JPH0429631B2 - - Google Patents

Info

Publication number
JPH0429631B2
JPH0429631B2 JP4513984A JP4513984A JPH0429631B2 JP H0429631 B2 JPH0429631 B2 JP H0429631B2 JP 4513984 A JP4513984 A JP 4513984A JP 4513984 A JP4513984 A JP 4513984A JP H0429631 B2 JPH0429631 B2 JP H0429631B2
Authority
JP
Japan
Prior art keywords
oleic acid
weight
raw materials
alc
aluminum powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP4513984A
Other languages
Japanese (ja)
Other versions
JPS60191070A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP4513984A priority Critical patent/JPS60191070A/en
Publication of JPS60191070A publication Critical patent/JPS60191070A/en
Publication of JPH0429631B2 publication Critical patent/JPH0429631B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/18Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing mixtures of the silica-lime type

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、高温高圧水蒸気養生して製造する軽
量気泡コンクリート(以下ALCと略称する)の
製造方法に関する。 更に詳しくは、ケイ酸質原料と石灰質原料との
混合物に、水と、発泡剤として金属アルミニウム
粉末を添加して発泡させる際に、新規な発泡剤調
整剤を添加し、気孔が調整されたALCを製造す
る方法に関するものである。 ALCは、ケイ砂、ケイ石、各種水砕スラグ等
のケイ酸質原料と、石灰やセメントなどの石灰質
原料を粉砕したものに、水と、少量の金属アルミ
ニウム粉末を加えて撹拌したのち静置し、あるい
は金属アルミニウム粉末を加えないで上記のスラ
リーに空気を混入させて、夫々気泡を含有せしめ
たのち半可塑化し、さらにオートクレーブに移し
て高温高圧水蒸気養生を行なつて製造されてい
る。 このようにして製造されるALCは、主要原料、
例えばケイ石ではSiO2の品位や不純物の種類と
量、石灰では、その粒度及び水との反応速度等が
製品の品質に微妙に影響し、建築用材料としての
圧縮強度や湿乾収縮率等の性能や外観等に重大な
影響を及ぼすことは公知である。 一方原料スラリーの発泡工程における、該スラ
リー容積の約50%を占める気泡及び約30%に相当
する水等に起因する空隙の性状等も、製品の強
度、物性及び外観の良否に影響する。 この発泡過程における気泡、空隙は、その大半
が直径1〜2mmの球状を形成していることが、製
品の機械的強度と物理的性質を損なわないために
好ましいとされている。 ALCの気泡形成剤としては、金属アルミニウ
ム粉末に少量の気泡安定剤を添加したものが最も
好ましいとして汎用されている。 従来、上記の気泡安定剤としては、ガス発生に
より生成した気泡の壁体中でコロイド構造を形成
して、気泡の安定化を図るゼラチン、膠や、原材
料混合スラリーの表面張力を下げ気泡の表面層と
被膜の強靭性を高めるとして、アルキルベンゼン
スルフオン酸塩、アルキルナフタレンスルフオン
酸塩等の界面活性剤等が実用されている。 しかしながら、上記のゼラチン、膠は比較的多
量に用いないと効果がなく、且つ該スラリーの粘
度の高い領域においてのみ有効で、さらにスラリ
ーの撹拌中に持ち込まれる空気をそのまゝ留保す
るために、気泡直径の大きいものが多い。 又、界面活性剤は、逆にスラリー粘度の低い領
域においてのみ効果が認められるが、比重0.5の
通常製品を製造する場合には、比較的多量の使用
が必要となり、多量に使用すると原料の水和反応
を阻害し高い結晶性を有するケイ酸カルシウム水
和物の均質生成を妨害する等の欠点があつた。 本発明の目的は、上記の欠点のない気泡安定剤
を使用し、気孔の整つたALCの製造方法を提供
することにある。 この目的を達成するため本願発明者等は、鋭意
研究の結果、レジン、ワツクスなどの工業薬品の
溶剤として使用されるモルホリン、セメントの硬
化促進剤として知られるエタノールアミンの一方
又は双方と、石鹸の原料として用いられるオレイ
ン酸、オレイン酸誘導体の一方又は双方との混合
物の極く少量を、原料スラリーに所定量の金属ア
ルミニウム粉末と共に適用すれば、発泡工程に際
し好適な気泡形成が行なわれ、該気泡は極めて安
定であることを見出し本発明法に到達した。 即ち本発明の方法は、石灰やセメント等の石灰
質原料と、ケイ石、ケイ砂、水砕スラグ等のケイ
酸質原料との混合物に内割りで約0.05〜0.10重量
%の金属アルミニウム粉末を添加した原料の全固
形分100重量部に対し、モルホリン、エタノール
アミンの一方又は双方と、オレイン酸、オレイン
酸誘導体の一方又は双方とを、重量比で1〜4対
1の割合で調製した添加剤を0.005〜0.05重量部
添加し以下常法に従つて発泡、半可塑化、オート
クレーブ養生して細孔が整然と並んだALCを製
造するというものである。 本発明の方法において、発泡安定剤としてのエ
タノールアミンは特定するものではないがモノ、
ジ、トリの各エタノールアミン、オレイン酸誘導
体はオレイン酸メチルエステル、オレイン酸プロ
ピルエステル、オレイン酸ブチルエステル、オレ
イン酸アリルエステル、オレイン酸グリセリンエ
ステル等が好ましい。 添加剤の調製を、モルホリン及び、又はエタノ
ールアミンと、オレイン酸及び又はオレイン酸誘
導体とを、1〜4対1の割合とするのは、アミン
塩の比率がこれより多いと、原料スラリーの凝結
が早まり、金属アルミニウム粉末によるガス発生
を阻害し気泡を乱すからであり、逆にアミン塩の
比率がこれより少ないと、それだけオレイン酸の
比率が増すので疎水性が強すぎ金属アルミニウム
粉末そのものの分散を阻害するためである。 添加剤の添加量を原料の全固形分に対し、固形
物として外割りで0.005〜0.05重量%とするのは、
これより少ないと本発明の効果が殆んど認められ
ず、又これより多く添加しても効果が向上しない
だけでなく却つて正常な均一気泡生成を乱す原因
となるからである。 この添加剤は、原料に対し極く少量添加すると
云う点からも予め水で1対1程度に希釈して使用
するのが望ましい。 本発明の方法によれば、単に圧縮強度やその他
の物理的性質に優れるだけでなく、例えば実施例
に示したように半可塑化物の気孔形状に乱れがな
い証しとして、半可塑化物を長時間放置しても体
積の収縮が殆んど見られず、従つて製品のALC
は直径約1〜2mmの細孔が揃つたものが得られ、
外観的にも優れたものが得られる。 以下実施例について説明する。 実施例 6重量部の粉末生石灰と、22重量部のポルトラ
ンドセメントと、32重量部のケイ石粉末と0.05重
量部のアルミニウム粉末に40重量部の水と、前記
固形分の合計量に対し外割り重量%で、モルホリ
ン又はエタノールアミンと、オレイン酸又はその
誘導体とを、所定比率で混合し、該混合物を水で
1対1に希釈したものを固形分として所定量添加
撹拌してスラリーとし、発泡、半可塑化、次いで
オートクレーブ養生する、通常の操作に従つて
ALCを製造し、半可塑性コンクリートの収縮の
有無、ALC製品の圧縮強度(JIST5416)及び外
観の観察等を行なつた。 その結果を表に示す。 尚外観は正常気孔(直径1〜2mm)の約5倍以
上の気孔を目視により1m2当り何ケ認めたかを示
したものである。
The present invention relates to a method for producing lightweight cellular concrete (hereinafter abbreviated as ALC), which is produced by curing with high temperature and high pressure steam. More specifically, when foaming a mixture of silicic raw materials and calcareous raw materials by adding water and metal aluminum powder as a foaming agent, a new foaming agent regulator is added to produce ALC with adjusted pores. The present invention relates to a method for manufacturing. ALC is made by pulverizing silicic raw materials such as silica sand, silica stone, and various granulated slags, and calcareous raw materials such as lime and cement, adding water and a small amount of metallic aluminum powder, stirring, and then allowing it to stand still. Alternatively, air is mixed into the slurry without adding metal aluminum powder, the slurry is made to contain air bubbles, semi-plasticized, and then transferred to an autoclave and subjected to high-temperature, high-pressure steam curing. The ALC produced in this way consists of the main raw materials,
For example, in the case of silica stone, the grade of SiO 2 and the type and amount of impurities, and in the case of lime, the particle size and reaction rate with water, etc., subtly affect the quality of the product, and the compressive strength and wet/dry shrinkage rate as building materials. It is well known that this has a significant effect on the performance, appearance, etc. of On the other hand, in the foaming process of raw material slurry, the properties of air bubbles that account for about 50% of the slurry volume and voids caused by water and the like that account for about 30% also affect the strength, physical properties, and appearance of the product. It is said that it is preferable that most of the bubbles and voids in this foaming process form a spherical shape with a diameter of 1 to 2 mm so as not to impair the mechanical strength and physical properties of the product. As the cell forming agent for ALC, a mixture of metal aluminum powder and a small amount of cell stabilizer added is most preferable and is widely used. Conventionally, the above-mentioned bubble stabilizers include gelatin and glue, which form a colloidal structure in the walls of the bubbles generated by gas generation to stabilize the bubbles, and stabilizers that lower the surface tension of the raw material mixed slurry and reduce the surface tension of the bubbles. Surfactants such as alkylbenzenesulfonates and alkylnaphthalenesulfonates have been put into practical use in order to improve the toughness of layers and coatings. However, the gelatin and glue described above are ineffective unless used in relatively large amounts, and are effective only in areas where the slurry has a high viscosity. Many have large bubble diameters. In addition, surfactants, on the other hand, are effective only in the region of low slurry viscosity, but when manufacturing regular products with a specific gravity of 0.5, they must be used in relatively large amounts, and if used in large amounts, the water in the raw material It has disadvantages such as inhibiting the sum reaction and preventing the homogeneous production of calcium silicate hydrate having high crystallinity. An object of the present invention is to provide a method for producing ALC with well-organized pores using a foam stabilizer that does not have the above-mentioned drawbacks. In order to achieve this objective, the inventors of the present application have conducted intensive research and found that one or both of morpholine, which is used as a solvent for industrial chemicals such as resins and waxes, and ethanolamine, which is known as a hardening accelerator for cement, and soap. If a very small amount of a mixture of oleic acid and/or an oleic acid derivative used as a raw material is applied to the raw material slurry together with a predetermined amount of metal aluminum powder, suitable bubble formation will be performed during the foaming process, and the bubbles will be It was discovered that this is extremely stable, and the method of the present invention was developed. That is, the method of the present invention involves adding approximately 0.05 to 0.10% by weight of metallic aluminum powder to a mixture of calcareous raw materials such as lime and cement and silicic raw materials such as silica stone, silica sand, and granulated slag. An additive prepared by adding one or both of morpholine and ethanolamine and one or both of oleic acid and oleic acid derivatives in a weight ratio of 1 to 4:1, based on 100 parts by weight of the total solid content of the raw material. After adding 0.005 to 0.05 parts by weight of 0.005 to 0.05 parts by weight, foaming, semi-plasticization, and autoclave curing are carried out according to conventional methods to produce ALC in which pores are arranged in an orderly manner. In the method of the present invention, ethanolamine as a foam stabilizer is not specified, but mono-,
Preferred examples of di- and tri-ethanolamine and oleic acid derivatives include oleic acid methyl ester, oleic propyl ester, oleic acid butyl ester, oleic acid allyl ester, and oleic acid glycerin ester. The reason why the additive is prepared at a ratio of 1 to 4 to 1 to 1 of morpholine and/or ethanolamine and oleic acid and/or oleic acid derivatives is because if the ratio of amine salt is higher than this, the raw material slurry will coagulate. This is because the amine salt ratio is lower than this, the ratio of oleic acid increases, and the hydrophobicity becomes too strong and the dispersion of the metal aluminum powder itself becomes difficult. This is to inhibit the The amount of additives to be added is 0.005 to 0.05% by weight as solids based on the total solid content of raw materials.
If the amount is less than this, the effect of the present invention will hardly be observed, and if the amount is added more than this, not only will the effect not be improved, but it will even disturb normal bubble formation. It is preferable to use this additive after diluting it with water in advance at a ratio of approximately 1:1 from the viewpoint of adding a very small amount to the raw material. According to the method of the present invention, not only is the compressive strength and other physical properties excellent, but also the pore shape of the semi-plasticized material is maintained for a long period of time, as shown in the examples. There is almost no volumetric shrinkage even when left standing, and therefore the ALC of the product
is obtained with uniform pores of about 1 to 2 mm in diameter,
A product with excellent appearance can also be obtained. Examples will be described below. Example: 6 parts by weight of powdered quicklime, 22 parts by weight of Portland cement, 32 parts by weight of silica powder, 0.05 parts by weight of aluminum powder, and 40 parts by weight of water, divided by the total amount of solid content. Morpholine or ethanolamine and oleic acid or its derivatives are mixed in a predetermined ratio (wt%), the mixture is diluted 1:1 with water, and a predetermined amount of the solid content is added and stirred to form a slurry, which is then foamed. , semi-plasticized and then autoclaved, following normal operations.
ALC was manufactured, and the presence or absence of shrinkage of semi-plastic concrete was observed, as well as the compressive strength (JIST5416) and appearance of the ALC product. The results are shown in the table. The appearance indicates the number of pores per square meter that were visually observed to be approximately five times larger than normal pores (1 to 2 mm in diameter).

【表】 表に示した圧縮強度は40Kgf/cm2未満は不良、
半可塑化物は5時間室内に放置した後収縮が見ら
れたかどうかを可否判定の基準としたものである
が、添加剤の配合比が本発明の範囲を外れた実験
No.1、11及び12、添加量が少ない実験No.13、14は
強度が弱く、その他の性状も不良であつたが、そ
れ以外は何れも強度も充分で特に外観の気孔が調
整され楕円形であつたり大きな気孔は殆んど認め
られなかつた。 尚実験No.1及びNo.11〜14については半可塑化物
放置の際、明白な収縮を示した。
[Table] The compressive strength shown in the table is less than 40Kgf/ cm2 ;
The criteria for determining acceptability was whether or not the semi-plasticized product showed shrinkage after being left indoors for 5 hours, but in experiments where the blending ratio of additives was outside the scope of the present invention.
Nos. 1, 11, and 12, and Experiment Nos. 13 and 14, which had a small amount of addition, had weak strength and other properties were poor, but all others had sufficient strength, and the pores were especially adjusted to form an elliptical shape. Almost no large pores were observed. In Experiments No. 1 and Nos. 11 to 14, clear shrinkage was observed when the semi-plasticized materials were left to stand.

Claims (1)

【特許請求の範囲】[Claims] 1 主要原料として、石灰、セメント等の石灰質
原料と、ケイ石等のケイ酸質原料と、発泡剤とし
て金属アルミニウム粉末との混合物全固形分100
重量部に対し、モルホリン、エタノールアミンの
一方又は双方と、オレイン酸、オレイン酸誘導体
の一方又は双方とを重量比で1〜4対1の割合で
調製した添加剤を0.005〜0.05重量部添加してな
る原料を使用することを特徴とする調整された気
孔を有するALCの製造方法。
1. A mixture of calcareous raw materials such as lime and cement, silicic raw materials such as silica stone, and metal aluminum powder as a foaming agent, total solid content 100 as the main raw materials.
Add 0.005 to 0.05 parts by weight of an additive prepared by mixing one or both of morpholine and ethanolamine and one or both of oleic acid and oleic acid derivatives in a weight ratio of 1 to 4:1 to each part by weight. 1. A method for producing ALC with controlled pores, characterized by using a raw material consisting of:
JP4513984A 1984-03-09 1984-03-09 Manufacture of alc Granted JPS60191070A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4513984A JPS60191070A (en) 1984-03-09 1984-03-09 Manufacture of alc

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4513984A JPS60191070A (en) 1984-03-09 1984-03-09 Manufacture of alc

Publications (2)

Publication Number Publication Date
JPS60191070A JPS60191070A (en) 1985-09-28
JPH0429631B2 true JPH0429631B2 (en) 1992-05-19

Family

ID=12710946

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4513984A Granted JPS60191070A (en) 1984-03-09 1984-03-09 Manufacture of alc

Country Status (1)

Country Link
JP (1) JPS60191070A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ITRM20070212A1 (en) * 2007-04-16 2008-10-17 Ulderico Ceccarelli AUTOCLAVED CELLULAR CONCRETE WITH REDUCED PHENOMENON OF WITHDRAWAL FOR THE REALIZATION OF BLOCKS AND / OR FLOOR AND / OR REINFORCED AND UNRESTED BUILDING PANELS.
JP2015214455A (en) * 2014-05-12 2015-12-03 住友金属鉱山シポレックス株式会社 Method for producing autoclaved lightweight concrete
JP2016056069A (en) * 2014-09-11 2016-04-21 住友金属鉱山シポレックス株式会社 Method for producing water-repellent lightweight foam concrete

Also Published As

Publication number Publication date
JPS60191070A (en) 1985-09-28

Similar Documents

Publication Publication Date Title
EP1078897B1 (en) Early enhanced strength cement composition
JP2019525885A (en) Lightweight foamed cement, cement board, and method for producing them
CA2448888C (en) Method of providing void spaces in gypsum wallboard and in a gypsum core composition
CN110105013A (en) A kind of high-strength cracking resistance foam concrete and preparation method thereof
CN111943593B (en) Waterproof chemical foaming foam concrete and preparation method and application thereof
CN104844045B (en) A kind of process of surface treatment of lightweight aggregate for concrete
CN105272097A (en) Novel magnesian cementing material and preparation method for magnesian cementing plate prepared from novel magnesian cementing material
CN105152598A (en) Truss type ceramsite foam concrete and preparation method thereof
CN111689790A (en) Light high-strength cement-based foam thermal insulation material and preparation method thereof
EP0069095A1 (en) A method in the manufacture of steam-cured inorganic insulating material of extremely low volumetric weight and having good heat-insulating properties
CN113831074A (en) Light sound-insulation terrace slurry containing polyurethane particles, preparation method and light sound-insulation terrace
JP5690904B2 (en) Lightweight cellular concrete and method for producing the same
CN105541164A (en) Additive special for concrete block
US2081802A (en) Manufacture of light concrete
JPH0429631B2 (en)
EP3802456A1 (en) Ultra-light mineral foam having water repellent properties
RU2103242C1 (en) Foam concrete containing magnesia binder and method for its production
JPS5849507B2 (en) Manufacturing method of autoclaved water-repellent lightweight cellular concrete
JP5560016B2 (en) Lightweight cellular concrete and method for producing the same
CN111704412A (en) Lightweight aggregate self-leveling material, preparation method and construction method
KR100468231B1 (en) Low-water foaming composition for lightweight adiabatic foaming concrete
JPS6214514B2 (en)
RU2254310C1 (en) Method of manufacturing heat-insulation products
JPH11199346A (en) Floating block
JPS60191071A (en) Manufacture of freeze-resistant alc