JPH0350418B2 - - Google Patents

Info

Publication number
JPH0350418B2
JPH0350418B2 JP56041324A JP4132481A JPH0350418B2 JP H0350418 B2 JPH0350418 B2 JP H0350418B2 JP 56041324 A JP56041324 A JP 56041324A JP 4132481 A JP4132481 A JP 4132481A JP H0350418 B2 JPH0350418 B2 JP H0350418B2
Authority
JP
Japan
Prior art keywords
film
oxidation
forming
etching
mask
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP56041324A
Other languages
Japanese (ja)
Other versions
JPS57155747A (en
Inventor
Takehide Shirato
Keiji Nishimoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP4132481A priority Critical patent/JPS57155747A/en
Publication of JPS57155747A publication Critical patent/JPS57155747A/en
Publication of JPH0350418B2 publication Critical patent/JPH0350418B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/76Making of isolation regions between components
    • H01L21/762Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers
    • H01L21/76202Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using a local oxidation of silicon, e.g. LOCOS, SWAMI, SILO
    • H01L21/76213Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using a local oxidation of silicon, e.g. LOCOS, SWAMI, SILO introducing electrical inactive or active impurities in the local oxidation region, e.g. to alter LOCOS oxide growth characteristics or for additional isolation purpose
    • H01L21/76216Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using a local oxidation of silicon, e.g. LOCOS, SWAMI, SILO introducing electrical inactive or active impurities in the local oxidation region, e.g. to alter LOCOS oxide growth characteristics or for additional isolation purpose introducing electrical active impurities in the local oxidation region for the sole purpose of creating channel stoppers

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Drying Of Semiconductors (AREA)
  • Element Separation (AREA)
  • Local Oxidation Of Silicon (AREA)
  • Bipolar Transistors (AREA)

Description

【発明の詳細な説明】 本発明は、半導体装置の製造方法、より詳しく
は、実質的に横方向に進むことなく縦方向にのみ
エツチングが進む異方性ドライエツチング
(RIPE型ドライエツチング)の技術を利用し、将
来形成されるべき素子用の不純物拡散領域に衝突
することのないように自己整合(セルフアライ
ン)でチヤネルカツト領域を形成する方法に関す
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing a semiconductor device, and more specifically, to an anisotropic dry etching (RIPE dry etching) technique in which etching progresses only in the vertical direction without substantially progressing in the lateral direction. This invention relates to a method of forming a channel cut region in a self-aligned manner so as to prevent it from colliding with an impurity diffusion region for an element to be formed in the future.

MIS型半導体装置の一例として、第1図に示さ
れるn-チヤネルMISトランジスタ素子の断面図
を参照すると、はp形シリコン基板、2,2′は
二酸化シリコンから成る絶縁膜、3はゲート電
極、4は例えばりん・シリケート・ガラス
(PSG)から成る絶縁層、5はゲート・コンタク
ト、6と7はそれぞれソースとドレーン用のコン
タクト、n+はn+拡散層、8はフイールド酸化膜、
15はp+拡散層である。
Referring to the cross-sectional view of an n - channel MIS transistor element shown in FIG. 1 as an example of a MIS type semiconductor device, numeral 2 is a p-type silicon substrate, 2 and 2' are insulating films made of silicon dioxide, 3 is a gate electrode, 4 is an insulating layer made of, for example, phosphorous silicate glass (PSG), 5 is a gate contact, 6 and 7 are contacts for source and drain, respectively, n + is an n + diffusion layer, 8 is a field oxide film,
15 is a p + diffusion layer.

かゝる半導体素子の高速化を実現するために
は、基板と素子との接合容量を減少させることが
要求され、またかゝる素子を高耐圧化するために
は、n+拡散層の耐圧を上げることが必要で、そ
のために当該n+拡散層に衝突しないようチヤネ
ルカツト領域を設けることが必要である。図示の
p+拡散層はかゝる要求を満たすものである。
In order to increase the speed of such semiconductor devices, it is necessary to reduce the junction capacitance between the substrate and the device, and to increase the breakdown voltage of such devices, it is necessary to reduce the breakdown voltage of the n + diffusion layer. Therefore, it is necessary to provide a channel cut region so as not to collide with the n + diffusion layer. illustrated
The p + diffusion layer satisfies these requirements.

従来技術においてかゝるチヤネルカツト領域を
形成するためには、マスクを1枚余分に必要と
し、そのための特別の工程が要求された。
In the prior art, in order to form such a channel cut region, an extra mask was required and a special process was required.

本発明の目的は、上記の如きそのためのマスク
を必要とすることなくチヤネルカツト領域を形成
し、接合容量を減少し、拡散層の耐圧を上げるこ
とにより、高速かつ高耐圧の半導体装置を提供す
ることにある。その目的を実現するために、半導
体基板上に耐酸化マスク膜パターンを形成する工
程、該耐酸化マスク膜パターンを覆う保護膜を形
成する工程、該保護膜上に該保護膜とは異なる半
導体又は絶縁物若しくは金属から成る膜を被着形
成する工程、該膜を異方性ドライエツチングによ
つて該保護膜が露出するまで全面エツチングして
前記耐酸化マスク膜パターンの側縁部分にほぼ該
膜の成長膜に等しい幅に残存させる側壁膜を形成
する工程、該耐酸化マスク膜パターンとその側縁
部分に残存させた側壁膜とをマスクとしてチヤネ
ルカツト領域に対応する不純物導入領域を画定し
形成する工程、前記側壁膜を選択的に除去した後
に耐酸化マスク膜をマスクとする選択酸化により
酸化膜を形成する工程、を含むことを特徴とする
半導体装置の製造方法を提供するもので、実質的
に横方向に進むことなく縦方向にのみエツチング
が進む異方性エツチング(RIPE型エツチング)
の技術を利用し、将来形成されるべき例えばn+
領域に衝突することのないよう十分離して、セル
フアラインでチヤネルカツト領域を形成するもの
である。
An object of the present invention is to provide a high-speed and high-voltage semiconductor device by forming a channel cut region without requiring a mask as described above, reducing the junction capacitance, and increasing the breakdown voltage of the diffusion layer. It is in. In order to achieve this purpose, a process of forming an oxidation-resistant mask film pattern on a semiconductor substrate, a process of forming a protective film covering the oxidation-resistant mask film pattern, and a process of forming a semiconductor or A step of depositing and forming a film made of an insulating material or a metal, etching the entire surface of the film by anisotropic dry etching until the protective film is exposed, and etching the film almost on the side edge portions of the oxidation-resistant mask film pattern. a step of forming a sidewall film remaining with a width equal to the grown film; using the oxidation-resistant mask film pattern and the sidewall film left on the side edge portions as a mask to define and form an impurity introduction region corresponding to the channel cut region; The present invention provides a method for manufacturing a semiconductor device, comprising: a step of selectively removing the sidewall film and then forming an oxide film by selective oxidation using an oxidation-resistant mask film as a mask; Anisotropic etching in which etching progresses only in the vertical direction without progressing in the horizontal direction (RIPE type etching)
For example, n + should be formed in the future using the technology of
A channel cut region is formed by self-alignment at a sufficient distance so as not to collide with the region.

以下、本発明の方法の実施例を、添付図面を参
照して説明する。
Embodiments of the method of the present invention will be described below with reference to the accompanying drawings.

第2図は本発明の方法を実施する工程の断面図
である。先ずそのaに示されるように、p形シリ
コン基板1上に通常の熱酸化法を用いて下地とな
るSiO2の絶縁膜11を例えば500〔Å〕の膜厚に
形成し、全面にシリコンナイトライド(Si3N4
膜を成長し、マスクを使用してSi3N4膜のみをパ
ターニングし、このために用いたレジストを除去
してSi3N4膜12を図示の如くに形成する。
FIG. 2 is a cross-sectional view of the process of carrying out the method of the invention. First, as shown in part a, an insulating film 11 of SiO 2 as a base is formed to a thickness of, for example, 500 [Å] on a p-type silicon substrate 1 using a normal thermal oxidation method, and then silicon night is coated on the entire surface. Ride (Si 3 N 4 )
A film is grown, only the Si 3 N 4 film is patterned using a mask, and the resist used for this is removed to form the Si 3 N 4 film 12 as shown.

次に、そのbに示されるように、化学気相成長
法(CVD)でSiO2を被着してブロツク酸化膜1
3を数百〜数千〔Å〕の膜厚に形成する。ブロツ
ク酸化膜13は後に説明するRIPE型エツチング
及びポリシリコンの全面除去の際にブロツクの役
目を果たす。
Next, as shown in part b, SiO 2 is deposited by chemical vapor deposition (CVD) to form a block oxide film 1.
3 is formed to a thickness of several hundred to several thousand [Å]. The block oxide film 13 serves as a block during RIPE etching and complete removal of polysilicon, which will be described later.

続いて、そのcに示されるように、例えば多結
晶シリコン(ポリシリコン)膜を1〔μm〕の膜厚
に成長させてポリシリコン膜14を形成する。ポ
リシリコン以外にも、ブロツク酸化膜13として
はRIPE型のエツチングにおけるエツチング速度
とエツチング液(エツチヤント)とが異なるその
他の材料をも使用しうる。
Subsequently, as shown in c, for example, a polysilicon film 14 is formed by growing a polycrystalline silicon (polysilicon) film to a thickness of 1 [μm]. In addition to polysilicon, other materials may be used as the block oxide film 13, which differ in the etching rate and etching solution (etchant) used in RIPE etching.

こゝで、RIPE型ドライエツチングを適用して
ポリシリコン膜厚1〔μm〕分だけ除去すると、
Si3N4膜12の上方部分のポリシリコンは除去さ
れるが、SI2N4膜12段部に成長したポリシリコ
ンは縦(垂直)方向には数〔μm〕の厚みを有す
るので、1〔μm〕の膜厚分だけの幅で段部に沿つ
てポリシリコンは残存するようになる。この結果
同図dに示される構造が得られる。ポリシリコン
よりもSiO2の方がエツチング速度が大であるか
ら、図で矢印で示すブロツク酸化膜13は若干エ
ツチングされる。このことは、次になされるチヤ
ネルカツト領域拡散のための例えば高濃度ほう素
(B+)のイオン注入に関しても意義がある。ブロ
ツク酸化膜13の本来の機能は、RIPEエツチン
グの際に基板シリコンが露出してしまわないよう
にすることにあり、それにより後のポリシリコン
全面除去時に基板シリコンのエツチングを防ぐも
のである。
Now, if we apply RIPE dry etching to remove 1 [μm] of polysilicon film thickness,
The polysilicon in the upper part of the Si 3 N 4 film 12 is removed, but since the polysilicon grown in the step part of the SI 2 N 4 film 12 has a thickness of several [μm] in the vertical (vertical) direction, The polysilicon remains along the stepped portion with a width corresponding to the film thickness of [μm]. As a result, the structure shown in Figure d is obtained. Since the etching rate of SiO 2 is higher than that of polysilicon, the block oxide film 13 shown by the arrow in the figure is slightly etched. This is also significant for the subsequent ion implantation of, for example, high concentration boron (B + ) for channel cut region diffusion. The original function of the block oxide film 13 is to prevent the substrate silicon from being exposed during RIPE etching, thereby preventing etching of the substrate silicon when the entire surface of polysilicon is removed later.

次に、同図eに示されるように、矢印の方向
に、例えば30KeVのエネルギーでB+のイオン注
入をなすと、そのfに示されるようなP+領域1
5(チヤネルカツト領域)が形成される。この場
合、B+イオン注入箇所ではブロツク酸化膜13
は薄くなつているので、注入エネルギーを大きく
する等の特別の配慮は不要となる。
Next, as shown in e of the figure, B + ions are implanted in the direction of the arrow at an energy of, for example, 30 KeV, resulting in a P + region 1 as shown in f.
5 (channel cut area) is formed. In this case, a block oxide film 13 is formed at the B + ion implantation location.
Since it is thinner, there is no need for special considerations such as increasing the implantation energy.

引続き、ポリシリコン膜14をエツチング除去
して、Si3N4膜12を残す。ポリシリコンは例え
ば硝酸−弗化水素系(HNO3−HF)のエツチヤ
ントを用いるウエツト・エツチングで除去する。
この際ブロツク酸化膜13が基板シリコンのエツ
チングを防止する。更に選択酸化法で厚いフイー
ルド酸化膜8を形成し、Si3N4膜12を除くと、
同図gに示される構造が得られる。
Subsequently, the polysilicon film 14 is removed by etching, leaving the Si 3 N 4 film 12. The polysilicon is removed by wet etching using, for example, a nitric acid-hydrogen fluoride (HNO 3 -HF) etchant.
At this time, the block oxide film 13 prevents the substrate silicon from being etched. Furthermore, a thick field oxide film 8 is formed using a selective oxidation method and the Si 3 N 4 film 12 is removed.
The structure shown in figure g is obtained.

それ以後通常の技法で第1図に示される如き半
導体装置を形成する。つまり、前記した第2図f
とgに示される工程において、Si3N4膜12の下
には、半導体装置のn+拡散領域が形成されるべ
き部分が熱酸化工程に影響されることなく残さ
れ、その部分から十分離れたところにあるp+
域15の上に十分に厚いフイールド酸化膜8が形
成され、しかもかゝる位置関係は、特別のマスク
を用いることなく、セルフアラインによつて実現
されるのである。
Thereafter, a semiconductor device as shown in FIG. 1 is formed using conventional techniques. In other words, the above-mentioned figure 2 f
In the steps shown in and g, the part where the n + diffusion region of the semiconductor device is to be formed is left unaffected by the thermal oxidation process under the Si 3 N 4 film 12, and is kept sufficiently far away from that part. A sufficiently thick field oxide film 8 is formed on the p + region 15 located at a certain location, and such positional relationship is realized by self-alignment without using a special mask.

以上の説明と図面の参照から理解される如く、
フイールド酸化膜の下にはp+領域が形成されて
いるため、p形シリコン基板に対する関係におい
て、第1図に示される本発明の方法を用いた半導
体装置では、ソース・ドレーン領域の如き素子用
のn形拡散領域に寄生する接合容量が減少されそ
のことは当該半導体装置の高速化に寄与する。
As understood from the above description and reference to the drawings,
Since a p + region is formed under the field oxide film, in relation to a p-type silicon substrate, in a semiconductor device using the method of the present invention shown in FIG. The parasitic junction capacitance in the n-type diffusion region of the semiconductor device is reduced, which contributes to speeding up the semiconductor device.

また、p+領域15はn+領域との関係において
チヤネルカツト領域として働き、上記したよう
に、p+領域15はセルフアラインによつてn+
域から十分に分離して正確に形成されるので、第
1図の半導体素子においてはn+領域の耐圧を上
げることができ、そのことは高耐圧素子が容易に
形成されるという効果がある。
In addition, the p + region 15 acts as a channel cut region in relation to the n + region, and as described above, the p + region 15 is accurately formed sufficiently separated from the n + region by self-alignment. In the semiconductor device shown in FIG. 1, the breakdown voltage of the n + region can be increased, which has the effect that a high breakdown voltage device can be easily formed.

上記実施例では、RIPEエツチングによつて耐
酸化マスク膜(Si3N4膜)縁部分の段差部に残留
させてチヤネルカツト領域を画定するための膜材
料として、ポリシリコンを例示したが、これは他
の絶縁膜や金属膜で置換え得る。またチヤネルカ
ツト領域はイオン注入法によらずに、上記耐酸化
マスク膜の縁部分に残留させた膜をマスクとして
下地酸化膜に選択拡散窓開きを行ない、通常の不
純物拡散法を適用して実施してもよい。更に前記
ブロツク酸化膜はRIPEエツチング等のエツチン
グ工程中に下地への影響を防ぐためのものであつ
て必須のものではなく、エツチング性を配慮すれ
ば他種の絶縁膜を用いることもできる。要する
に、本発明では耐酸化マスク膜パターンの縁にあ
る段差を利用し、この上に被着形成した膜に対し
異方性ドライエツチングを適用することによつ
て、上記縁部分のみにこの膜を残留させ、かくし
て残存された膜と上記耐酸化マスク膜パターンを
マスクとしてチヤネルカツト領域を画定すること
にある。素子用のn+形拡散領域は耐酸化マスク
膜を利用して埋設形成されるフイールド酸化膜下
には形成されないため、チヤネルカツト領域とは
ほゞ上記縁部分に残存させた膜の幅(即ち被着膜
厚にほゞ等しい)だけ離間されることになる点が
重要である。これにより上述の如く低寄生接合容
量、高耐圧の素子を作成でき、しかもそのための
特別なフオトプロセスは必要ないという効果が得
られるものである。
In the above embodiment, polysilicon was used as an example of the film material to be left on the step part at the edge of the oxidation-resistant mask film (Si 3 N 4 film) to define the channel cut region by RIPE etching. It can be replaced with other insulating films or metal films. In addition, the channel cut region is formed by selectively opening a diffusion window in the base oxide film using the film left at the edge of the oxidation-resistant mask film as a mask, and applying the usual impurity diffusion method. It's okay. Further, the block oxide film is used to prevent the influence on the underlying layer during an etching process such as RIPE etching, and is not essential, and other types of insulating films may be used if etching properties are taken into consideration. In short, in the present invention, by utilizing the step at the edge of the oxidation-resistant mask film pattern and applying anisotropic dry etching to the film deposited thereon, the film is etched only at the edge. The remaining film and the oxidation-resistant mask film pattern are used as a mask to define a channel cut region. Since the n + -type diffusion region for the device is not formed under the field oxide film that is buried using the oxidation-resistant mask film, the channel cut region is defined as the width of the film left at the edge (i.e., the width of the film covered). Importantly, they will be spaced apart by a distance (approximately equal to the deposition thickness). As a result, an element with low parasitic junction capacitance and high breakdown voltage can be produced as described above, and a special photo process is not required for this purpose.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の方法を用いて完成された半導
体装置の断面図、第2図は本発明の方法を実施す
る工程の断面図である。 図中、1はp形シリコン基板、2,2′はSiO2
絶縁膜、3はゲート電極、4は絶縁層、5はゲー
ト・コンタクト、6,7はソース・ドレーン・コ
ンタクト、8はフイールド酸化膜、11はSiO2
絶縁膜、12はSi3N4膜、13はブロツク酸化
膜、14はポリシリコン膜、15はp+拡散層
(チヤネルカツト領域)を示す。
FIG. 1 is a cross-sectional view of a semiconductor device completed using the method of the present invention, and FIG. 2 is a cross-sectional view of a step of implementing the method of the present invention. In the figure, 1 is a p-type silicon substrate, 2 and 2' are SiO 2
Insulating film, 3 is a gate electrode, 4 is an insulating layer, 5 is a gate contact, 6 and 7 are source/drain contacts, 8 is a field oxide film, 11 is SiO 2
12 is a Si 3 N 4 film, 13 is a block oxide film, 14 is a polysilicon film, and 15 is a p + diffusion layer (channel cut region).

Claims (1)

【特許請求の範囲】 1 半導体基板上に耐酸化マスク膜パターンを形
成する工程、該耐酸化マスク膜パターンを覆う保
護膜を形成する工程、該保護膜上に該保護膜とは
異なる半導体又は絶縁物若しくは金属から成る膜
を被着形成する工程、該膜を異方性ドライエツチ
ングによつて該保護膜が露出するまで全面エツチ
ングして前記耐酸化マスク膜パターンの側縁部分
にほぼ該膜の成長膜厚に等しい幅に残存させる側
壁膜を形成する工程、該耐酸化マスク膜パターン
とその側縁部分に残存させた側壁膜とをマスクと
してチヤネルカツト領域に対応する不純物導入領
域を画定し形成する工程、 前記側壁膜を選択的に除去した後に耐酸化マス
ク膜をマスクとする選択酸化により酸化膜を形成
する工程、を含むことを特徴とする半導体装置の
製造方法。
[Scope of Claims] 1. A step of forming an oxidation-resistant mask film pattern on a semiconductor substrate, a step of forming a protective film covering the oxidation-resistant mask film pattern, and a step of forming a semiconductor or an insulator different from the protective film on the protective film. A step of depositing and forming a film made of material or metal, etching the entire surface of the film by anisotropic dry etching until the protective film is exposed, so that almost all of the film is formed on the side edge portions of the oxidation-resistant mask film pattern. A step of forming a sidewall film to remain with a width equal to the thickness of the grown film, using the oxidation-resistant mask film pattern and the sidewall film left at the side edges as a mask to define and form an impurity introduction region corresponding to the channel cut region. A method of manufacturing a semiconductor device, comprising: forming an oxide film by selective oxidation using an oxidation-resistant mask film as a mask after selectively removing the sidewall film.
JP4132481A 1981-03-20 1981-03-20 Manufacture of semiconductor device Granted JPS57155747A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4132481A JPS57155747A (en) 1981-03-20 1981-03-20 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4132481A JPS57155747A (en) 1981-03-20 1981-03-20 Manufacture of semiconductor device

Publications (2)

Publication Number Publication Date
JPS57155747A JPS57155747A (en) 1982-09-25
JPH0350418B2 true JPH0350418B2 (en) 1991-08-01

Family

ID=12605337

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4132481A Granted JPS57155747A (en) 1981-03-20 1981-03-20 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPS57155747A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5347782A (en) * 1976-10-13 1978-04-28 Hitachi Ltd Production of semiconductor device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5347782A (en) * 1976-10-13 1978-04-28 Hitachi Ltd Production of semiconductor device

Also Published As

Publication number Publication date
JPS57155747A (en) 1982-09-25

Similar Documents

Publication Publication Date Title
US4488351A (en) Method for manufacturing semiconductor device
US4330931A (en) Process for forming metal plated regions and lines in MOS circuits
US3958323A (en) Three mask self aligned IGFET fabrication process
JPS5928992B2 (en) MOS transistor and its manufacturing method
EP0036573A2 (en) Method for making a polysilicon conductor structure
JPH0355984B2 (en)
US7176071B2 (en) Semiconductor device and fabrication method with etch stop film below active layer
US4532698A (en) Method of making ultrashort FET using oblique angle metal deposition and ion implantation
US4497108A (en) Method for manufacturing semiconductor device by controlling thickness of insulating film at peripheral portion of element formation region
US4553314A (en) Method for making a semiconductor device
US4885261A (en) Method for isolating a semiconductor element
JPS61247051A (en) Manufacture of semiconductor device
JP3058981B2 (en) Method for manufacturing transistor
JPS62232142A (en) Manufacture of semi-oxide isolation device
JPS6252950B2 (en)
JPH0350418B2 (en)
JPS62285468A (en) Manufacture of ldd field-effect transistor
JP3088556B2 (en) Semiconductor device manufacturing method
JPH0918003A (en) Manufacture of field effect transistor
JPS62132363A (en) Manufacture of semiconductor device
JP3366709B2 (en) Method for manufacturing MOS transistor
KR0186186B1 (en) Method of manufacturing semiconductor device
KR930001565B1 (en) Manufacturing method of c-mos transistor
US4517728A (en) Manufacturing method for MIS-type semiconductor device
JPH11354650A (en) Semiconductor device and its manufacture