JPH0212110A - Production of optical integrated circuit - Google Patents

Production of optical integrated circuit

Info

Publication number
JPH0212110A
JPH0212110A JP16091588A JP16091588A JPH0212110A JP H0212110 A JPH0212110 A JP H0212110A JP 16091588 A JP16091588 A JP 16091588A JP 16091588 A JP16091588 A JP 16091588A JP H0212110 A JPH0212110 A JP H0212110A
Authority
JP
Japan
Prior art keywords
wafer
grooves
optical integrated
shaped groove
chips
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16091588A
Other languages
Japanese (ja)
Inventor
Shinji Nagaoka
長岡 新二
Norio Nishi
功雄 西
Senta Suzuki
扇太 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP16091588A priority Critical patent/JPH0212110A/en
Publication of JPH0212110A publication Critical patent/JPH0212110A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/36Mechanical coupling means
    • G02B6/3628Mechanical coupling means for mounting fibres to supporting carriers
    • G02B6/3684Mechanical coupling means for mounting fibres to supporting carriers characterised by the manufacturing process of surface profiling of the supporting carrier
    • G02B6/3692Mechanical coupling means for mounting fibres to supporting carriers characterised by the manufacturing process of surface profiling of the supporting carrier with surface micromachining involving etching, e.g. wet or dry etching steps
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/36Mechanical coupling means
    • G02B6/3628Mechanical coupling means for mounting fibres to supporting carriers
    • G02B6/3648Supporting carriers of a microbench type, i.e. with micromachined additional mechanical structures
    • G02B6/3652Supporting carriers of a microbench type, i.e. with micromachined additional mechanical structures the additional structures being prepositioning mounting areas, allowing only movement in one dimension, e.g. grooves, trenches or vias in the microbench surface, i.e. self aligning supporting carriers

Abstract

PURPOSE:To allow cutting out of chips with high accuracy and excellent mass productivity and yield by forming V-grooves for cleavage to the prescribed positions of a wafer by anisotropic etching, imparting stresses over the entire part of the wafer to concentrate the stresses to the V-grooves and to progress the cleavage and simultaneously cutting out the many circuit chips. CONSTITUTION:The V-grooves 43 having 70.6 deg. vertical angle are formed to an Si single crystal substrate 41 as the etching rate varies with the (100) face and (111) face which are crystal bearings when the wafer which is the Si single crystal substrate 41 formed with mask patterns 42 is immersed for a prescribed period of time in an etching soln. such as KOH soln. of nearly a boiling point. The depth of the grooves 43 can be controlled as desired by the width of the mask patterns. The grooves 43 are respectively formed in the directions perpendicular and horizontal directions of the facet 45 of the wafer and thereafter, the stresses are concentrated along the grooves 43 to cleave the wafer, by which the light guide circuit chips 44 are obtd. The accuracy of the sizes of the optical integrated circuit chips to be cut out is improved in this way, by which the yield is improved and mass production is enabled.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は光集積回路の製造において、光集積回路形成基
板であるウェハを複数の光導波回路チップとする方法の
改良に関する。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to an improvement in a method for forming a wafer, which is an optical integrated circuit forming substrate, into a plurality of optical waveguide circuit chips in the production of optical integrated circuits.

〈従来の技術〉 第4図、第5図に光集積回路の従来技術例を示す。第4
図は高見 等(昭和61年度電子通信学会総合全国大会
、NCLl 050 )による波長多重伝送システム用
の集積化光分波回路であり、シリコン単結晶基板上に形
成された薄膜光導波膜11上にコリメーションならびに
集光用レンズ13、透過形回折格子12が形成され、基
板両端16に入出力ファイバ14.15が設けられてい
る。第2図はT、5UHARA at、al(Appl
、Phys、Let t、、VOL。
<Prior Art> FIGS. 4 and 5 show examples of conventional techniques for optical integrated circuits. Fourth
The figure shows an integrated optical demultiplexing circuit for a wavelength division multiplexing transmission system by Takami et al. (National Conference of the Institute of Electronics and Communication Engineers, 1985, NCLl 050). A collimation and condensing lens 13 and a transmission type diffraction grating 12 are formed, and input/output fibers 14 and 15 are provided at both ends 16 of the substrate. Figure 2 shows T, 5UHARA at, al (Appl
, Phys, Let t,, VOL.

40、 No、2. P、 120. (1982) 
)によるグレーティング分波器22とフォトダイオード
23をシリコン基板21上の薄膜光導波膜24に集積化
した例である。尚、第5図中、25は入力ファイバ、2
6は導波膜端面である。これらの回路はシリコン基板上
に形成された光導波回路を基本要素とし、それと受発光
素子やファイバ、さらに電子回路とを組み合わせた所謂
ハイブリッド光集積回路と称せられるものである。この
ような光集積回路はLSI製造技術と同様に、ウェハ上
に複数の回路がフォトリソグラフィー技術により形成さ
れ、しかる後に各回路についてチップとして切り出され
て使用される。チップとして切り出す際にはLSIでは
外周刃による切断のみでよいが、光集積回路では導波回
路とファイバとの良好な接続特性を得るために第4図、
第5図における導波回路端面16,26の平滑度を使用
波長の数分1以下に仕上げる必要がある。
40, No, 2. P, 120. (1982)
) is an example in which a grating demultiplexer 22 and a photodiode 23 are integrated into a thin optical waveguide film 24 on a silicon substrate 21. In addition, in FIG. 5, 25 is the input fiber, 2
6 is the end face of the waveguide film. These circuits are so-called hybrid optical integrated circuits in which the basic element is an optical waveguide circuit formed on a silicon substrate, which is combined with light-receiving and emitting elements, fibers, and electronic circuits. In such an optical integrated circuit, a plurality of circuits are formed on a wafer by photolithography technology, and each circuit is then cut out and used as a chip, similar to the LSI manufacturing technology. When cutting into chips, LSI requires only cutting with a peripheral blade, but in optical integrated circuits, in order to obtain good connection characteristics between the waveguide circuit and the fiber, as shown in Fig. 4,
The smoothness of the waveguide circuit end faces 16 and 26 in FIG. 5 must be made to be less than a fraction of the wavelength used.

このため、従来のこの種の光集積回路の製造ではチップ
を切り出す際に、切断の後に導波回路端面を光学研肋す
る方法や結晶基板の方位に沿って襞間する方法が採られ
ている。
For this reason, in the conventional manufacturing of this type of optical integrated circuit, when cutting chips, a method is adopted in which the end face of the waveguide circuit is optically polished after cutting, or a method is created in which creases are formed along the orientation of the crystal substrate. .

〈発明が解決しようとする課題〉 しかしながら、切断後に導波路端面を光学研磨する前者
の方法は切断、研磨の工程が煩雑であるとともに作業に
長時間を要しかつ薄膜導波路端面の破損等?こより良好
な歩留りを得る事が困難であった。これに対して結晶基
板の方位に沿って種間する後者の方法は結晶の種間とと
もに薄膜導波路を同時に切断するため、良好な導波路端
面が簡便に得られる。
<Problems to be Solved by the Invention> However, the former method of optically polishing the end face of the waveguide after cutting requires complicated cutting and polishing steps, requires a long time, and does not cause damage to the end face of the thin film waveguide. It was difficult to obtain a better yield than this. On the other hand, in the latter method of cutting the seeds along the orientation of the crystal substrate, the thin film waveguide is cut simultaneously with the crystal seeds, so that a good waveguide end face can be easily obtained.

ここで、従来の襞間法によるチップ切り出しの工程はそ
の一例を第6図に示すように、まず同図(alのように
傷入れ用のダイアモンド針33でウェハ31にファセッ
ト35に沿って全長または一部(太線部分)に襞間用鍋
34を入れ、その後襞間用鍋34にブレードで同図(b
)に示すように応力Fをかけ短冊状に携開する。次に、
この短冊状の基板に同図(c)に示すように側聞用鍋3
4を入れ、同様に応力付与を行い、最終的にチップ32
を得る。このような襞間法では、傷入れや応力付与の作
業回数が多(かつその作業条件が複雑で量産性や歩留り
を高めることが困難であった。また、傷入れを所定の位
置にミクロンオーダで精確に付与することも困難であっ
た。
Here, an example of the process of cutting out chips by the conventional inter-fold method is shown in FIG. 6. First, as shown in FIG. Alternatively, insert the inter-fold pot 34 into a part (thick line part), and then use a blade to insert the inter-fold pot 34 into the crease pot 34 (b).
), apply stress F and unfold into a strip. next,
As shown in the same figure (c), a side pot 3
4, apply stress in the same way, and finally chip 32
get. In this type of crease method, it is difficult to increase mass productivity and yield due to the number of times of making scratches and applying stress (and the working conditions are complicated). It was also difficult to apply it accurately.

本発明の目的は光集積回路の製造において、ウェハから
光学的に良好な導波回路端面を有するチップを切り出す
ためのウニへ壱開法に関し、前述の従来技術の欠点を解
決し、高精度で量産性や歩留りに優れるチップ切り出し
法を提供する点にある。
The purpose of the present invention is to solve the above-mentioned drawbacks of the prior art, and to solve the above-mentioned drawbacks of the prior art, in order to cut chips having optically good waveguide circuit end faces from a wafer in the production of optical integrated circuits. The purpose of this invention is to provide a chip cutting method that is excellent in mass production and yield.

く課題を解決するための手段〉 本発明は光集積回路の形成されろウェハから光学的に良
好な導波回路端面を有するチップを切り出す際に、導波
回路形成側と反対のウェハ表面に、ウェハの結晶方位を
決定するファセットに対して水平、垂直方向のV状溝を
所定のピッチで異方性エツチングにより形成し、しかる
後該つェ八に全体的に応力を付与して■状溝に応力を集
中させウェハを一括に襞間し、多数のチップを同時に切
り出す方法である。従来の技術に比べ側聞用の傷である
V状溝をフォトリソグラフィによって高精度に形成出来
、チップ切り出しの作業性や歩留り向上が得られる。
Means for Solving the Problems> The present invention provides a method for cutting out chips having optically good waveguide circuit end faces from a wafer on which optical integrated circuits are formed, on the wafer surface opposite to the waveguide circuit forming side. Horizontal and vertical V-shaped grooves are formed at a predetermined pitch with respect to the facets that determine the crystal orientation of the wafer by anisotropic etching, and then stress is applied to the entire groove to form a ■-shaped groove. In this method, stress is concentrated on the wafer, the wafer is folded all at once, and a large number of chips are cut out at the same time. Compared to conventional techniques, V-shaped grooves, which are lateral scars, can be formed with high precision by photolithography, resulting in improved chip cutting work efficiency and yield.

く実 施 例〉 第1図、第2図、第3図に本発明による光集積回路製造
法の一実施例を示す。Si等の単結晶基板で°は、特定
のエツチング液を用いることによって結晶方位の違いに
よりエッチレートが異なる異方性エツチングが可能であ
り、これを利用した各種の基板加工が報告されている。
Embodiment FIGS. 1, 2, and 3 show an embodiment of the optical integrated circuit manufacturing method according to the present invention. For single-crystal substrates such as Si, it is possible to perform anisotropic etching in which the etch rate varies depending on the crystal orientation by using a specific etching solution, and various types of substrate processing utilizing this have been reported.

第1図はSi単結晶基板の異方性エツチングによるV溝
形成法を示しており、同図(alでマスクパターン42
が形成されたSi単結晶基板41であるウェハを沸点に
近いKO)(溶液等のエツチング液中に所定の時間浸す
と、結晶方位である100面と111面のエツチング速
度が異なるためSi単結晶基板41には頂角70.6°
のV状溝43が形成される。V状溝43の深さはマスク
パターンの幅で任意に制御出来る。同図(b)に示すよ
うにウニへのファセット45に対して垂直、水平方向に
V状溝43をそれぞれ形成し、その後これらのV状溝4
3に沿って応力を集中してウェハを種間し、光導波回路
チップ44を得る。第2図は光導波回路形成ウェハへの
V溝形成プロセスを示しており、図中51はS1単結晶
基板、52は熱酸化法等で成膜した5i02層、53は
光波の閉じ込められる導波回路コア層、54はコア層よ
りも屈折率の低いクラッド層、55ならびに55′はエ
ツチングマスク用の金属層であり、同じエツチング液に
より腐蝕されないように異なる材質を用いる。
Figure 1 shows a V-groove formation method by anisotropic etching of a Si single crystal substrate.
When a wafer, which is a Si single crystal substrate 41 on which is formed, is immersed in an etching solution such as a KO solution near the boiling point for a predetermined period of time, the Si single crystal is The substrate 41 has an apex angle of 70.6°
A V-shaped groove 43 is formed. The depth of the V-shaped groove 43 can be arbitrarily controlled by the width of the mask pattern. As shown in FIG. 4(b), V-shaped grooves 43 are formed vertically and horizontally with respect to the facets 45 on the sea urchin, and then these V-shaped grooves 4 are formed.
The wafer is seeded by concentrating stress along the lines 3 to obtain an optical waveguide circuit chip 44. Figure 2 shows the V-groove formation process on an optical waveguide circuit forming wafer. In the figure, 51 is an S1 single crystal substrate, 52 is a 5i02 layer formed by thermal oxidation, etc., and 53 is a waveguide in which light waves are confined. The circuit core layer 54 is a cladding layer having a lower refractive index than the core layer, and 55 and 55' are metal layers for etching masks, which are made of different materials so as not to be corroded by the same etching solution.

導波回路はコア層53をクラッド層54が囲んだ構造と
なっており、基板側クラッド層54に上記の熱酸化Si
O2膜を使用する場合には上層クラッド層にはスパッタ
ー法等による5iO7膜を用いればよい。同図(a)の
ように導波回路コア層53、クラッド層54ならびに金
属層55が形成された基板の導波回路面の裏側に、同図
(b)に示すように有機レジスト膜56を形成し、同図
(c)フォトリソグラフィー技術で所定のV状溝用パタ
ーン58を設ける。
The waveguide circuit has a structure in which a core layer 53 is surrounded by a cladding layer 54, and the above-mentioned thermally oxidized Si is applied to the substrate side cladding layer 54.
When an O2 film is used, a 5iO7 film formed by sputtering or the like may be used as the upper cladding layer. An organic resist film 56 is formed on the back side of the waveguide circuit surface of the substrate on which the waveguide circuit core layer 53, cladding layer 54, and metal layer 55 are formed as shown in the figure (a), as shown in the figure (b). Then, a predetermined V-shaped groove pattern 58 is provided by photolithography (FIG. 3(c)).

この後、金属膜55′ならびに5i02膜52を同図(
d)に示すようエツチングしてV状溝用パターン58部
分を除去し沸点に近いKOH溶液等に所定の時間浸すこ
とにより同図+8)のV状溝57を得る以上の工程でフ
ァセットに対して垂直、水平方向にそれぞれV状溝57
が形成されたつエバ61は第3図の工程でV状溝57に
応力が集中して付与されて種間され、光導波回路チップ
の切り出しが行われる。即ち、第3図に示すようにV状
溝62の形成されたウェハ61を2枚の透明粘着フィル
ム64に挾み込むと共に、このフィルム64の周辺部を
ボックス65の開口部66に気密に固定する。しかる後
にボックスの空気導入口67がら空気を導入してボック
ス65内部の圧力を増大させてウェハ61の中央部へ応
力を付与することにより、V状溝62に応力を集中させ
種間を行なう。第3図中69はり開面である。その後、
フィルム64をボックス65の開口部66から外してチ
ップ63切9出しを確認する。この状態ではチップ63
は粘着性フィルム64によって把持されウェハ状態と同
様に整列されており、その後のチップ取扱が容易となる
。このように本発明ではり開用のV状溝をSi単結晶基
板の異方性エツチングにより精度良く形成ル、さらにウ
ェハ全面に渡って応力を付与して一括襞間するため、従
来技術と較べて光集積回路チップの切り出し作業性や歩
留りの向上が得られるとともに、ブレードやダイヤモン
ド針の交換も不要であるという効果も有する。
After this, the metal film 55' and the 5i02 film 52 are removed in the same figure (
As shown in d), the V-shaped groove pattern 58 is removed by etching and immersed in a KOH solution close to the boiling point for a predetermined period of time to obtain the V-shaped groove 57 shown in +8). V-shaped grooves 57 in vertical and horizontal directions, respectively
In the process shown in FIG. 3, stress is concentrated and applied to the V-shaped groove 57 of the evaporator 61, which is then separated, and an optical waveguide circuit chip is cut out. That is, as shown in FIG. 3, a wafer 61 with a V-shaped groove 62 formed therein is sandwiched between two transparent adhesive films 64, and the periphery of this film 64 is hermetically fixed to an opening 66 of a box 65. do. Thereafter, air is introduced through the air inlet 67 of the box to increase the pressure inside the box 65 and apply stress to the center of the wafer 61, thereby concentrating the stress on the V-shaped groove 62 and performing seed separation. Beam 69 in Fig. 3 is the open plane. after that,
Remove the film 64 from the opening 66 of the box 65 and confirm that the chip 63 is cut and 9 removed. In this state, chip 63
are held by an adhesive film 64 and aligned in the same manner as a wafer, making subsequent chip handling easier. In this way, in the present invention, V-shaped grooves for deburring are formed with high precision by anisotropic etching of a Si single crystal substrate, and stress is applied over the entire surface of the wafer to form creases all at once, compared to conventional techniques. This method not only improves the workability and yield of cutting out optical integrated circuit chips, but also eliminates the need to replace blades and diamond needles.

〈発明の効果〉 以上説明したように、本発明は光集積回路の形成される
ウェハから種間によって光am回路チップを切り出す際
に、ウェハの所定の位置に襞間用V状溝をSi単結晶基
板の異方性エツチングによって形成し、ウェハ全面に応
力を付与することによってV状溝に応力を集中させて種
間を進行させ、同時に多数の回路チップを切り出す方法
であるから、次の効果を奏する。
<Effects of the Invention> As explained above, the present invention provides for forming V-shaped grooves between folds at predetermined positions on the wafer when cutting optical AM circuit chips from a wafer on which optical integrated circuits are formed. This method is formed by anisotropic etching of a crystal substrate, and by applying stress to the entire surface of the wafer, the stress is concentrated in the V-shaped groove to advance the seeds, and a large number of circuit chips are cut out at the same time, resulting in the following effects: play.

■ エツチング用マスクパターンの寸法設定によりv溝
深さを任意に制御出来、種間する基板の厚みや大きさの
変化に対して種間条件を柔軟に設定することが可能であ
る。
(2) The depth of the V-groove can be arbitrarily controlled by setting the dimensions of the etching mask pattern, and it is possible to flexibly set the interseating conditions in response to changes in the thickness and size of the substrate to be interseated.

■ 切り出す光集積回路チップ寸法の高精度化が可能と
なる。
■ It becomes possible to increase the precision of the dimensions of the optical integrated circuit chips to be cut out.

■ エツチングにより種間用のV溝を形成するため、ブ
レードや針の消耗が無(、切り出し作業の歩留り向上が
得られる。
- Since V-grooves between seeds are formed by etching, there is no wear on blades or needles (and the yield of cutting work can be improved).

■ 種間を一括して行うため光集積回路チップの量産が
可能となる。
■ Mass production of optical integrated circuit chips becomes possible because all types are processed at once.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図〜第3図は本発明の一実施例にかかり、第1図(
alはウェハに形成されたV状溝の断面図、第1図(b
lはファセットと垂直、平行にV状溝が形成されたウェ
ハの斜視図、第2図ta)〜(e)はそれぞれウェハに
V状溝を形成する工程を示す断面図、第3図(al (
b)はそれぞれ応力の付与されるウェハの斜視図、断面
図、第4図、第5図はそれぞれ従来の光集積回路の説明
図、第6図(a)〜(dlはそれぞれウェハからチップ
を切り出す技術に関する従来方法を示す工程図である。 図 面 中、 11は薄膜光導波膜、 12は透過形回折格子、 13はレンズ、 14は入力ファイバ、 15は出力ファイバ、 16は導波膜端面、 21はシリコン基板、 22はグレーティング分波器、 23はフォトダイオード、 24は薄膜先導波膜、 25は入力ファイバ、 26は導波膜端面、 31はSi単結晶基板ウェハ、 32は光集積回路チップ、 33はブレード又はダイヤモンド針、 34は瞬間用鍋、 35はファセット、 41.51,61はSi単結晶基板(ウェハ)42はエ
ツチング用マスク、 43.57,62は■状溝、 44.63は光集積回路チップ、 45はファセット、 52はSiO□膜、 53は導波回路コア層、 54は導波回路クラッド層、 55.55’は金属層、 56は有機レジスト層、 64は粘着性フィルム、 65は気密ボックス、 66はボックス上部枠部分、 67は空気導入口、 68は空気排出口、 69は襞間面である。 第1図 (a)
1 to 3 relate to one embodiment of the present invention, and FIG. 1 (
al is a cross-sectional view of the V-shaped groove formed in the wafer, and FIG.
1 is a perspective view of a wafer in which V-shaped grooves are formed perpendicularly and parallel to the facets, FIGS. (
b) is a perspective view and a cross-sectional view of a wafer to which stress is applied, FIGS. 4 and 5 are explanatory diagrams of a conventional optical integrated circuit, respectively, and FIGS. 1 is a process diagram showing a conventional cutting technique. In the drawing, 11 is a thin optical waveguide film, 12 is a transmission diffraction grating, 13 is a lens, 14 is an input fiber, 15 is an output fiber, and 16 is an end face of the waveguide film. , 21 is a silicon substrate, 22 is a grating demultiplexer, 23 is a photodiode, 24 is a thin film leading wave film, 25 is an input fiber, 26 is a waveguide film end face, 31 is a Si single crystal substrate wafer, 32 is an optical integrated circuit Chip, 33 is a blade or diamond needle, 34 is an instant pot, 35 is a facet, 41. 51, 61 is a Si single crystal substrate (wafer), 42 is an etching mask, 43. 57, 62 is a ■-shaped groove, 44. 63 is an optical integrated circuit chip, 45 is a facet, 52 is a SiO□ film, 53 is a waveguide circuit core layer, 54 is a waveguide circuit cladding layer, 55.55' is a metal layer, 56 is an organic resist layer, 64 is an adhesive 65 is an airtight box, 66 is an upper frame portion of the box, 67 is an air inlet, 68 is an air outlet, and 69 is an inter-fold surface. Fig. 1(a)

Claims (2)

【特許請求の範囲】[Claims] (1)シリコン基板上に形成された光導波回路を基本要
素とする光集積回路の製造において、複数の光集積回路
が形成される結晶基板であるウェハを個々の光集積回路
についてのチップとして切り出す際、該ウェハにそのフ
ァセットに対し垂直方向のV状溝及び水平方向のV状溝
を所定ピッチで異方性エッチングによって形成し、前記
ウェハに全体的に応力を付与することにより前記V状溝
へ応力を集中させ該V状溝に沿って前記ウェハを一括に
劈開し、複数の前記チップに分割することを特徴とする
光集積回路製造法。
(1) In manufacturing optical integrated circuits whose basic elements are optical waveguide circuits formed on silicon substrates, a wafer, which is a crystalline substrate on which multiple optical integrated circuits are formed, is cut into chips for individual optical integrated circuits. At this time, a vertical V-shaped groove and a horizontal V-shaped groove are formed on the wafer at a predetermined pitch with respect to the facets by anisotropic etching, and the V-shaped groove is formed by applying stress to the entire wafer. A method for manufacturing an optical integrated circuit, comprising cleaving the wafer at once along the V-shaped groove by concentrating stress on the wafer, and dividing the wafer into a plurality of chips.
(2)特許請求の範囲第1項において前記V状溝の形成
された前記ウェハを2枚の粘着性フィルムの間に挾み込
んで、該粘着性フィルムの周辺部を固定して、その中央
部を気圧差により膨張させることにより、前記V状溝に
応力を集中させることを特徴とする光集積回路製造法。
(2) In claim 1, the wafer in which the V-shaped groove is formed is sandwiched between two adhesive films, the periphery of the adhesive film is fixed, and the center of the wafer is sandwiched between two adhesive films. A method for manufacturing an optical integrated circuit, characterized in that stress is concentrated in the V-shaped groove by expanding the part due to a pressure difference.
JP16091588A 1988-06-30 1988-06-30 Production of optical integrated circuit Pending JPH0212110A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16091588A JPH0212110A (en) 1988-06-30 1988-06-30 Production of optical integrated circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16091588A JPH0212110A (en) 1988-06-30 1988-06-30 Production of optical integrated circuit

Publications (1)

Publication Number Publication Date
JPH0212110A true JPH0212110A (en) 1990-01-17

Family

ID=15725066

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16091588A Pending JPH0212110A (en) 1988-06-30 1988-06-30 Production of optical integrated circuit

Country Status (1)

Country Link
JP (1) JPH0212110A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001044390A (en) * 1999-07-22 2001-02-16 Internatl Business Mach Corp <Ibm> Vertical sidewall device aligned to crystal axis and manufacture thereof
US7090325B2 (en) 2001-09-06 2006-08-15 Ricoh Company, Ltd. Liquid drop discharge head and manufacture method thereof, micro device ink-jet head ink cartridge and ink-jet printing device
JP2007017652A (en) * 2005-07-07 2007-01-25 Sony Corp Optical waveguide structure and its manufacturing method, and method of manufacturing optical waveguide
JP2010266899A (en) * 2010-08-20 2010-11-25 Sony Corp Optical waveguide structure and method of manufacturing the same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001044390A (en) * 1999-07-22 2001-02-16 Internatl Business Mach Corp <Ibm> Vertical sidewall device aligned to crystal axis and manufacture thereof
US7090325B2 (en) 2001-09-06 2006-08-15 Ricoh Company, Ltd. Liquid drop discharge head and manufacture method thereof, micro device ink-jet head ink cartridge and ink-jet printing device
US7731861B2 (en) 2001-09-06 2010-06-08 Ricoh Company, Ltd. Liquid drop discharge head and manufacture method thereof, micro device, ink-jet head, ink cartridge, and ink-jet printing device
JP2007017652A (en) * 2005-07-07 2007-01-25 Sony Corp Optical waveguide structure and its manufacturing method, and method of manufacturing optical waveguide
JP2010266899A (en) * 2010-08-20 2010-11-25 Sony Corp Optical waveguide structure and method of manufacturing the same

Similar Documents

Publication Publication Date Title
US5709773A (en) Silicon microstructures and process for their fabrication
US20030219208A1 (en) Optical coupling module with self-aligned etched grooves and method for fabricating the same
JP2000089054A (en) Manufacture of substrate for hybrid optical integrated circuit utilizing soi optical waveguide
CN108718534A (en) V-shaped slot is integrated on Silicon-on-insulator for direct fiber coupling
JP2773990B2 (en) Method for manufacturing combined body of optical waveguide substrate and optical fiber alignment substrate
JPH05304306A (en) Electrooptic module and manufacture thereof
JPH0212110A (en) Production of optical integrated circuit
JP2002277661A (en) Method for cutting out optical waveguide device
JPH0194305A (en) Optical circuit device
JP2752851B2 (en) Manufacturing method of optical waveguide
JP2011523596A (en) Method for making a microscale optical structure
JP2771167B2 (en) Optical integrated circuit mounting method
JP2001350051A (en) Optical waveguide module and its manufacturing method
WO2002075387A2 (en) A tapered optical waveguide
JPH0536825A (en) Semiconductor chip cutting method
JPH0868913A (en) Method of finishing optical waveguide structure
JP3014035B2 (en) Substrate for optical coupling device, optical coupling device, and manufacturing method thereof
JPS62222207A (en) Optical device package
JP2663841B2 (en) Manufacturing method of optical coupling structure
JP2001051144A (en) Optical waveguide and its manufacture
JP3019271B2 (en) Optical waveguide formation method
CN109613648B (en) Preparation method of full-crystal waveguide coupler
JPH0212109A (en) Manufacture of optical integrated circuit
JPH07162098A (en) Method for automatically positioning optical device array to optical fiber
JPH0720336A (en) Structure of optical waveguide and its production