JP3815806B2 - Method for producing lightweight cellular concrete board - Google Patents

Method for producing lightweight cellular concrete board Download PDF

Info

Publication number
JP3815806B2
JP3815806B2 JP01768895A JP1768895A JP3815806B2 JP 3815806 B2 JP3815806 B2 JP 3815806B2 JP 01768895 A JP01768895 A JP 01768895A JP 1768895 A JP1768895 A JP 1768895A JP 3815806 B2 JP3815806 B2 JP 3815806B2
Authority
JP
Japan
Prior art keywords
specific gravity
layer
mortar
high specific
concrete board
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP01768895A
Other languages
Japanese (ja)
Other versions
JPH08208345A (en
Inventor
重夫 椎橋
宏輝 鷹野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Construction Materials Corp
Original Assignee
Asahi Kasei Construction Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Construction Materials Corp filed Critical Asahi Kasei Construction Materials Corp
Priority to JP01768895A priority Critical patent/JP3815806B2/en
Publication of JPH08208345A publication Critical patent/JPH08208345A/en
Application granted granted Critical
Publication of JP3815806B2 publication Critical patent/JP3815806B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B1/00Producing shaped prefabricated articles from the material
    • B28B1/50Producing shaped prefabricated articles from the material specially adapted for producing articles of expanded material, e.g. cellular concrete
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B1/00Producing shaped prefabricated articles from the material
    • B28B1/08Producing shaped prefabricated articles from the material by vibrating or jolting
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B14/00Use of inorganic materials as fillers, e.g. pigments, for mortars, concrete or artificial stone; Treatment of inorganic materials specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B14/02Granular materials, e.g. microballoons
    • C04B14/04Silica-rich materials; Silicates
    • C04B14/043Alkaline-earth metal silicates, e.g. wollastonite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00241Physical properties of the materials not provided for elsewhere in C04B2111/00
    • C04B2111/00405Materials with a gradually increasing or decreasing concentration of ingredients or property from one layer to another
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/20Resistance against chemical, physical or biological attack
    • C04B2111/27Water resistance, i.e. waterproof or water-repellent materials

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Civil Engineering (AREA)
  • Porous Artificial Stone Or Porous Ceramic Products (AREA)
  • Producing Shaped Articles From Materials (AREA)

Description

【0001】
【産業上の利用分野】
本発明は、軽量気泡コンクリート板の製造方法に関し、特にパネル表面の機械的強度や平滑性に優れ、なおかつ軽量にして断熱性及び耐久性に優れている軽量気泡コンクリート板の製造方法に関するものである。
【0002】
【従来の技術】
従来、軽量気泡コンクリート板は型枠内に気泡を含有したモルタルスラリーを注入し、所定時間放置してモルタルが硬化した後、脱型し、オートクレーブ養生して製造されている。型枠内に打設されるモルタルスラリーが高比重の場合には硬化後のパネル表面の機械的特性等が優れているが、断熱性が劣ると共に高重量となり易い。一方、低比重の気泡モルタルスラリーの場合にはパネル表面の機械的特性等が劣り衝撃や摩擦等により損傷を受けやすいものであった。また、塗装下地としては平滑性が不足しており、さらに水密性も不十分なものであった。そのため、軽量気泡コンクリート板の製造後、後処理が施されない状態ではパネルの取り扱いには特別の配慮が必要であり、パネル表面の機械的強度の向上や平滑性あるいは水密性を向上させるために種々の後処理を施す必要があった。
【0003】
そこで、軽量気泡コンクリート板表面が高比重層で形成されたパネルが特開昭58ー26065号公報で示されており、また複数のコンクリートスラリーをミキサー内で撹拌混合する製造方法が特開平3ー190706号公報及び特開平3ー27904号公報に挙げられている。
【0004】
【発明が解決しようとする課題】
しかしながら、特開昭58ー26065号公報で示された多層に打設する軽量気泡コンクリート板では表面高比重層の厚みがほとんど無いため、表面の機械的強度及び水密性等が充分ではなく、長期的な使用に対しては必ずしも充分な耐久性を示すものではなかった。また、特開平3ー190706号公報及び特開平3ー27904号公報では低比重セメントスラリーと高比重セメントスラリーをミキサー内で撹拌混合するため、高比重層側はスキン層で厚みがほとんど無く、厚み方向及び長手方向の比重の変化に対してムラが出来やすいため、パネルの機械的強度及び水密性等が充分でないものであった。
【0005】
本発明は、上述のような境界部分に衝撃が加わると、不連続なため部分的に応力集中が発生し、亀裂或いは剥離してしまうという欠点を改善し、機械的特性や平滑性に優れた表面を有し、充分な耐久性を示し、軽量で断熱性のある軽量気泡コンクリート板の製造方法を提供することにある。
【0006】
【課題を解決するための手段】
【0007】
本発明の軽量気泡コンクリート板の製造方法は、モルタルスラリーを型枠に注入し、モルタルが硬化した後、脱型し、オートクレーブ養生して製造されている軽量気泡コンクリート板の製造方法であって、低比重モルタルスラリーを型枠に注入し、一部分発泡させた後、高比重モルタルスラリーを注入し、その後に、該型枠を振動させることにより気泡を上部に移動させることを特徴とする低比重層と高比重層の境界部分の比重が連続的に変化する複層構造を有する軽量気泡コンクリート板の製造方法である。本発明で高比重層及び低比重層とは、軽量気泡コンクリート板の2層を構成する比重の異なる層の中で、比重の高い層を高比重層とし、比重の低い層を低比重層とする。各々の層の原料配合組成は、セメント等の石灰質原料、粒度の異なる珪石等の珪酸質原料、石膏、気泡剤、水等から成っている。
【0008】
【0009】
軽量気泡コンクリート板の低比重層及び高比重層の比重は、用いるモルタル組成等によって決まり、例えば、モルタル中の固形分と水との比率、気泡剤の添加量、等によって変えることができる。低比重層と高比重層の組み合わせの一例としては、比重0.4〜0.6のモルタルを用いるとパネル端部の高比重層の比重は0.7〜1.3に調整することができ、高比重層と低比重層とからなる軽量気泡コンクリート板を成型することができる。この場合、高比重層の比重が0.7より小さいと、モルタル表面領域に気泡が点在し外観が悪くなり、比重が1.3より大きくなると界面領域での剥離或いは、反りを生じ易くなる。
【0010】
高比重層、低比重層及び境界部分の比重の各々の結晶化度として、高比重層のトバモライト結晶化度は20〜85%が好ましく、特に50〜80%が好ましい。低比重層のトバモライト結晶化度は20〜90%が好ましく、特に45〜85%が好ましい。また比重勾配を有する境界部分の結晶化度もトバモライト結晶化度は20〜85%が好ましく、特に50〜80%が好ましい。
【0011】
高比重層、低比重層及び境界部分のトバモライト結晶化度が20%未満になると強度が低下し、かつ炭酸化し易くなり、実用的な性能を充分発揮することができなくなる。一方、高比重層、低比重層及び境界部分の結晶化度を90%を越えて向上させるには、原料組成の制約を受けると共に、予備養生及びオートクレーブ養生が長時間必要になるため、結晶の転移を起こし易くなると共に、工業的な製造には向かない。
【0012】
高比重層、低比重層及び境界部分のトバモライト結晶の各々の比率としては、高比重層aと境界部分bのトバモライト結晶の比率a/bが、0.8/1.2〜1.2/0.8であり、低比重層cと境界部分bのトバモライト結晶の比率c/bが、0.8/1.2〜1.2/0.8が好ましく、特にa/bは0.9/1.1〜1.1/0.9、c/bは0.9/1.1〜1.1/0.9が好ましい。
【0013】
高比重層、低比重層及び境界部分のトバモライト結晶の比率a/b及びc/bが0.8/1.2〜1.2/0.8の範囲から外れると、高比重層、低比重層及び境界部分での乾燥収縮率、熱膨張率等の差が大きくなって来るため、亀裂、剥離等の発生が起こり易くなる。
本発明の軽量気泡コンクリート板の製造方法は、セメント等の石灰質原料、珪石等の珪酸質原料、石膏、気泡剤、水等を加えて混合した低比重モルタルスラリー及び前記の原料組成から気泡剤を除いた高比重モルタルスラリーを用いるものである。
【0014】
ここで用いるモルタルスラリー中のCaO/SiO2モル比は0.4〜0.9が好ましく、特に0.5〜0.7が好ましい。CaO/SiO2モル比が0.4より小さくなると、オートクレーブ中の水熱反応によるトバモライトの生成が不充分になり、0.9より大きくなると、セメントの含有量が少なくなりモルタルの凝結が遅延する。
【0015】
またモルタルスラリーの固形分重量100重量部に対する水の重量比は50〜90重量部が好ましく、特に60〜80重量部が好ましい。このような原料組成からなる原材料として、微粉珪石又は解砕屑を用いることでトバモライトの結晶化度が向上し、微粉珪石又は解砕屑を用いないモルタルに比べ、機械的強度が高く、パネル内部の乾燥収縮率の差の小さいモルタル硬化体が生成する。微粉珪石の粉末度はブレーン法(JIS R5201)により測定し、ブレーン値で2000〜7000cm2/gが好ましく、特に、2500〜6000cm2/gが好ましい。
【0016】
またここで用いる解砕屑とは、セメント等の石灰質原料、珪石等の珪酸質原料、石膏、気泡剤、水等を加えて混合したモルタルスラリーを所定時間、所定温度で養生して得たモルタルであり、オートクレーブ養生前のモルタル硬化体を解砕したものであり、所定時間としては30分以上で、所定温度としては30℃〜90℃が好ましく、特に40℃〜80℃が好ましい。工業的には、軽量気泡コンクリート板を製造するときに、予備養生段階で得られ、不要となったモルタル硬化体で、原料としてリサイクルされるものである。ここで、高比重モルタルと低比重モルタルの原料モルタル組成は、ほぼ同一原料組成からなり、かつ微粉珪石又は解砕屑を用いることにより、界面領域での密着性及びトバモライト結晶化度を向上させることができる。
【0017】
本発明で作成する軽量気泡コンクリート板に関して、高比重モルタルスラリーと低比重モルタルスラリーを型枠に注入する方法としては、低比重モルタルスラリーを型枠に注入し、一部分発泡させた後、高比重モルタルスラリーを注入する方法、その後に、後述する型枠を振動させることにより気泡を上部に移動させるものである。ここで、この方法による低比重モルタルスラリーを型枠に注入してから高比重モルタルスラリーを打設する時期としては、注入後1分〜10分経過したときが好ましく、特に3分〜6分が好ましい。
【0018】
また上記の方法で作成した軽量気泡コンクリート板を構成する低比重層と高比重層の厚みは、低比重モルタルスラリーと高比重モルタルスラリーの注入量の比率を変えることにより所定の厚みに設定することが可能である。高比重層の厚みとしては、1mm〜60mmに設定することが好ましく、特に10mm〜30mmに設定することが好ましい。高比重層の厚みが、1mmより小さくなると、高比重層側表面に部分的に気泡が現れ、60mmより大きくなると、高比重層内にアバタのように気泡が残存する。
【0019】
本発明では、高比重モルタルスラリーと低比重モルタルスラリーとを同じ型枠に注入し、型枠に振動を与えることにより、低比重層と高比重層との境界領域の厚さ方向の比重勾配がスムーズに形成されるようになり、境界領域の傾斜構造が効率的に形成され、低比重層と高比重層とが強固に接合するようになる。なお、高比重モルタルスラリーと低比重モルタルスラリーを型枠に注入し、振動を加えない場合には、型枠底部の表面領域の気泡が均一に上方へ移動しないため、一部分型枠底部の表面領域に気泡が残存する。
【0020】
型枠振動に使用する型枠振動装置の振幅及び振動数は低比重モルタルスラリー中の気泡の脱ガス発生を防ぎ、低比重モルタルスラリーと高比重モルタルスラリーとの比重差による分離を促進する範囲であればよく、振幅の最大限度は10mm、振動数の最大限度は170Hzとし、各々のスラリーの分離を促進する最小振幅及び最小振動数は0.1mm、20Hzとなるようにするのが好ましく、特に振幅は1〜5mm、振動数は50〜100Hzの範囲が好ましい。振動時間は、低比重モルタルスラリーと高比重モルタルスラリーが効率良く分離し、低比重モルタルスラリー中の気泡が破壊あるいは脱泡しない範囲であればよく、型枠注入後、最大10分間で各々のモルタル分離状態がよい3分間までがよく、1分までが特に好ましい。
【0021】
型枠振動を与える駆動方法としては、例えば型枠の側面部、底面部に振動を与える振動発生器を取り付け、内蔵された起振器により振動を与えるものであり、その振動発生方式が偏心重錘方式、遊星運動方式、鋼製ボールの回転による遠心力方式等からなるものが好ましい。また振動発生器の駆動装置としては、例えば、電動機、エンジン、圧縮空気等が取り付けてあり、ベルト等を通じて起振器に回転運動を伝達するものが好ましい。
【0022】
【作用】
軽量気泡コンクリート板を比重勾配を有する傾斜構造にすることで、低比重層と高比重層との境界部分の比重勾配が連続的になり、衝撃が加わっても境界部分近傍に応力が集中して割れ易くなるおそれがなくなる。また、軽量気泡コンクリート板表面を高比重層にすることで、板表面の機械的強度や平滑性に優れ、なおかつ軽量にして断熱性に優れた軽量気泡コンクリート板にすることができる。
【0023】
【実施例】
傾斜構造を有する軽量気泡コンクリート板の製造方法について実施例によりさらに具体的に説明する。図1は本発明による軽量気泡コンクリート板の型枠底面からの厚みと比重の関係の一実施例を示した部分断面図と相関図であり、図2は本発明による軽量気泡コンクリート板の製造方法の一実施例を示した工程断面図である。
【0024】
【実施例1】
図2のように幅600mm、長さ600mm、高さ150mmの型枠に、珪石35重量%、セメント30重量%、生石灰8重量%、石膏2重量%、解砕屑(珪石47重量%、セメント40重量%、生石灰11重量%、石膏2重量%としたものを100重量部に水150重量部、アルミ0.06重量部を混練したスラリーを5時間常圧で蒸気養生したモルタルを示す)25重量%としたものを80重量部に水40重量部、アルミ0.06重量部を添加混練した低比重モルタルスラリーを注入後、3分経過後、同じ型枠に、珪石35重量%、セメント30重量%、生石灰8重量%、石膏2重量%、解砕屑25重量%としたものを20重量部に水10重量部を添加混練した高比重モルタルスラリーを注入し、その後1分間電磁式バイブレーターにより型枠に振幅2.8mm、振動数50Hzの振動を与えた。前記モルタルが所定の硬度に達した後、ピアノ線により切断し、オートクレーブ養生した。
【0025】
得られたALC表面は気泡の無い高比重層からなり、高比重層から低比重層への境界部分は連続的に比重が変化し、亀裂及び断層の無い好ましいものであった。この製品を図1のX−X’線で切断し、切断面を観察したところ、低比重層の比重は0.5g/cm3 で、気泡を含まない高比重層の厚みはほぼ2cm、比重は1.0 g/cm3であった。高比重層を上面にし低比重層を下面としたときの引張強度は7.7kg/cm2であり、トバモライト結晶の比率は、高比重層と境界部分が1.01で、低比重層と境界部分が1.02であった。
【0026】
【比較例1】
低比重モルタルスラリーと高比重モルタルスラリーとを撹拌ミキサーで混合させながら型枠に注入した以外は全て実施例1と同様の方法で軽量気泡コンクリート(ALC)を作製した。図3のように得られた軽量気泡コンクリート(ALC)表面は部分的に気泡が残っており、機械的強度及び透水性等が劣っており、この軽量気泡コンクリート板を実施例1と同様にして切断し、切断面を観察したところ、重質層の厚みは不均一なものであり、好ましいものではなかった。
【0027】
【発明の効果】
本発明によれば、高比重層と低比重層との境界部分が比重勾配を有する傾斜構造とできると共に、パネル表面の機械的強度や平滑性に優れ、なおかつ軽量にして断熱性及び耐久性に優れた軽量気泡コンクリート板とすることができる。
【図面の簡単な説明】
【図1】 本発明の軽量気泡コンクリート板の型枠底面からの厚みと比重の関係の一実施例を示した部分断面図と相関図である。
【図2】 本発明の一実施例を示した工程断面図である。
【図3】 従来法の軽量気泡コンクリート板の型枠底面からの厚みと比重の関係の一例を示した部分断面図と相関図である。
【符号の説明】
1 低比重層
2 高比重層
3 比重勾配を有する境界部分
4 型枠
5 軽量気泡コンクリート板
6 高比重モルタルスラリー
7 低比重モルタルスラリー
8 振動装置
[0001]
[Industrial application fields]
The present invention relates to a method for producing a lightweight aerated concrete board, and more particularly to a method for producing a lightweight aerated concrete board which is excellent in mechanical strength and smoothness of a panel surface, and is lightweight and excellent in heat insulation and durability. .
[0002]
[Prior art]
Conventionally, lightweight cellular concrete boards are manufactured by injecting a mortar slurry containing bubbles into a mold, leaving it for a predetermined time to harden the mortar, and then demolding and autoclave curing. When the mortar slurry cast in the mold has a high specific gravity, the mechanical properties of the panel surface after curing are excellent, but the heat insulation is poor and the weight tends to be high. On the other hand, in the case of a low specific gravity cellular mortar slurry, the mechanical properties of the panel surface are inferior and are easily damaged by impact or friction. Moreover, the smoothness of the coating base was insufficient, and the watertightness was insufficient. For this reason, special care must be taken in handling the panel in the state where the lightweight cellular concrete board is not subjected to post-treatment, and various measures are taken to improve the mechanical strength and smoothness or water tightness of the panel surface. It was necessary to apply post-treatment.
[0003]
Therefore, a panel in which a lightweight cellular concrete plate surface is formed with a high specific gravity layer is disclosed in Japanese Patent Application Laid-Open No. 58-26065, and a manufacturing method in which a plurality of concrete slurries are stirred and mixed in a mixer is disclosed in Japanese Patent Application Laid-Open No. Hei 3- No. 190706 and JP-A-3-27904.
[0004]
[Problems to be solved by the invention]
However, the lightweight cellular concrete plate placed in multiple layers as disclosed in JP-A-58-26065 has almost no surface high specific gravity layer, so the mechanical strength and watertightness of the surface are not sufficient, and long-term It did not always show sufficient durability for general use. In JP-A-3-190706 and JP-A-3-27904, a low specific gravity cement slurry and a high specific gravity cement slurry are stirred and mixed in a mixer, so the high specific gravity layer side is a skin layer with almost no thickness. Since unevenness easily occurs with respect to changes in the specific gravity in the direction and the longitudinal direction, the mechanical strength, water tightness, etc. of the panel are not sufficient.
[0005]
In the present invention, when an impact is applied to the boundary portion as described above, stress concentration is partially generated due to discontinuity, and the defect of cracking or peeling is improved, and mechanical properties and smoothness are excellent. An object of the present invention is to provide a method for producing a lightweight cellular concrete board having a surface, exhibiting sufficient durability, light weight and heat insulation.
[0006]
[Means for Solving the Problems]
[0007]
The method for producing a lightweight aerated concrete board according to the present invention is a method for producing a lightweight aerated concrete board that is produced by pouring mortar slurry into a mold and curing the mortar, then demolding and autoclaving. A low specific gravity layer characterized by injecting a low specific gravity mortar slurry into a mold, partially foaming it, then injecting a high specific gravity mortar slurry, and then moving the bubbles upward by vibrating the mold This is a method for producing a lightweight cellular concrete board having a multi-layer structure in which the specific gravity of the boundary portion between the high specific gravity layer continuously changes. In the present invention, the high specific gravity layer and the low specific gravity layer are the layers having different specific gravities constituting the two layers of the lightweight cellular concrete board, the layer having a high specific gravity is the high specific gravity layer, and the layer having the low specific gravity is the low specific gravity layer. To do. The raw material blending composition of each layer is composed of a calcareous raw material such as cement, a siliceous raw material such as silica stone having different particle sizes, gypsum, foaming agent, water and the like.
[0008]
[0009]
The specific gravity of the low specific gravity layer and the high specific gravity layer of the lightweight cellular concrete board is determined by the mortar composition to be used, and can be changed by, for example, the ratio of solid content to water in the mortar, the amount of foaming agent added, and the like. As an example of a combination of a low specific gravity layer and a high specific gravity layer, when a mortar having a specific gravity of 0.4 to 0.6 is used, the specific gravity of the high specific gravity layer at the end of the panel can be adjusted to 0.7 to 1.3. The lightweight cellular concrete board which consists of a high specific gravity layer and a low specific gravity layer can be shape | molded. In this case, if the specific gravity of the high specific gravity layer is smaller than 0.7, bubbles are scattered on the mortar surface region and the appearance is deteriorated, and if the specific gravity is larger than 1.3, peeling or warping is likely to occur in the interface region. .
[0010]
As the crystallinity of each of the high specific gravity layer, the low specific gravity layer and the specific gravity of the boundary portion, the tobermorite crystallinity of the high specific gravity layer is preferably 20 to 85%, particularly preferably 50 to 80%. The tobermorite crystallinity of the low specific gravity layer is preferably 20 to 90%, particularly preferably 45 to 85%. Further, the crystallinity of the boundary portion having a specific gravity gradient is preferably 20 to 85%, particularly preferably 50 to 80%.
[0011]
When the tobermorite crystallinity of the high specific gravity layer, the low specific gravity layer and the boundary portion is less than 20%, the strength is lowered and the carbonation is likely to occur, and the practical performance cannot be sufficiently exhibited. On the other hand, in order to improve the crystallinity of the high specific gravity layer, the low specific gravity layer, and the boundary part beyond 90%, the raw material composition is restricted and pre-curing and autoclave curing are required for a long time. It is easy to cause transition and is not suitable for industrial production.
[0012]
As the ratio of the high specific gravity layer, the low specific gravity layer, and the tobermorite crystals in the boundary portion, the ratio a / b of the tobermorite crystals in the high specific gravity layer a and the boundary portion b is 0.8 / 1.2 to 1.2 / 0.8, and the ratio c / b of the tobermorite crystal between the low specific gravity layer c and the boundary portion b is preferably 0.8 / 1.2 to 1.2 / 0.8, and in particular, a / b is 0.9. /1.1 to 1.1 / 0.9, and c / b is preferably 0.9 / 1.1 to 1.1 / 0.9.
[0013]
When the ratios a / b and c / b of the high specific gravity layer, low specific gravity layer, and tobermorite crystal at the boundary portion are out of the range of 0.8 / 1.2 to 1.2 / 0.8, the high specific gravity layer and the low specific gravity Differences in the drying shrinkage rate, thermal expansion coefficient, etc. at the layers and boundary portions become large, and cracks, peeling, etc. are likely to occur.
The method for producing a lightweight aerated concrete board according to the present invention comprises a low specific gravity mortar slurry in which a calcareous raw material such as cement, a siliceous raw material such as silica stone, gypsum, a foaming agent, water and the like are added and mixed, and the foaming agent from the raw material composition. The high specific gravity mortar slurry removed is used.
[0014]
The CaO / SiO 2 molar ratio in the mortar slurry used here is preferably 0.4 to 0.9, particularly preferably 0.5 to 0.7. When the CaO / SiO 2 molar ratio is smaller than 0.4, tobermorite is not sufficiently generated by the hydrothermal reaction in the autoclave, and when it is larger than 0.9, the cement content is reduced and the setting of the mortar is delayed. .
[0015]
The weight ratio of water to the solid content weight of 100 parts by weight of the mortar slurry is preferably 50 to 90 parts by weight, particularly preferably 60 to 80 parts by weight. As a raw material consisting of such a raw material composition, the crystallinity of tobermorite is improved by using finely ground silica or crushed debris. Compared with mortar that does not use finely ground silica or crushed debris, the mechanical strength is high and the inside of the panel is dried. A mortar hardened body with a small difference in shrinkage rate is generated. Fineness of fine silica was measured by Blaine method (JIS R5201), preferably 2000~7000cm 2 / g in Blaine value, in particular, 2500~6000cm 2 / g are preferred.
[0016]
The crushed debris used here is a mortar obtained by curing a mortar slurry mixed with a calcareous raw material such as cement, a siliceous raw material such as silica, gypsum, foaming agent, water, etc. at a predetermined temperature for a predetermined time. Yes, the mortar cured body before curing in an autoclave is crushed. The predetermined time is 30 minutes or more, and the predetermined temperature is preferably 30 ° C to 90 ° C, particularly preferably 40 ° C to 80 ° C. Industrially, when manufacturing lightweight lightweight concrete board, it is obtained as a mortar hardened body which is obtained in the pre-curing stage and is no longer necessary, and is recycled as a raw material. Here, the raw material mortar composition of the high specific gravity mortar and the low specific gravity mortar is composed of substantially the same raw material composition, and by using finely ground silica or crushed debris, the adhesion in the interface region and the tobermorite crystallinity can be improved. it can.
[0017]
As for the method of injecting the high specific gravity mortar slurry and the low specific gravity mortar slurry into the mold, the low specific gravity mortar slurry is injected into the mold, partially foamed, and then the high specific gravity mortar. The method of injecting the slurry, and then moving the bubbles to the upper part by vibrating a mold to be described later. Here, the time for pouring the high specific gravity mortar slurry after pouring the low specific gravity mortar slurry by this method into the mold is preferably 1 minute to 10 minutes after injection, particularly 3 minutes to 6 minutes. preferable.
[0018]
In addition, the thickness of the low specific gravity layer and the high specific gravity layer constituting the lightweight cellular concrete board prepared by the above method is set to a predetermined thickness by changing the ratio of the injected amount of the low specific gravity mortar slurry and the high specific gravity mortar slurry. Is possible. The thickness of the high specific gravity layer is preferably set to 1 mm to 60 mm, particularly preferably 10 mm to 30 mm. When the thickness of the high specific gravity layer is smaller than 1 mm, bubbles partially appear on the surface of the high specific gravity layer, and when the thickness is larger than 60 mm, bubbles remain like avatars in the high specific gravity layer.
[0019]
In the present invention, the specific gravity gradient in the thickness direction of the boundary region between the low specific gravity layer and the high specific gravity layer is obtained by injecting the high specific gravity mortar slurry and the low specific gravity mortar slurry into the same mold and applying vibration to the mold. As a result, the inclined structure in the boundary region is efficiently formed, and the low specific gravity layer and the high specific gravity layer are firmly joined. In addition, when the high specific gravity mortar slurry and the low specific gravity mortar slurry are injected into the mold and no vibration is applied, the bubbles in the surface area of the mold bottom do not move uniformly upward. Bubbles remain on the surface.
[0020]
The amplitude and frequency of the mold vibration device used for the mold vibration are within the range that prevents the degassing of bubbles in the low specific gravity mortar slurry and promotes the separation due to the specific gravity difference between the low specific gravity mortar slurry and the high specific gravity mortar slurry. Preferably, the maximum amplitude is 10 mm, the maximum frequency is 170 Hz, and the minimum amplitude and minimum frequency for promoting the separation of each slurry are preferably 0.1 mm and 20 Hz. The amplitude is preferably 1 to 5 mm and the frequency is preferably 50 to 100 Hz. The vibration time may be within a range in which the low specific gravity mortar slurry and the high specific gravity mortar slurry are efficiently separated and the bubbles in the low specific gravity mortar slurry are not destroyed or degassed. The separation state is good up to 3 minutes, and up to 1 minute is particularly preferred.
[0021]
As a driving method that gives formwork vibration, for example, a vibration generator that gives vibration is attached to the side surface and bottom surface of the formwork, and vibration is given by a built-in exciter. It is preferable to use a weight system, a planetary motion system, a centrifugal force system by rotating a steel ball, or the like. Moreover, as a drive device of a vibration generator, for example, an electric motor, an engine, compressed air, or the like is attached, and a device that transmits rotational motion to an exciter through a belt or the like is preferable.
[0022]
[Action]
By making the lightweight cellular concrete board into an inclined structure with a specific gravity gradient, the specific gravity gradient at the boundary between the low specific gravity layer and the high specific gravity layer becomes continuous, and stress is concentrated near the boundary even if an impact is applied. There is no risk of breakage. Moreover, by making the lightweight cellular concrete board surface into a high specific gravity layer, it is possible to obtain a lightweight cellular concrete board which is excellent in mechanical strength and smoothness of the board surface and is lightweight and excellent in heat insulation.
[0023]
【Example】
The manufacturing method of the lightweight cellular concrete board which has an inclination structure is demonstrated more concretely by an Example. FIG. 1 is a partial cross-sectional view and a correlation diagram showing an example of the relationship between the thickness from the bottom of a formwork and the specific gravity of a lightweight cellular concrete board according to the present invention, and FIG. 2 is a method for producing a lightweight cellular concrete board according to the present invention. It is process sectional drawing which showed one Example.
[0024]
[Example 1]
As shown in FIG. 2, in a mold having a width of 600 mm, a length of 600 mm, and a height of 150 mm, 35% by weight of quartzite, 30% by weight of cement, 8% by weight of quicklime, 2% by weight of plaster, 47% by weight of quartzite, 40% of cement (A mortar obtained by steam-curing a slurry obtained by kneading 100 parts by weight of 150% by weight of water and 0.06 parts by weight of aluminum with 5% by weight, 11% by weight of quicklime and 2% by weight of gypsum) After adding a low specific gravity mortar slurry in which 80 parts by weight of water and 40 parts by weight of water and 0.06 parts by weight of aluminum were added and kneaded, after 3 minutes, 35% by weight of silica and 30% by weight of cement were put in the same mold. % Lime, 8% by weight quick lime, 2% by weight gypsum, and 25% by weight crushed debris, 20 parts by weight of high specific gravity mortar slurry added with 10 parts by weight of water is injected, and then for 1 minute by an electromagnetic vibrator A vibration having an amplitude of 2.8 mm and a vibration frequency of 50 Hz was applied to the mold. After the mortar reached a predetermined hardness, it was cut with a piano wire and cured in an autoclave.
[0025]
The obtained ALC surface was composed of a high specific gravity layer free of bubbles, and the boundary portion from the high specific gravity layer to the low specific gravity layer changed in specific gravity continuously and was preferable without cracks and faults. When this product was cut along the line XX ′ in FIG. 1 and the cut surface was observed, the specific gravity of the low specific gravity layer was 0.5 g / cm 3 and the thickness of the high specific gravity layer containing no bubbles was approximately 2 cm. Was 1.0 g / cm 3 . The tensile strength when the high specific gravity layer is the upper surface and the low specific gravity layer is the lower surface is 7.7 kg / cm 2 , and the ratio of tobermorite crystals is 1.01 between the high specific gravity layer and the boundary, and the low specific gravity layer and the boundary The part was 1.02.
[0026]
[Comparative Example 1]
A lightweight aerated concrete (ALC) was prepared in the same manner as in Example 1 except that the low specific gravity mortar slurry and the high specific gravity mortar slurry were poured into the mold while being mixed with a stirring mixer. The surface of the lightweight cellular concrete (ALC) obtained as shown in FIG. 3 has air bubbles partially remaining and is inferior in mechanical strength, water permeability, and the like. After cutting and observing the cut surface, the thickness of the heavy layer was not uniform, which was not preferable.
[0027]
【The invention's effect】
According to the present invention, the boundary portion between the high specific gravity layer and the low specific gravity layer can be an inclined structure having a specific gravity gradient, and is excellent in mechanical strength and smoothness of the panel surface, and is lightweight and has heat insulation and durability. It can be an excellent lightweight cellular concrete board.
[Brief description of the drawings]
FIG. 1 is a partial cross-sectional view and a correlation diagram illustrating an example of the relationship between the thickness from the bottom of a mold and the specific gravity of a lightweight cellular concrete board according to the present invention.
FIG. 2 is a process sectional view showing an embodiment of the present invention.
FIG. 3 is a partial cross-sectional view and a correlation diagram showing an example of the relationship between the thickness from the bottom of the mold and the specific gravity of the lightweight lightweight concrete board of the conventional method.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Low specific gravity layer 2 High specific gravity layer 3 Boundary part with specific gravity gradient 4 Form 5 Lightweight cellular concrete board 6 High specific gravity mortar slurry 7 Low specific gravity mortar slurry 8 Vibration apparatus

Claims (1)

モルタルスラリーを型枠に注入し、モルタルが硬化した後、脱型し、オートクレーブ養生して製造されている軽量気泡コンクリート板の製造方法であって、低比重モルタルスラリーを型枠に注入し、一部分発泡させた後、高比重モルタルスラリーを注入し、その後に、該型枠を振動させることにより気泡を上部に移動させることを特徴とする低比重層と高比重層の境界部分の比重が連続的に変化する複層構造を有する軽量気泡コンクリート板の製造方法。A mortar slurry is poured into a mold, and after the mortar has hardened, it is demolded and is produced by autoclave curing. A lightweight cellular concrete board is produced by injecting a low specific gravity mortar slurry into a mold and partially after foaming, injecting high density mortar slurry, after which the specific gravity is continuously at the boundary of the low specific gravity layer and the high density layer, characterized in that moving the bubble to the top by vibrating the mold frame A method for producing a lightweight cellular concrete board having a multi-layer structure that changes into two.
JP01768895A 1995-02-06 1995-02-06 Method for producing lightweight cellular concrete board Expired - Lifetime JP3815806B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP01768895A JP3815806B2 (en) 1995-02-06 1995-02-06 Method for producing lightweight cellular concrete board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP01768895A JP3815806B2 (en) 1995-02-06 1995-02-06 Method for producing lightweight cellular concrete board

Publications (2)

Publication Number Publication Date
JPH08208345A JPH08208345A (en) 1996-08-13
JP3815806B2 true JP3815806B2 (en) 2006-08-30

Family

ID=11950771

Family Applications (1)

Application Number Title Priority Date Filing Date
JP01768895A Expired - Lifetime JP3815806B2 (en) 1995-02-06 1995-02-06 Method for producing lightweight cellular concrete board

Country Status (1)

Country Link
JP (1) JP3815806B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2113352B1 (en) * 2008-04-30 2013-03-27 H+H International A/S Method for manufacturing a building element made of porous concrete
KR101265882B1 (en) * 2010-08-19 2013-05-20 (주)엘지하우시스 Paste composition for marble and a method for manufacturing marble using thereof

Also Published As

Publication number Publication date
JPH08208345A (en) 1996-08-13

Similar Documents

Publication Publication Date Title
JP3815806B2 (en) Method for producing lightweight cellular concrete board
JPH09157056A (en) Production of lightweight aerated concrete panel having figure pattern
JPH0987052A (en) Lightweight foamed concrete board and its production
JPH08208350A (en) Production of lightweight cellular concrete panel
RU2245784C2 (en) Method of production of decorative facade made out of architectural concrete and a form for its realization
JP3791939B2 (en) Method for producing lightweight cellular concrete board
JPS58155913A (en) Manufacture of composite board for building
JP4046799B2 (en) Method for producing lightweight cellular concrete
JPH0821094A (en) Bar vibrator and vibration deforming method using it
JP2004114539A (en) Method for manufacturing inorganic board
JP2000102912A (en) Method for decreasing air bubble on surface of high flow concrete molding
JPH07108534B2 (en) Method for producing dense concrete surface
JPS6243952B2 (en)
US20090085250A1 (en) Manufacture of Moulded Paving Elements
JP2001090249A (en) Imitation brick
RU2133723C1 (en) Method for manufacture of covering plates with light-reflective surface
JPS61149319A (en) Preparation of thermosetting resin castings
SU833902A1 (en) Method of finishing small-sized construction articles
JPS6089305A (en) Mortar injection method of light-weight aerated concrete
JPH02102176A (en) Production of alc
JP2975726B2 (en) Manufacturing method of inorganic plate
JP2002068856A (en) Production method of concrete product
JPS609708A (en) Method of mixing and injecting light aerated concrete slurry
JPH0327904A (en) Manufacture of light-weight foam concrete plate
JPS6411441B2 (en)

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050726

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050914

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060314

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060425

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060606

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060606

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090616

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090616

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100616

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110616

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110616

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120616

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120616

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130616

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130616

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140616

Year of fee payment: 8

EXPY Cancellation because of completion of term