JPH0348203A - Formation of optical waveguide device - Google Patents

Formation of optical waveguide device

Info

Publication number
JPH0348203A
JPH0348203A JP18416089A JP18416089A JPH0348203A JP H0348203 A JPH0348203 A JP H0348203A JP 18416089 A JP18416089 A JP 18416089A JP 18416089 A JP18416089 A JP 18416089A JP H0348203 A JPH0348203 A JP H0348203A
Authority
JP
Japan
Prior art keywords
optical
optical waveguide
waveguide
groove
waveguide substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18416089A
Other languages
Japanese (ja)
Inventor
Minoru Kiyono
實 清野
Takashi Yamane
隆志 山根
Teruo Kurahashi
輝雄 倉橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP18416089A priority Critical patent/JPH0348203A/en
Publication of JPH0348203A publication Critical patent/JPH0348203A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To improve the mass-productivity and productivity by forming grooves crossing optical waveguides on the optical waveguide formation surface of a waveguide substrate and then adhering films on the internal wall surfaces of the grooves. CONSTITUTION:The grooves 5a which are deep enough to cut the optical waveguides 6 are formed with a blade saw at right angles to the optical waveguides 6 on the optical waveguide formation surface of the wafer type waveguide substrate 5 and then the films of, for example, silicon oxide (SiO2) are adhered by CVD, etc., on the surface of the waveguide substrate 6 to give the same effect with an AR coat film to the end surfaces of the optical waveguides 6. Therefore, a next process can be entered without cutting the wafer type waveguide substrate 6 individual parts. Consequently, the optical waveguide device which is rich in mass-productivity is obtained.

Description

【発明の詳細な説明】 〔概 要〕 光通信システム等の光回路構或部品としての先導波路デ
バイスの形成方法に関し、 量産性の向上と単一機能部品の削減によって生産性の向
上を図ることを目的とし、 導波路基板の光導波路形成面の先導波路を横切る方向に
少なくとも該光導波路を切断するに足る深さの溝を形成
した後、該溝の内壁面に膜を被着形成して横戒する。
[Detailed Description of the Invention] [Summary] To improve productivity by improving mass production and reducing the number of single-function components in a method of forming a guided waveguide device as an optical circuit structure or component of an optical communication system, etc. For the purpose of this, a groove is formed at least deep enough to cut the optical waveguide in the direction across the leading waveguide on the optical waveguide forming surface of the waveguide substrate, and then a film is deposited on the inner wall surface of the groove. to override.

また、導波路基板の光導波路形成面の光導波路を横切る
方向に少なくとも該光導波路を切断するに足る深さの溝
を形成し、該溝の内壁面に膜を被着形成した後、該溝の
中心線上で該導波路基板を切断して構或する。
Further, a groove having a depth sufficient to cut at least the optical waveguide is formed in the direction across the optical waveguide on the optical waveguide forming surface of the waveguide substrate, and a film is deposited on the inner wall surface of the groove, and then the groove is formed. The waveguide substrate is cut on the center line of the waveguide substrate.

〔産業上の利用分野〕[Industrial application field]

本発明は光通信システム等の光回路構或部品に係り、特
に量産性の向上と単一機能部品の削減によって生産性の
向上を図った光導波路デバイスの形成方法に関する。
The present invention relates to optical circuit structures or components for optical communication systems, and more particularly to a method for forming an optical waveguide device that improves productivity by improving mass productivity and reducing the number of single-function components.

光通信技術の進展につれて各種機能を持つ光デバイスが
求められているが、これらのデバイスは通常単機能の部
品を組み合わせて構威しており、しかもこの組立に高精
度の調整作業を必要とするため価格が高く生産性の向上
を阻害している。
As optical communication technology advances, optical devices with various functions are required, but these devices are usually constructed by combining single-function parts, and this assembly requires highly precise adjustment work. Therefore, the price is high and it is hindering productivity improvement.

従って量産性に優れた光デバイスの実用化が強く望まれ
ている。
Therefore, there is a strong desire to put optical devices into practical use that can be easily mass-produced.

〔従来の技術〕[Conventional technology]

一般に光デバイスとしての光導波路を光ファイバと接続
したり,伝送される光信号をレンズ等を介して外部と遣
り取りするような場合には、光信号の伝達効率が低下し
ないように該先導波路の端面を加工しなければならない
Generally, when connecting an optical waveguide as an optical device with an optical fiber, or when transmitting an optical signal to the outside via a lens, etc., the guide waveguide is The end face must be machined.

第4図は従来の先導波路デバイスの端面形成方法の一例
を示す図である。
FIG. 4 is a diagram showing an example of a conventional method for forming an end face of a guided waveguide device.

第4図(1)で、lは例えばリチウム・ナイオベート(
LiNb03)等からなるウエーハ状の導波路基板であ
り、該導波路基板lの表面には複数の例えば変調器2が
その両側に繋がる光導波路3と共に形成されている。
In Figure 4 (1), l is, for example, lithium niobate (
It is a wafer-shaped waveguide substrate made of LiNb03) or the like, and a plurality of, for example, modulators 2 are formed on the surface of the waveguide substrate l along with optical waveguides 3 connected to both sides thereof.

なお通常は、該導波路基板lの上記変調器2および光導
波路3の形成面側の表面全面には更にバソファ層が被着
形成されているが、本図では理解し易くするために図示
していない。
Normally, a bathophage layer is further formed on the entire surface of the waveguide substrate l on the side where the modulator 2 and optical waveguide 3 are formed, but this is not shown in this figure for ease of understanding. Not yet.

そこで、上記の各光導波路3を光ファイバその他のデバ
イスに接続する場合、先ず上記導波路基板1をダイアモ
ンド・カソタ等で破線A,A“で各変調器ごとに個片切
断し、上記光導波路3と直交する切断面la上に上記光
導波路3の端面3aを露出させて図(2)に示す状態と
する。
Therefore, when connecting each of the above-mentioned optical waveguides 3 to an optical fiber or other device, first cut the above-mentioned waveguide substrate 1 into individual pieces for each modulator along broken lines A and A'' using a diamond cutter, etc. The end face 3a of the optical waveguide 3 is exposed on the cut plane la perpendicular to the optical waveguide 3, resulting in the state shown in FIG.

この場合、上記ダイアモンド・カッタ等による切断面1
aには微小な凹凸があると共に、特に導波路基板lが上
記のようにリチウム・ナイオベート(LiNbO:+)
の如き結晶基板からなるときにはその屈折率nが例えば
2.14程度と大気に比較して大きいため、該端面3a
での光信号の反射損失が大きくなる。
In this case, the cut surface 1 by the above-mentioned diamond cutter etc.
There are minute irregularities in a, and especially the waveguide substrate l is made of lithium niobate (LiNbO:+) as mentioned above.
When the crystal substrate is made of a crystal substrate such as the one shown in FIG.
The reflection loss of the optical signal increases.

そこで、通常は該切断面1aの面をアルξナ粉末等を研
磨材として光学的に研磨しほぼ鏡面状とした後に該切断
面1aの全面にARコート膜(反射防止膜〉4を蒸着形
成するようにしている。
Therefore, usually, the surface of the cut surface 1a is optically polished using an abrasive such as alumina powder to make it almost mirror-like, and then an AR coating film (anti-reflection film) 4 is deposited on the entire surface of the cut surface 1a. I try to do that.

図(3)はこの状態を示した図である。Figure (3) is a diagram showing this state.

しかしかかる端面形成方法による場合には、上記研磨の
段階で該導波路基板lを損なう危険が大きくなると共に
、各素子ごとに研磨しまたARコート膜(反射防止膜)
4を形成する必要があるため工数がかかる欠点がある。
However, when such an end face formation method is used, there is a greater risk of damaging the waveguide substrate l during the polishing step, and it is also necessary to polish each element individually, and to apply an AR coating film (anti-reflection film).
Since it is necessary to form 4, there is a drawback that it takes a lot of man-hours.

一方、光導波路のほぼ鏡面状断面が露出する溝を上記導
波路基板に形成する方法に、図示されないリアクティプ
・イオン・エッチング技術やイオン・ξリング技術等が
あるが、これらの方法は溝の加工に時間がかかると共に
形成される溝の深さも精々約10μ働以下であり、更に
上記導波路基板が結晶基板なるためエッチング時に異方
性が出て溝の側面が垂直にならない等の、欠点があるた
め適用分野が制約され一般的でない。
On the other hand, there are reactive ion etching techniques and ion ξ ring techniques (not shown) that form grooves in the waveguide substrate that expose almost mirror-like cross sections of the optical waveguides, but these methods do not require processing of the grooves. It takes a long time to process, and the depth of the groove formed is at most about 10 μm or less.Furthermore, since the waveguide substrate is a crystal substrate, anisotropy occurs during etching, and the sides of the groove are not vertical. Therefore, the field of application is restricted and it is not common.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

従来の光導波路デバイスの形成方法では、他の光デバイ
スとの接続面となる光導波路端面を研磨する段階で導波
路基板を損なう危険があると言う問題があり、また各チ
ップごとに研磨し更にARコート膜を形成する必要があ
るため量産性が抑制されて生産性の向上が期待できない
と言う問題があった。
In conventional methods for forming optical waveguide devices, there is a problem in that there is a risk of damaging the waveguide substrate at the stage of polishing the end face of the optical waveguide, which is the connection surface with other optical devices. Since it is necessary to form an AR coating film, there is a problem in that mass productivity is suppressed and no improvement in productivity can be expected.

〔課題を解決するための手段〕[Means to solve the problem]

上記問題点は、導波路基板の光導波路形成面の光導波路
を横切る方向に少なくとも該光導波路を切断するに足る
深さの溝を形成した後、該溝の内壁面に膜を被着形成す
る光導波路デバイスの形成方法によって解決される。
The above problem is solved by forming a groove with a depth sufficient to cut at least the optical waveguide in the direction across the optical waveguide on the optical waveguide forming surface of the waveguide substrate, and then forming a film on the inner wall surface of the groove. The problem is solved by a method of forming an optical waveguide device.

また、導波路基板の光導波路形成面の光導波路を横切る
方向に少なくとも該光導波路を切断するに足る深さの溝
を形成し、該溝の内壁面に膜を被着形成した後、 該溝幅より薄いカッタによって上記溝の中心線上で該導
波路基板を切断する光導波路デバイスの形成方法によっ
て解決される。
Further, after forming a groove at least deep enough to cut the optical waveguide in the direction across the optical waveguide on the optical waveguide forming surface of the waveguide substrate and depositing a film on the inner wall surface of the groove, This problem is solved by a method of forming an optical waveguide device in which the waveguide substrate is cut on the center line of the groove with a cutter that is thinner than the width.

〔作 用〕 # 2000程度の細かさのブレード・ソーを使用して
導波路基板の表面に光導波路を切断する溝を形成すると
、該溝の壁面に露出する光導波路の断面は光学研磨面と
ほぼ同等の平滑面を呈する。
[Operation] When a groove for cutting the optical waveguide is formed on the surface of the waveguide substrate using a blade saw with a fineness of about #2000, the cross section of the optical waveguide exposed on the wall of the groove becomes an optically polished surface. It exhibits almost the same smooth surface.

また、溝が形成された導波路基板の表面に例えばCVD
技術やスパッタリング技術等によって薄膜を形成すると
、該薄膜は上記溝の内部壁面にもほぼ一様の厚さで被着
するがその際該内部壁面の微小な凹凸は該薄膜に埋没し
て更に平滑な面を形成する。
In addition, for example, CVD is applied to the surface of the waveguide substrate in which grooves are formed.
When a thin film is formed using technology such as sputtering technology or sputtering technology, the thin film adheres to the inner wall surface of the groove with a substantially uniform thickness, but at this time, minute irregularities on the inner wall surface are buried in the thin film and become even smoother. form a surface.

本発明では、複数の光導波路が形成されているウエーハ
状の導波路基板の該光導波路形成面の光導波路と直交す
る方向に少なくとも先導波路を切断するに足る深さの溝
をブレード・ソーで形成した後、該導波路基板の表面に
例えば酸化珪素(SiO2〉膜をCVD等の技術で被着
形成することによって光導波路端面にARコート膜と同
等の効果を与えるようにしている。
In the present invention, a groove with a depth sufficient to cut at least a leading waveguide is formed using a blade saw in a direction orthogonal to the optical waveguide on the optical waveguide forming surface of a wafer-shaped waveguide substrate on which a plurality of optical waveguides are formed. After the formation, a silicon oxide (SiO2) film, for example, is deposited on the surface of the waveguide substrate using a technique such as CVD, thereby providing the same effect as an AR coating film on the end face of the optical waveguide.

従ってウエーハ状の導波路基板を個片切断することなく
次工程に移行することができて量産性に冨む光導波路デ
バイスを得ることができる。
Therefore, it is possible to proceed to the next process without cutting the wafer-shaped waveguide substrate into individual pieces, and it is possible to obtain an optical waveguide device that is highly mass-producible.

?実施例〕 第1図は本発明を説明する図であり、第2図および第3
図は他の実施例を示す図である。
? Example] Figure 1 is a diagram explaining the present invention, and Figures 2 and 3 are diagrams for explaining the present invention.
The figure shows another embodiment.

第1図(A)で、5は例えばリチウム・ナイオベ} (
LiNbOs)等からなるウェーハ状の導波路基板であ
り、該導波路基仮5の表面には第4図同様に複数の変調
器2がその両側に繋がる光導波路6と共に形成されてい
る。
In Figure 1 (A), 5 is, for example, lithium niobe} (
This is a wafer-shaped waveguide substrate made of LiNbOs, etc., and a plurality of modulators 2 are formed on the surface of the waveguide substrate 5, as in FIG. 4, along with optical waveguides 6 connected to both sides thereof.

また該導波路基板5の上記変調器2および光導波路6の
形成面側の表面全面には厚さ0.5μm程度の二酸化シ
リコン(SiO■)等からなるバソファ層7が被着形成
されている。
Further, a bathophage layer 7 made of silicon dioxide (SiO) or the like having a thickness of about 0.5 μm is adhered to the entire surface of the waveguide substrate 5 on the side where the modulator 2 and the optical waveguide 6 are formed. .

そこで、例えば# 2000位の細かさのブレード・ソ
ーを使用して図のA,線に沿って幅aが10〜2Ott
m位.深さdが100μm程度の溝5aを形成して図(
B)に示す状態とする。
Therefore, using a blade saw with a fineness of, for example, #2000, the width a is 10 to 2 otts along the line A in the diagram.
m rank. A groove 5a having a depth d of about 100 μm is formed as shown in FIG.
The state shown in B) is established.

この時点で、該溝5aの両側の壁面5bに露出する上記
光導波路6の端面はほぼ光学研磨された面と同等の平滑
度を呈している。
At this point, the end surfaces of the optical waveguide 6 exposed on the wall surfaces 5b on both sides of the groove 5a have approximately the same smoothness as an optically polished surface.

図(C)は該図(B)の状態にある導波路基板5の光導
波路6をその長平方向に沿って垂直に切断した図を示し
たもので、6aは光導波路6の端面を示している。
Figure (C) shows the optical waveguide 6 of the waveguide substrate 5 in the state shown in Figure (B), cut vertically along its elongated direction, and 6a shows the end surface of the optical waveguide 6. There is.

次いで該導波路基板5の表面全面にCVD技術によって
約1000人の厚さの酸化珪素(Sing)膜8を被着
形成すると、図(D)に示すように該酸化珪素(Si(
h)膜8は上記溝5a内部の各壁面にもほぼ同一厚さに
被着形成される。
Next, a silicon oxide (Sing) film 8 with a thickness of about 1000 nm is deposited on the entire surface of the waveguide substrate 5 by CVD technology, and as shown in FIG.
h) The film 8 is also formed to have approximately the same thickness on each wall surface inside the groove 5a.

特にその@該溝5aの内部壁面の微小な凹凸は該酸化珪
素(Si02)膜8に埋没することがら更に平滑な面が
形成されるようになる。
In particular, minute irregularities on the inner wall surface of the groove 5a are buried in the silicon oxide (Si02) film 8, so that a smoother surface is formed.

この場合、酸化珪素(Stow)膜8の屈折率nはほぼ
1.45であるため、光ファイバ6の端面6aにおける
光信号の反射損失が小さく結果的にARコート膜(反射
防止膜〉としての効果を果たすことになる。
In this case, since the refractive index n of the silicon oxide (Stow) film 8 is approximately 1.45, the reflection loss of the optical signal at the end face 6a of the optical fiber 6 is small, and as a result, it can be used as an AR coating film (anti-reflection film). It will be effective.

その後、該光導波路6の端面6aに例えば光ファイバの
如き他のデバイスを接続する場合には、図(D)の矢印
B線上で該Y!I#5aの幅よりも薄いダイアモンド・
カフタ,あるいは回転薄刃による切削方法等で該導波路
基板5を切断して該端面6aを外部に露出せしめること
によって他のデバイスの接続を可能とすることができる
After that, when connecting another device such as an optical fiber to the end surface 6a of the optical waveguide 6, the Y! Diamond thinner than the width of I#5a.
By cutting the waveguide substrate 5 using a cutting method using a cuff or a rotary thin blade to expose the end face 6a to the outside, it is possible to connect other devices.

かかる方法になる光導波路デバイスの製造方法では、チ
ップごとに切断分離することなく複数の光導波路の各端
面に光信号の反射損失を小さくするARコート膜を同時
に形成することができるため、効率よく先導波路デバイ
スを得ることができる。
In this method of manufacturing an optical waveguide device, an AR coating film that reduces the reflection loss of optical signals can be simultaneously formed on each end face of a plurality of optical waveguides without cutting and separating each chip. A leading waveway device can be obtained.

他の実施例を説明する第2図は先導波路の部分を拡大し
て示している。
FIG. 2 illustrating another embodiment shows an enlarged view of the leading waveguide.

図で、10は第1図同様にリチウム・ナイオベートから
なるウエーハ状の導波路基板であり、該導波路基板lO
の表面には図の破線で示すように所定の交差角αでS点
で交差する光導波路11a.1lbが形成されている。
In the figure, 10 is a wafer-shaped waveguide substrate made of lithium niobate as in FIG.
As shown by the broken line in the figure, there are optical waveguides 11a. 1 lb is formed.

更に該光導波路11a,llbの表面には第1図で説明
したバッファFJ12が形成されている。
Furthermore, the buffer FJ12 explained in FIG. 1 is formed on the surface of the optical waveguides 11a and 11b.

そこで、上記光導波路11a,llbの交差角αを二分
する方向と直交し且つ上記光導波路11a,llbの交
点を含む線上に第l図で説明した方法で溝10aを形成
した後、該溝10aの内壁面を含む全面にARコート膜
としての酸化珪素膜l3をCVD等の技術で被着形成す
ることは第l図で説明した通りである。
Therefore, after forming a groove 10a by the method explained in FIG. As explained in FIG. 1, the silicon oxide film 13 as an AR coating film is deposited and formed on the entire surface including the inner wall surface by a technique such as CVD.

次いで該酸化珪素膜13上に、特に赤外線領域の光信号
に対して高い反射率を有する金(Au)または銅(Cu
)からなる厚さ0.1μm程度の反射膜14をスパッタ
リング技術を用いて被着形成する。
Next, on the silicon oxide film 13, gold (Au) or copper (Cu), which has a high reflectance particularly for optical signals in the infrared region, is applied.
) A reflective film 14 having a thickness of about 0.1 μm is deposited using sputtering technology.

かかる光導波路デバイスでは、例えば光導波路11aの
P点から入射する光信号Lは溝10aの壁面でARコー
ト膜としての酸化珪素膜13を透過しS点近傍の上記反
射膜14で全反射した後、該溝10aの同じ壁面に繋が
る光導波路1lbに光信号L゜となって伝送される。
In such an optical waveguide device, for example, an optical signal L incident from point P of the optical waveguide 11a is transmitted through the silicon oxide film 13 as an AR coating film on the wall surface of the groove 10a, and is totally reflected by the reflective film 14 near the point S. , is transmitted as an optical signal L° to an optical waveguide 1lb connected to the same wall surface of the groove 10a.

一方該溝10aの反対側でも同様に、光導波路11aを
伝送されてくる光信号L1は上記反射膜14で全?射し
た後光信号L1”となって光導波路1lb中を伝送する
ことになる。
On the other hand, on the other side of the groove 10a, the optical signal L1 transmitted through the optical waveguide 11a is completely absorbed by the reflective film 14. After being irradiated, it becomes an optical signal L1'' and is transmitted through the optical waveguide 1lb.

このことは、相互に交差する光導波路, lla,1l
bの交点Sに全反射ミラーを配置したことと同じ効果を
呈することから、結果的に全反射ξラーおよびその設置
工数が不要となって生産性のよい光導波路デバイスを形
成することができる。
This means that the optical waveguides that cross each other, lla, 1l
Since it has the same effect as arranging a total reflection mirror at the intersection S of b, the total reflection ξ mirror and the man-hours for its installation become unnecessary, making it possible to form an optical waveguide device with high productivity.

更に他の実施例を示す第3図は第2図における反射膜I
4の代わりに、酸化珪素(SiO■)と珪素(Si)を
例えばCVD技術によってそれぞれ数オングストローム
の厚さで交互に20数層積層した誘電体多層膜l5を形
成したものである。
FIG. 3 showing still another embodiment is a reflection film I in FIG.
Instead of 4, a dielectric multilayer film 15 is formed by alternately laminating more than 20 layers of silicon oxide (SiO2) and silicon (Si), each with a thickness of several angstroms, by, for example, CVD technology.

かかる光導波路デハイスでは、先導波路11aのP点か
ら波長λ,,λ2の二波長を持つ光信号eを入射すると
該光信号eは溝10aの壁面で酸化珪素膜13を透過し
S点近傍の上記誘電体多層膜15で分離された後、例え
ば波長λ1の光信号は該溝lOaの同し壁面に繋がる光
導波路1lbに光信号Cとなって反射伝送され、波長λ
2の光信号は該誘電体多層膜l5を透過して該溝10a
の他の壁面に繋がる光導波路11aに光信号12となっ
てそのまま伝送される. なお該溝10aの反対側の光導波路11a, llbで
も同様の効果を呈することは第2図で説明した場合と同
様である。
In such an optical waveguide device, when an optical signal e having two wavelengths λ, λ2 is inputted from point P of the leading waveguide 11a, the optical signal e is transmitted through the silicon oxide film 13 on the wall surface of the groove 10a and is transmitted to a point near point S. After being separated by the dielectric multilayer film 15, the optical signal with a wavelength λ1, for example, is reflected and transmitted as an optical signal C to an optical waveguide 1lb connected to the same wall surface of the groove lOa, and is transmitted with a wavelength λ1.
The optical signal No. 2 passes through the dielectric multilayer film l5 and enters the groove 10a.
The optical signal 12 is transmitted as is to the optical waveguide 11a connected to another wall surface. It should be noted that the optical waveguides 11a and 11b on the opposite side of the groove 10a also exhibit the same effect as in the case explained in FIG. 2.

更に光の可逆性を利用することによって波長の異なる2
個の光信号を分離したり結合させることができる。
Furthermore, by utilizing the reversibility of light, two
It is possible to separate and combine individual optical signals.

このことは、相互に交差する光導波路, 11a.1l
bの交点Sにフィルタや光分配器,光結合器を配置した
ことと同じ効果を呈することから、結果的にこれらの単
一機能部品およびその設置工数が不要となって生産性の
よい光導波路デバイ.スを形成することができる。
This means that the mutually intersecting optical waveguides, 11a. 1l
Since it has the same effect as placing a filter, optical splitter, and optical coupler at the intersection S of b, these single-function components and their installation man-hours are no longer required, resulting in a highly productive optical waveguide. Debye. can form a space.

〔発明の効果〕〔Effect of the invention〕

上述の如く本発明により、量産性の向上と単一機能部品
の削減によって生産性の向上を図った光導波路デバイス
の形成方法を提供することができる。
As described above, the present invention can provide a method for forming an optical waveguide device that improves productivity by improving mass productivity and reducing the number of single-function parts.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明を説明する図、 第2図および第3図は他の実施例を示す図、第4図は従
来の光導波路デバイスの端面形成方法の一例を示す図、 である。図において、 2は変調器、    5. 10は導波路基仮、5a,
 10aは溝、      5bは壁面、6, lla
, llbは先導波路、 6aは端面、7,l2はバッ
ファ層、 8,l3は酸化珪素膜、をそれぞれ表わす。 (C) 案9i!明と説明する図 セの寅掩例と説明丁る品 5F+21!] ヂセの4J!姥伊1き髭明11図 嘲1′21′!7l
FIG. 1 is a diagram illustrating the present invention, FIGS. 2 and 3 are diagrams showing other embodiments, and FIG. 4 is a diagram illustrating an example of a conventional method for forming an end face of an optical waveguide device. In the figure, 2 is a modulator; 5. 10 is a temporary waveguide base, 5a,
10a is a groove, 5b is a wall surface, 6, lla
, llb are leading waveguides, 6a is an end face, 7 and 12 are buffer layers, and 8 and 13 are silicon oxide films, respectively. (C) Plan 9i! 5F + 21 of the illustrations and explanations of illustrations and explanations! ] Jise's 4J! Ubai 1ki Higeaki 11 figures mocking 1'21'! 7l

Claims (2)

【特許請求の範囲】[Claims] (1)導波路基板(5)の光導波路形成面の光導波路(
6)を横切る方向に少なくとも該光導波路(6)を切断
するに足る深さの溝(5a)を形成した後、該溝(5a
)の内壁面に膜(8)を被着形成することを特徴とした
光導波路デバイスの形成方法。
(1) Optical waveguide (
After forming a groove (5a) deep enough to cut at least the optical waveguide (6) in the direction across the optical waveguide (6), the groove (5a)
) A method for forming an optical waveguide device, characterized by forming a film (8) on the inner wall surface of the device.
(2)導波路基板(5)の光導波路形成面の光導波路(
6)を横切る方向に少なくとも該光導波路(6)を切断
するに足る深さの溝(5a)を形成し、該溝(5a)の
内壁面に膜(8)を被着形成した後、該溝(5a)の中
心線上で該導波路基板(5)を切断することを特徴とし
た光導波路デバイスの形成方法。
(2) Optical waveguide (
After forming a groove (5a) at least deep enough to cut the optical waveguide (6) in the direction across the optical waveguide (6) and depositing a film (8) on the inner wall surface of the groove (5a), A method for forming an optical waveguide device, comprising cutting the waveguide substrate (5) on the center line of the groove (5a).
JP18416089A 1989-07-15 1989-07-15 Formation of optical waveguide device Pending JPH0348203A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18416089A JPH0348203A (en) 1989-07-15 1989-07-15 Formation of optical waveguide device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18416089A JPH0348203A (en) 1989-07-15 1989-07-15 Formation of optical waveguide device

Publications (1)

Publication Number Publication Date
JPH0348203A true JPH0348203A (en) 1991-03-01

Family

ID=16148418

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18416089A Pending JPH0348203A (en) 1989-07-15 1989-07-15 Formation of optical waveguide device

Country Status (1)

Country Link
JP (1) JPH0348203A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07164281A (en) * 1993-09-28 1995-06-27 Corning Inc Method for working of processed article and article surface
JP2010008686A (en) * 2008-06-26 2010-01-14 Fujitsu Ltd Optical modulating element and its method for manufacturing

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57178205A (en) * 1981-04-27 1982-11-02 Nippon Telegr & Teleph Corp <Ntt> Production of 3-dimensional optical waveguide
JPS61279808A (en) * 1985-06-03 1986-12-10 シ−メンス、アクチエンゲゼルシヤフト Manufacture of lightwave guiding coupler
JPS62119504A (en) * 1985-11-20 1987-05-30 Fujitsu Ltd Optical waveguide device
JPS6317404A (en) * 1986-07-09 1988-01-25 Mitsubishi Cable Ind Ltd Production of organic high-polymer waveguide

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57178205A (en) * 1981-04-27 1982-11-02 Nippon Telegr & Teleph Corp <Ntt> Production of 3-dimensional optical waveguide
JPS61279808A (en) * 1985-06-03 1986-12-10 シ−メンス、アクチエンゲゼルシヤフト Manufacture of lightwave guiding coupler
JPS62119504A (en) * 1985-11-20 1987-05-30 Fujitsu Ltd Optical waveguide device
JPS6317404A (en) * 1986-07-09 1988-01-25 Mitsubishi Cable Ind Ltd Production of organic high-polymer waveguide

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07164281A (en) * 1993-09-28 1995-06-27 Corning Inc Method for working of processed article and article surface
JP2010008686A (en) * 2008-06-26 2010-01-14 Fujitsu Ltd Optical modulating element and its method for manufacturing

Similar Documents

Publication Publication Date Title
US4296995A (en) Optical fiber beam splitter couplers employing coatings with dichroic properties
EP0485109A2 (en) Multicomponent optical devices and method of making the same
US5042896A (en) Polarization device
US4373775A (en) Fiber dichroic coupler
US4976506A (en) Methods for rugged attachment of fibers to integrated optics chips and product thereof
US4452505A (en) Bidirectional coupler for communication over a single fiber
CA2486574A1 (en) Low-loss compact reflective turns in optical wavelengths
JPH0348203A (en) Formation of optical waveguide device
JP2011523596A (en) Method for making a microscale optical structure
JP2000310750A (en) Optical isolator and optical module using same
JP2001350051A (en) Optical waveguide module and its manufacturing method
JPH0868913A (en) Method of finishing optical waveguide structure
US5146522A (en) Methods for rugged attachment of fibers to integrated optics chips and product thereof
US4961801A (en) Method of making a bidirectional coupler for communication over single fiber
KR100434856B1 (en) Optical component and process for producing the same
US7061023B2 (en) Integrated optical devices and methods of making such devices
JPH0234806A (en) Demultiplexer/multiplexer and its manufacture
JPS6360410A (en) Optical device
JPH09258044A (en) Optical filter-containing waveguide type optical device
US5687263A (en) Optical RF bandpass filter and method for manufacturing same
JPS58196521A (en) Optical coupling circuit
JPS624682B2 (en)
US6596557B1 (en) Integrated optical devices and methods of making such devices
JPH079496B2 (en) Method of forming optical waveguide device
JPH0212110A (en) Production of optical integrated circuit