or more, the mold 10 was rocked intermittently by setting a rocking pause time of 2 minutes or more at a time. FIG. 13 shows the effect of the change in the oscillation time on the strength of the raw slurry 2.

図13から明らかなように、実施例3の第一又は第二の方法のいずれによっても、比較例1と比較すると、貫入値の上昇速度つまり凝結の進度が遅くなる効果がある。但し、実施例3の第一の方法の場合は、連続的に揺動した実施例1と比較すると、貫入値の上昇速度が若干速くなる。実施例3の第二の方法の場合は、特に型枠揺動期間において、貫入値の上昇速度がさらに加速する。従って、発泡巣をより効果的に抑制するためには、型枠10の合計揺動時間が揺動期間の50%以上であり、かつ全揺動期間を通して型枠10の揺動を2分以上継続的に休止させないことが望ましいことが分かる。   As is clear from FIG. 13, both the first and second methods of Example 3 have the effect of slowing the penetration rate increase rate, that is, the progress of condensation, as compared with Comparative Example 1. However, in the case of the first method of the third embodiment, the penetration speed increases slightly compared with the first embodiment that is continuously swung. In the case of the second method according to the third embodiment, the penetration speed of the penetration value is further accelerated, particularly during the mold swing period. Therefore, in order to more effectively suppress the foaming nest, the total swing time of the mold 10 is 50% or more of the swing period, and the swing of the mold 10 is 2 minutes or more throughout the swing period. It can be seen that it is desirable not to pause continuously.

<実施例4>
実施例4では、実施例1と同じく原料スラリーの発泡終了高さを最上部鉄筋3よりも140mm上位に設定したが、実施例1の揺動条件のうち、揺動期間のみが相違する三通りの方法で型枠10を揺動した。
<Example 4>
In Example 4, the foaming end height of the raw slurry was set 140 mm higher than the uppermost reinforcing bar 3 as in Example 1, but among the swing conditions of Example 1, only three swing periods are different. The mold 10 was swung by this method.

第一の方法では、スラリー上面が最上部鉄筋3よりも0mm〜30mm上方に位置する期間(最上部鉄筋3を超えた直後から発泡終了高さより110mm低い位置に達するまでの期間)に型枠10を揺動した。この場合、図14(a)に示すように、完成品のパネル縦断面1aには、ALC特有の気泡が各部均一に分布していたが、長さ55mmの発泡巣4が生成していた。   In the first method, the mold 10 is in a period in which the upper surface of the slurry is located 0 mm to 30 mm above the uppermost reinforcing bar 3 (a period from immediately after exceeding the uppermost reinforcing bar 3 until reaching a position 110 mm lower than the foaming end height). Rocked. In this case, as shown in FIG. 14 (a), in the panel vertical section 1a of the finished product, bubbles specific to ALC were uniformly distributed, but a foam nest 4 having a length of 55 mm was generated.

第二の方法では、原料スラリー2の上面が最上部鉄筋3よりも60mm〜90mm上方に位置する期間(最上部鉄筋3を60mm超えてから発泡終了高さより50mm低い位置に達するまでの期間)に型枠10を揺動した。この場合は、図14(b)に示すように、気泡の状態が良好であり、発泡巣4が40mmの長さに短縮していた。   In the second method, in a period in which the upper surface of the raw material slurry 2 is located 60 mm to 90 mm above the uppermost reinforcing bar 3 (a period from reaching the position where the uppermost reinforcing bar 3 exceeds 60 mm and 50 mm lower than the foaming end height). The mold 10 was swung. In this case, as shown in FIG. 14B, the state of the bubbles was good, and the foam nest 4 was shortened to a length of 40 mm.

第三の方法では、原料スラリー2の上面が最上部鉄筋3よりも60mm〜120mm上方に位置する期間(最上部鉄筋3を60mm超えてから発泡終了高さより20mm低い位置に達するまでの期間)に型枠10を揺動した。その結果、図14(c)に示すように、気泡の状態も良好であり、発泡巣4も25mmの長さまで短縮していた。   In the third method, in a period in which the upper surface of the raw material slurry 2 is located 60 mm to 120 mm above the uppermost reinforcing bar 3 (period from reaching the position 20 mm lower than the foaming end height after exceeding the uppermost reinforcing bar 3 by 60 mm). The mold 10 was swung. As a result, as shown in FIG. 14C, the state of the bubbles was good, and the foaming nest 4 was shortened to a length of 25 mm.

このように、発泡終了高さが鉄筋3よりも140mm上位である本実施例4においては、スラリーが最上部鉄筋3を20mm超えてから発泡終了高さより10mm低い位置に達するまでの最適期間のうちから選ばれる、30mm以上の範囲の一部期間に型枠10を揺動することで(第二又は第三の方法)、外観と強度共に優れたALCパネル1が得られること、また同範囲は広い方がより好ましいことが確認された。   Thus, in the present Example 4 in which the foaming end height is 140 mm higher than the reinforcing bar 3, the optimum period from when the slurry exceeds the uppermost reinforcing bar 3 to 20 mm until reaching the position 10 mm lower than the foaming end height. The ALC panel 1 excellent in both appearance and strength can be obtained by swinging the mold 10 during a partial period in the range of 30 mm or more (second or third method) selected from It was confirmed that the wider one is more preferable.

以下の比較例2〜5では、発泡巣を抑制するための従来方法がALC特有の気泡の成長に与える影響について検証し、もって本発明による方法の優位性を確認する。   In Comparative Examples 2 to 5 below, the influence of the conventional method for suppressing the foaming nest on the growth of the bubbles specific to ALC will be verified, thereby confirming the superiority of the method according to the present invention.

<比較例2>
比較例2では、図15(a)に示すように、原料スラリー2の上面が最上部鉄筋3より90mm〜115mm上方に位置する期間に、熊手23を使用してスラリー2の上部を掻き混ぜた。その結果、図15(b)に示すように、発泡巣4は10mm程度の長さに短縮していたが、発泡巣とも云えるほどの多数の粗大気泡6が最上部鉄筋3の上側の広い範囲に拡散していた。これは、掻き混ぜによってALC特有の気泡が潰れた結果であり、商品価値を著しく低下させている。
<Comparative example 2>
In Comparative Example 2, as shown in FIG. 15A, the upper part of the slurry 2 was agitated using a rake 23 during a period in which the upper surface of the raw material slurry 2 was positioned 90 mm to 115 mm above the uppermost reinforcing bar 3. . As a result, as shown in FIG. 15 (b), the foaming nest 4 was shortened to a length of about 10 mm, but a large number of large bubbles 6 that can be called foaming nests are wide on the upper side of the uppermost reinforcing bar 3. Had spread to the range. This is a result of crushing the air bubbles peculiar to ALC, which significantly reduces the commercial value.

<比較例3>
比較例3では、図16(a)に示すように、原料スラリー2の上面が最上部鉄筋3より30mm程度上方に達した時点で、ジョウロ24で水を散布した。その結果、図16(b)に示すように、パネル縦断面1aに現れる気泡の状態は良好であったが、発泡巣4が比較例1と同じ約70mmの長さに成長していて、抑制効果を確認できなかった。
<Comparative Example 3>
In Comparative Example 3, as shown in FIG. 16A, when the upper surface of the raw material slurry 2 reached about 30 mm above the uppermost reinforcing bar 3, water was sprayed with a watering device 24. As a result, as shown in FIG. 16B, the state of the bubbles appearing in the panel vertical section 1a was good, but the foaming nest 4 grew to the same length of about 70 mm as in Comparative Example 1, and was suppressed. The effect could not be confirmed.

<比較例4>
比較例4では、図17(a)に示すように、原料スラリー2の上面が最上部鉄筋3より30mm〜70mm上方に位置する期間に、ジョウロ24と熊手23とを併用し、スラリー2に散水しつつ掻き混ぜた。その結果、図17(b)に示すように、発泡巣4の長さは約50mmに短くなったが、発泡巣4の上側に高さ30mm程度の無気泡部分7が発生し、さらにその上側に粗大気泡6が散在していた。これは、散水と掻き混ぜの相乗作用によって気泡が広範囲にわたって潰れた結果であり、気泡の見栄えを悪化させている。
<Comparative example 4>
In Comparative Example 4, as shown in FIG. 17 (a), the water 24 and the rake 23 are used together and water is sprinkled on the slurry 2 during the period in which the upper surface of the raw material slurry 2 is located 30 mm to 70 mm above the uppermost reinforcing bar 3. Stir while stirring. As a result, as shown in FIG. 17 (b), the length of the foaming nest 4 was shortened to about 50 mm, but a bubble-free portion 7 having a height of about 30 mm was generated on the upper side of the foaming nest 4 and further to the upper side. Coarse bubbles 6 were scattered. This is a result of the bubbles being crushed over a wide range by the synergistic action of watering and stirring, which worsens the appearance of the bubbles.

<比較例5>
比較例5では、図18(a)に示すように、原料スラリー2の上面が最上部鉄筋3より90mm〜120mm上方に位置する期間に、プレート16上に取り付けたバイブレーター25により加振板26とロッドピン15とを介して補強鉄筋11に約200Hzの振動を与えた。その結果、図18(b)に示すように、気泡の状態はほぼ良好であったが、発泡巣4が65mmと長く、抑制効果を確認できなかった。この発泡巣4の上端部分は、スラリー粘度の上昇に伴って生成した粗大気泡ではなく、バイブレーター25による加振期間中に、最上部鉄筋3を通過したスラリー中の気泡が振動により潰れて形成した粗大気泡である。
<Comparative Example 5>
In Comparative Example 5, as shown in FIG. 18 (a), during the period in which the upper surface of the raw material slurry 2 is positioned 90 mm to 120 mm above the uppermost reinforcing bar 3, the vibrator 25 attached on the plate 16 and the vibration plate 26 A vibration of about 200 Hz was applied to the reinforcing steel bar 11 through the rod pin 15. As a result, as shown in FIG. 18B, the state of the bubbles was almost good, but the foaming nest 4 was as long as 65 mm, and the suppression effect could not be confirmed. The upper end portion of the foamed nest 4 is not a coarse bubble generated as the slurry viscosity increases, but the bubble in the slurry that has passed through the uppermost reinforcing bar 3 is crushed by vibration during the vibration period by the vibrator 25. It is a coarse bubble.

上記実施例1〜4の揺動による方法は、比較例2〜5とは異なり、発泡過程の原料スラリー2に直接的に接触する手段を使用しない。また、揺動による方法は、生成してしまった発泡巣4を物理的に破壊する方法ではなく、原料スラリー2を揺らすことで発泡巣3の生成を未然に抑制する方法である。従って、ALC特有の気泡を潰すことなく液状化したスラリー中に均一に分布させて、外観の見栄えが優れたALCパネル1を製造することができる。   Unlike the comparative examples 2-5, the method by the rocking | fluctuation of the said Examples 1-4 does not use the means to contact the raw material slurry 2 of a foaming process directly. In addition, the swing method is not a method of physically destroying the foamed nest 4 that has been generated, but a method of suppressing the generation of the foam nest 3 by shaking the raw slurry 2. Therefore, the ALC panel 1 having an excellent appearance can be manufactured by uniformly distributing the liquefied slurry without crushing the bubbles unique to the ALC.

なお、型枠10を揺動する期間は、実施例1〜4の期間に限定されず、原料スラリー2の配合に対応して、スラリー上面が最上部鉄筋3を越えた後から発泡終了高さに達するまでの任意の期間に設定することができる。また、往復回動する回転テーブル上で型枠を揺動するなど、各種の揺動装置を使用できる。その他、本発明の趣旨を逸脱しない範囲で、型枠10の揺動条件を適宜に変更して実施することも可能である。   The period during which the mold 10 is swung is not limited to the period of Examples 1 to 4, and the foaming end height is reached after the upper surface of the slurry exceeds the uppermost reinforcing bar 3 corresponding to the blending of the raw slurry 2. It can be set to any period until it reaches. Also, various swinging devices can be used, such as swinging the mold on a revolving rotary table. In addition, the swing condition of the mold 10 can be changed as appropriate without departing from the spirit of the present invention.

ALCパネルにおける発泡巣の生成メカニズムを説明する模式図である。It is a schematic diagram explaining the production | generation mechanism of the foaming nest in an ALC panel. 本発明によるパネル製造方法の概要を示す型枠の断面図である。It is sectional drawing of the formwork which shows the outline | summary of the panel manufacturing method by this invention. 本発明の実施例を示す型枠とALCパネルの斜視図である。It is a perspective view of a formwork and an ALC panel showing an example of the present invention. 実施例1の方法を示す型枠の縦断面図である。It is a longitudinal cross-sectional view of the formwork which shows the method of Example 1. FIG. 比較例1において原料スラリーの発泡高さと強張りを示すグラフである。6 is a graph showing foaming height and strength of a raw material slurry in Comparative Example 1. スラリーの強張りを測定する方法を示す型枠の縦断面図である。It is a longitudinal cross-sectional view of a formwork which shows the method of measuring the tension of a slurry. 比較例1の方法を評価するALCパネルの斜視図である。It is a perspective view of the ALC panel which evaluates the method of the comparative example 1. 実施例1において原料スラリーの発泡高さと強張りを示すグラフである。2 is a graph showing the foaming height and strength of a raw material slurry in Example 1. 実施例1の方法を評価するALCパネルの斜視図である。1 is a perspective view of an ALC panel for evaluating the method of Example 1. FIG. 実施例1の方法を評価するスラリーの発泡高さ変化を示すグラフである。It is a graph which shows the foaming height change of the slurry which evaluates the method of Example 1. FIG. 実施例1の方法を評価するスラリーの強張り変化を示すグラフである。4 is a graph showing changes in the strength of a slurry for evaluating the method of Example 1; 実施例2の方法を示す型枠の正面図である。It is a front view of a formwork which shows the method of Example 2. FIG. 実施例3の方法を評価するグラフである。10 is a graph for evaluating the method of Example 3. 実施例4の方法を示すパネルの縦断面図である。6 is a longitudinal sectional view of a panel showing a method of Example 4. FIG. 比較例2の方法を示す型枠とパネルの縦断面図である。It is a longitudinal cross-sectional view of the formwork and panel which show the method of the comparative example 2. 比較例3の方法を示す型枠とパネルの縦断面図である。It is a longitudinal cross-sectional view of the formwork and panel which show the method of the comparative example 3. 比較例4の方法を示す型枠とパネルの縦断面図である。It is a longitudinal cross-sectional view of the formwork and panel which show the method of the comparative example 4. 比較例5の方法を示す型枠とパネルの縦断面図である。It is a longitudinal cross-sectional view of the formwork and panel which show the method of the comparative example 5.

符号の説明Explanation of symbols

1 ALCパネル
2 原料スラリー
3 最上部鉄筋
4 発泡巣
10 型枠
1 ALC Panel 2 Raw Material Slurry 3 Top Rebar 4 Foam Foam 10 Formwork

Claims (6)

補強鉄筋が配設された型枠内で、珪石、セメント及び生石灰の粒子とアルミニウム粉末とを含み、アルミニウム粉末とアルカリ物質との反応に伴ってALC特有の気泡を発生する原料スラリーを発泡させ、原料スラリーの上面が補強鉄筋の最上部鉄筋を越えた後における一部期間を少なくとも含む揺動期間に、型枠を揺動加速度0.01m/s 〜0.1m/s 揺動し、該揺動により原料スラリーの凝結を遅らせて、最上部鉄筋の上側における発泡巣の生成を抑制することを特徴とする軽量気泡コンクリートパネルの製造方法。 In the formwork in which the reinforcing steel bars are disposed, the raw material slurry containing silica, cement and quicklime particles and aluminum powder, and generating ALC-specific bubbles in response to the reaction between the aluminum powder and the alkaline substance, is foamed. at least including swinging period some time after providing the upper surface of the raw material slurry exceeds the top reinforcing steel reinforcement rebar, and swing the mold in the rocking acceleration 0.01m / s 2 ~0.1m / s 2 A method for producing a lightweight cellular concrete panel, characterized in that the rocking of the raw material slurry is delayed by the swinging to suppress the formation of a foaming nest on the upper side of the uppermost reinforcing bar. 型枠の揺動距離が、型枠の揺動方向長さの0.3%〜10%である請求項1記載の軽量気泡コンクリートパネルの製造方法。   The method for producing a lightweight cellular concrete panel according to claim 1, wherein the rocking distance of the mold is 0.3% to 10% of the length of the mold in the rocking direction. 型枠の揺動方向が、型枠の長さ方向又は幅方向である請求項1又は2記載の軽量気泡コンクリートパネルの製造方法。 The method for producing a lightweight cellular concrete panel according to claim 1 or 2 , wherein the swinging direction of the mold is the length direction or the width direction of the mold . 前記一部期間が、原料スラリーの上面が最上部鉄筋を20mm越えてから発泡終了高さより10mm低い位置に達するまでの最適期間から選ばれる30mm以上の範囲の期間である請求項1〜3のいずれか一項に記載の軽量気泡コンクリートパネルの製造方法。   The partial period is a period in a range of 30 mm or more selected from an optimal period from when the upper surface of the raw material slurry exceeds 20 mm from the uppermost reinforcing bar to reach a position 10 mm lower than the foaming end height. A method for producing a lightweight cellular concrete panel according to claim 1. 前記一部期間に型枠を連続的に揺動する請求項1〜4のいずれか一項に記載の軽量気泡コンクリートパネルの製造方法。   The manufacturing method of the lightweight cellular concrete panel as described in any one of Claims 1-4 which rocks a formwork continuously in the said partial period. 前記一部期間に型枠を間欠的に揺動し、但し該揺動の合計時間は一部期間の50%以上とし、かつ該揺動の一回の休止時間は2分以下とする請求項1〜4のいずれか一項に記載の軽量気泡コンクリートパネルの製造方法。   The formwork is rocked intermittently during the partial period, wherein the total time of the rocking is 50% or more of the partial period, and the pause time of the rocking is 2 minutes or less. The manufacturing method of the lightweight cellular concrete panel as described in any one of 1-4.
JP2007034857A 2007-02-15 2007-02-15 Method for producing lightweight cellular concrete panel Expired - Fee Related JP4981475B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007034857A JP4981475B2 (en) 2007-02-15 2007-02-15 Method for producing lightweight cellular concrete panel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007034857A JP4981475B2 (en) 2007-02-15 2007-02-15 Method for producing lightweight cellular concrete panel

Publications (3)

Publication Number Publication Date
JP2008195014A JP2008195014A (en) 2008-08-28
JP2008195014A5 JP2008195014A5 (en) 2010-01-07
JP4981475B2 true JP4981475B2 (en) 2012-07-18

Family

ID=39754402

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007034857A Expired - Fee Related JP4981475B2 (en) 2007-02-15 2007-02-15 Method for producing lightweight cellular concrete panel

Country Status (1)

Country Link
JP (1) JP4981475B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5302666B2 (en) * 2008-12-25 2013-10-02 クリオン株式会社 Method for producing lightweight cellular concrete panel

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02194908A (en) * 1989-01-24 1990-08-01 Matsushita Electric Works Ltd Manufacture of lightweight aerated concrete board
JPH09110548A (en) * 1995-10-24 1997-04-28 Sumitomo Metal Mining Co Ltd Production of lightweight aerated concrete, apparatus therefor and lightweight aerated concrete produced by the same production
JP3852770B2 (en) * 2002-11-18 2006-12-06 エスビック株式会社 Molding method for lightweight cellular concrete secondary products
JP4194398B2 (en) * 2003-03-25 2008-12-10 クリオン株式会社 Manufacturing method of ALC panel
JP2005103923A (en) * 2003-09-30 2005-04-21 Ooike Co Ltd Oscillation apparatus

Also Published As

Publication number Publication date
JP2008195014A (en) 2008-08-28

Similar Documents

Publication Publication Date Title
US4124669A (en) Aerated concrete process
CA2596657C (en) Process for manufacturing sound absorbing cement tile
JP4981475B2 (en) Method for producing lightweight cellular concrete panel
JP2018145089A (en) Method for finely dividing air bubble in ready-mixed concrete
JP5080203B2 (en) Method for producing lightweight cellular concrete panel
US2253730A (en) Process of molding concrete
JP5302666B2 (en) Method for producing lightweight cellular concrete panel
JP3585293B2 (en) Manufacturing method of lightweight cellular concrete
JP3562872B2 (en) Manufacturing method of lightweight cellular concrete
JP2017087697A (en) Method for producing concrete
JPS6410322B2 (en)
JP4194398B2 (en) Manufacturing method of ALC panel
JPH0816036B2 (en) Method for manufacturing lightweight foam concrete
JPH07285120A (en) Low-density alc slurry and manufacture thereof
JP6883477B2 (en) Hardened concrete
JP3909721B2 (en) Manufacturing method of thin plate lightweight lightweight concrete building material
JP3234298B2 (en) A method for removing air bubbles above the main bars of lightweight cellular concrete
JPS59195567A (en) Vibration defoaming treatment for lightweight foamed concrete manufacture
JP3791939B2 (en) Method for producing lightweight cellular concrete board
JPS6015105A (en) Manufacture of light aerated concrete block
JPH0399802A (en) Method for vibration molding of inorganic foam molded product
JPS60214906A (en) Manufacture of light-weight aerated concrete material
JPH0822544B2 (en) Method for manufacturing lightweight foam concrete
JPH07277854A (en) Production of aerated lightweight concrete
JPH1177630A (en) Manufacture of lightweight cellular concrete

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091117

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091117

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110822

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110830

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111014

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20111014

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120410

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120420

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150427

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4981475

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150427

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees