JPH0346241A - Semiconductor heterostructure and manufacture thereof - Google Patents

Semiconductor heterostructure and manufacture thereof

Info

Publication number
JPH0346241A
JPH0346241A JP18057489A JP18057489A JPH0346241A JP H0346241 A JPH0346241 A JP H0346241A JP 18057489 A JP18057489 A JP 18057489A JP 18057489 A JP18057489 A JP 18057489A JP H0346241 A JPH0346241 A JP H0346241A
Authority
JP
Japan
Prior art keywords
layer
buffer layer
active layer
xga
xas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP18057489A
Other languages
Japanese (ja)
Other versions
JP2530496B2 (en
Inventor
Kaoru Inoue
薫 井上
Shii Aruman Jiei
ジェイ・シー・アルマン
Toshinobu Matsuno
年伸 松野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP1180574A priority Critical patent/JP2530496B2/en
Publication of JPH0346241A publication Critical patent/JPH0346241A/en
Application granted granted Critical
Publication of JP2530496B2 publication Critical patent/JP2530496B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To make it possible to form an active layer while the good crystal quality of the active layer is held by a method wherein the compositional ratio of InAs of a buffer layer is changed almost linearly to the thickness direction between the side of a GaAs substrate and the active layer and the rate of change of the compositional ratio is set as 1.5X10<-3>/nm or lower. CONSTITUTION:The composition (X) of InAs of a non-doped InxGa1-xAs buffer layer 12 is set as 0 on the side of a semi-insulative GaAs substrate 10, is increased linearly toward the side of the surface, is set as 0.53 in the interface between the layer 12 and a non-doped In0.52Al0.48As barrier layer 13, is set as a composition, which can make a lattice matching with each layer 13 to 16 located on the side of the surface from the layer 13, and the rate of change of the composition (x) is set as 1.5X10<-3>/nm or lower. Because of this, the crystallizability of an active layer formed on the buffer layer 12 is remarkedly improved and the crystal quality of the active layer can be favorably held. Thereby, while the InGaAs and InAlAs layers, whose grating constants are greatly different from one another, are grown, the active layer can be formed so as to have a superior crystal quality.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、半導体ヘテロ構造およびその製造方法に関す
るものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a semiconductor heterostructure and a method for manufacturing the same.

(従来の技術) ノンドープのG a A s層上にn形A Q G a
 A s層を形成したヘテロ接合界面に発生する高い移
動度の2次元電子ガスの濃度をゲート電極により制御す
る高電子移動度トランジスタ(以下HEMTと称す)が
考案されている。このHEMTは、高速スイッチング素
子、マイクロ波素子として有望なので、その特性をさら
に向上させる材料面、および構造面の研究が盛んに行わ
れている。
(Prior art) N-type A Q Ga on a non-doped Ga As layer
A high electron mobility transistor (hereinafter referred to as HEMT) has been devised in which a gate electrode controls the concentration of a two-dimensional electron gas with high mobility generated at a heterojunction interface where an As layer is formed. Since this HEMT is promising as a high-speed switching element and a microwave element, research is being actively conducted on materials and structures to further improve its characteristics.

材料面では、GaAs基板に替ってInP基板を用い、
InPに格子整合したI no、53Ga、、 4. 
Asとn形のI no、 sz AGo、 46 As
からなるヘテロ構造が、G a A s / A Q 
G a A s系のHEMTよりそれぞれ高い電子移動
度、電子飽和速度および2次元電子ガス濃度を示すため
、Al)GaAs/GaAs系よりも高性能なHEMT
を実現できるものとして注目されている。
In terms of materials, an InP substrate is used instead of a GaAs substrate,
Ino, 53Ga, lattice matched to InP, 4.
As and n-type I no, sz AGo, 46 As
A heterostructure consisting of G a A s / A Q
Since it exhibits higher electron mobility, electron saturation velocity, and two-dimensional electron gas concentration than GaAs-based HEMTs, it has higher performance than Al)GaAs/GaAs-based HEMTs.
It is attracting attention as something that can achieve this.

しかしながら、InP基板は、現在のところGaAs基
板に比べて高価であるばかりでなく、その品質がG a
 A s基板に比べて劣り、不要な不純物がInP基板
上に形成された結晶層に取り込まれるという問題や、G
aAs基板より割れ易いという問題があった。この対策
として、優れた結晶品質を有するG a A s基板や
Si基板を用いて。
However, InP substrates are currently not only more expensive than GaAs substrates, but also have poor quality.
It is inferior to the InP substrate, and there are problems such as unnecessary impurities being incorporated into the crystal layer formed on the InP substrate, and
There was a problem that it was more easily broken than an aAs substrate. As a countermeasure to this problem, GaAs substrates and Si substrates with excellent crystal quality are used.

InGaAsやI n A Q A sの結晶を成長で
きる新しい技術が望まれている。このような技術は、受
光・発光装置と高速電子機器用の集積回路を作製する上
でも重要である。
A new technology that can grow InGaAs and InAQAs crystals is desired. Such technology is also important in producing integrated circuits for light-receiving and light-emitting devices and high-speed electronic devices.

InGaAsやI n A Q A sを、例えば、G
aAs基板上に形成する場合の問題は、InGaAsや
InA(IAsとG a A sとの格子定数の差異で
ある。
InGaAs or InAQAs, for example, G
A problem when forming on an aAs substrate is the difference in lattice constant between InGaAs and InA (IAs and GaAs).

GaAs上にIn、、、、Gao、、7As層を形成す
る場合に、格子定数の差により発生する結晶欠陥を抑制
するには厚さ数nmの薄層とする必要があり、実用とは
ならない。従って、結晶欠陥の発生は避けられないもの
として、素子活性層の欠陥密度を低下させる方法が考え
られている。
When forming an In, Gao, or 7As layer on GaAs, it is necessary to make the layer as thin as a few nm in order to suppress crystal defects caused by differences in lattice constants, making it impractical. . Therefore, since the occurrence of crystal defects is unavoidable, methods are being considered to reduce the defect density in the device active layer.

この考えによる従来の方法は、まず、G a A s基
板の上にバッファ層として、InGaAsとInAlA
sの薄層からなる超格子を成長させた上に、素子の活性
層を形成するものである。
The conventional method based on this idea is to first layer InGaAs and InAlA as a buffer layer on a GaAs substrate.
The active layer of the device is formed on a superlattice made of a thin layer of s.

従来のこの穐の半導体ヘテロ構造について、第4図によ
り説明する。同図はその要部拡大断面図で、半導体ヘテ
ロ構造は、G a A s基板lの上に。
The conventional semiconductor heterostructure of this type will be explained with reference to FIG. The figure is an enlarged cross-sectional view of the main part, and the semiconductor heterostructure is on a GaAs substrate l.

厚さ3■のI n A Q A s膜と厚さlnmのI
nGaAs膜を交互に積層し超格子を構成した厚さ1.
8μ鳳のバッファ層2を形成し、さらにその上にHEM
Tのチャンネル層となる厚さ30n+mのInGaAs
層3を形成したものである。さらにその上に積層して形
成した厚さ2.5nmのノンドープInGaAs層4、
プレーナドープしたSi層5、厚さ25nmのノンドー
プI n A Q A s層6、プレーナドープしたS
LL12厚さ1止のノンドープInGaAs層8および
厚さ15nmのn形I n G a A s層9は、上
記のInGaAs層3への電子の供給とオーミック接続
を形成するものである。(Y 、 K、Chen、 G
 、W、Wang、 W、 J 。
3mm thick I n A Q A s film and lnm thick I
Thickness 1.NGaAs films are alternately stacked to form a superlattice.
A buffer layer 2 of 8 μm is formed, and HEM is further formed on it.
InGaAs with a thickness of 30n+m which becomes the channel layer of T
Layer 3 was formed. Furthermore, a non-doped InGaAs layer 4 with a thickness of 2.5 nm is formed by laminating thereon,
Planar-doped Si layer 5, 25 nm thick non-doped I n A Q A s layer 6, planar-doped S
The non-doped InGaAs layer 8 having a thickness of LL12 and the n-type InGaAs layer 9 having a thickness of 15 nm supply electrons to the InGaAs layer 3 and form an ohmic connection. (Y, K, Chen, G
,W.,Wang,W.,J.

5chaff、 P、J、Ta5ker、 K、Kav
anagh and L、F。
5chaff, P.J., Ta5ker, K.Kav
anagh and L, F.

Eastn+an; I E D M Technic
al Didgest、 p、433゜1987)。
Eastn+an; I E D M Technic
al Didgest, p, 433° 1987).

(発明が解決しようとする課題) しかしながら、上記のように超格子のバッファ層2が形
成されているに拘らず、活性層のInGaAs層3に僅
かであるが欠陥が発生している。また、本発明者が実験
した結果、このような欠陥が見られる場合には、電子移
動度は室温におイテ550M/V、S、ないし6000
cd/V、S、程度で、InP基板を用いて格子整合を
行った場合の104d/V、S、以上の値に比べて著し
く低いという問題があった。
(Problems to be Solved by the Invention) However, even though the superlattice buffer layer 2 is formed as described above, a few defects occur in the InGaAs layer 3 of the active layer. Further, as a result of experiments conducted by the present inventor, when such defects are observed, the electron mobility is 550 M/V, S, or 6000 M/V at room temperature.
There was a problem in that the value was approximately cd/V, S, which was significantly lower than the value of 104 d/V, S, or more when lattice matching was performed using an InP substrate.

本発明は、上記の問題を解決するもので、格子定数が大
きく異なるInGaAsやI n A Q A sを成
長しながら、優れた結晶品質を有する半導体ヘテロ構造
とその製造方法を提供するものである。
The present invention solves the above problems and provides a semiconductor heterostructure having excellent crystal quality while growing InGaAs and InAQAs with significantly different lattice constants, and a method for manufacturing the same. .

(課題を解決するための手段) 上記のall(を解決するため、本発明は、バッファ層
に用いるr nxG ai−1A s層のI n A 
s組成比Xを基板側でOとし、活性層に向かって徐々に
増加させ、活性層側で活性層と格子整合するInAs組
成にする方法を用い、且つ、InAsnAs組成化率を
1.5 X 10−” / na+以下とするものであ
る。
(Means for Solving the Problems) In order to solve the above-mentioned all, the present invention provides
A method was used in which the s composition ratio X was set to O on the substrate side and gradually increased toward the active layer to obtain an InAs composition that lattice matched with the active layer on the active layer side, and the InAsnAs composition ratio was set to 1.5 10-”/na+ or less.

また、上記のバッファ層を分子線エピタキシー法で成長
する場合にその成長温度を450℃以下とする。
Further, when the buffer layer is grown by molecular beam epitaxy, the growth temperature is set to 450° C. or lower.

さらに、分子線エピタキシー法を用いて450℃以下の
温度で形成したバッファ層上に活性層を形成する場合に
、成長温度を450℃以上から530℃以下の温度に上
昇させるものである。
Furthermore, when an active layer is formed on a buffer layer formed at a temperature of 450°C or lower using molecular beam epitaxy, the growth temperature is raised from 450°C or higher to 530°C or lower.

また、InyGa1−xAsのバッファ層上にInGa
Asの活性層を形成する際に、InGaAs活性層と工
nxGal−xASバッファ層の間にInGaAs活性
層と格子定数が同一のInA12Asのバリア層を介在
させるものである。
In addition, InGa1-xAs buffer layer is
When forming the As active layer, an InA12As barrier layer having the same lattice constant as the InGaAs active layer is interposed between the InGaAs active layer and the InxGal-xAS buffer layer.

(作 用) 基板側から活性層側へInAs組成を徐々に増加させた
I n、 G al−x A sバッファ層により、バ
ッファ層上に形成した活性層の結晶性が著しく向上する
。これは、結晶欠陥の発生が、このバッファ層により抑
制され、活性層には殆んど欠陥が到達していないことに
よると考えられる。しかしながら、In、1Gai−x
Asバッファ層のInAsnAs組成化率をあまりに大
きくすると、結晶の品質劣化が見られ、バッファ層厚1
100n当り0.15以下の変化率とするべきであるこ
とが実験より明らかとなった。
(Function) The In,Gal-xAs buffer layer in which the InAs composition is gradually increased from the substrate side to the active layer side significantly improves the crystallinity of the active layer formed on the buffer layer. This is considered to be because the generation of crystal defects is suppressed by this buffer layer, and almost no defects reach the active layer. However, In, 1 Gai-x
If the InAsnAs composition ratio of the As buffer layer is too large, the quality of the crystal deteriorates, and the buffer layer thickness is 1
Experiments have revealed that the rate of change should be 0.15 or less per 100n.

すなわち、InAsの組成の変化率を1.5X10−3
/nm以下とすることにより結晶品質を良好に保つこと
ができる。
In other words, the rate of change in the composition of InAs is 1.5X10-3
/nm or less, it is possible to maintain good crystal quality.

また、分子線エピタキシー法による上記のI n z 
G a i−X A sの成長温度は、バッファ層上に
形成する活性層の結晶性および表面組織に大きな影響を
与える。バッファ層の成長温度を375℃から520℃
まで変化させて実験した結果、良好な結晶性と表面組織
を与える温度は、はぼ450℃以下であることが明らか
になった。
In addition, the above I n z by molecular beam epitaxy method
The growth temperature of G ai-X As has a large effect on the crystallinity and surface texture of the active layer formed on the buffer layer. Growth temperature of buffer layer from 375℃ to 520℃
As a result of experiments conducted by varying the temperature up to 450° C., it was found that the temperature that provides good crystallinity and surface texture is approximately 450° C. or lower.

また、バッファ層上に形成する活性層の成長温度はバッ
ファ層の成長温度でも良好な結果が得られたが、450
℃以上で530℃以下の温度に上昇させた場合に、より
活性層の結晶性を改善することができることが実験から
明らかとなった。
In addition, good results were obtained for the growth temperature of the active layer formed on the buffer layer even at the growth temperature of the buffer layer.
It has been found from experiments that the crystallinity of the active layer can be further improved when the temperature is raised to 530°C or higher.

さらに、上記InxGa1−xAsバッファ層とにIn
GaAsの活性層を形成する場合、活性層のInGaA
sと格子整合するInAlAsのバリア層を挿入するこ
とによって、結晶欠陥がバッファ層から活性層に伝搬す
ることを防止でき、活性層の結晶性をより一層向上する
ことができる。また、HEMTの場合には、チャンネル
層が上記I n G a A s活性層に対応するが、
InAlAsのバリア層を挿入することは、InGaA
sチャンネル層にたまる2次元電子ガスが、欠陥の多く
含まれるIn、0at−xA1層を流れることを防止す
るので素子の特性が向上する。
Furthermore, InxGa1-xAs buffer layer and InxGa1-xAs buffer layer are
When forming an active layer of GaAs, InGaA of the active layer
By inserting a barrier layer of InAlAs that has a lattice match with s, propagation of crystal defects from the buffer layer to the active layer can be prevented, and the crystallinity of the active layer can be further improved. In addition, in the case of HEMT, the channel layer corresponds to the above-mentioned InGaAs active layer, but
Inserting a barrier layer of InAlAs is similar to that of InGaA
Since the two-dimensional electron gas accumulated in the s-channel layer is prevented from flowing through the In, 0at-xA1 layer, which contains many defects, the characteristics of the device are improved.

(実施例) 本発明の一実施例を第1図ないし第3図によす説明する
。第1図は本発明による半導体ヘテロ構造の要部拡大断
面図で、半絶縁性G a A s基板IO上に厚さ20
0nmのノンドープのGaAsバッファ層11および厚
さについては後述するノンドープのI nxGal−x
As/(ッファ層12を重ねて形成した後、厚さ20Q
nmのノンドープI no、 st AOo、 41 
Asバリア層13、厚さloOnmのInn、5aGa
o、*tAsチャンネル層14層厚43nmのノンドー
プIno、5zA(la、+sAsスペーサ層15およ
び高濃度にSiを添加した厚さ30nmのn形I n、
、 sz Al1゜、HAs層16を順次形成したもの
である。なお、n形In6.HAL、4@As層16の
Siドープ量は約2X10”/aIとした。また。
(Embodiment) An embodiment of the present invention will be described with reference to FIGS. 1 to 3. FIG. 1 is an enlarged cross-sectional view of a main part of a semiconductor heterostructure according to the present invention, which is formed on a semi-insulating GaAs substrate IO with a thickness of 20 mm.
A non-doped GaAs buffer layer 11 with a thickness of 0 nm and a non-doped InxGal-x whose thickness will be described later.
As/(after forming buffer layer 12, thickness 20Q)
nm non-doped I no, st AOo, 41
As barrier layer 13, Inn, 5aGa with thickness loOnm
o, *tAs channel layer 14 43 nm thick non-doped Ino, 5zA (la, +sAs spacer layer 15 and 30 nm thick n-type Ino doped with Si at a high concentration,
, sz Al1°, and a HAs layer 16 were formed in this order. Note that n-type In6. The Si doping amount of the HAL, 4@As layer 16 was approximately 2×10”/aI.

InxGaz−yAsバッファ層12のInAsnAs
組成化 a A s基板10側でOとし、表面側に向か
って直線的に増加させ、Ino、5zAllo、4@A
sバリア層13との界面で0.53とし、In+、5z
AGo、4@A8バリア層13より表面側にある各層1
3.14.15および16と格子整合がとれる組成とし
ている。この構造は。
InAsnAs of InxGaz-yAs buffer layer 12
Composition a A s O on the substrate 10 side, increasing linearly toward the surface side, Ino, 5zAllo, 4@A
s at the interface with the barrier layer 13, In+, 5z
AGo, 4@A8 Each layer 1 on the surface side from the barrier layer 13
The composition is such that lattice matching can be achieved with 3.14.15 and 16. This structure is.

InGaAs/ 工nAnAs系HEMTを作製するた
めの基本的な構造で、工n(1,52Gaa、 l? 
Asチャンネル層14は、n型In。、、AQo、、y
As層16から電子が供給され2次元電子ガスが発生す
る。素子作製上重要なことは、I no、 、、 Ga
11.、 Asチャンネル層14の結晶性で、その良否
を判断する基準として、チャンネル層に発生する2次元
電子ガスの移動度と表面組織があげられる。
This is the basic structure for fabricating an InGaAs/AnAs HEMT.
The As channel layer 14 is made of n-type In. ,,AQo,,y
Electrons are supplied from the As layer 16 and a two-dimensional electron gas is generated. What is important in device production is I no, , Ga
11. As for the crystallinity of the As channel layer 14, the mobility of the two-dimensional electron gas generated in the channel layer and the surface texture are cited as criteria for determining its quality.

本発明者は、第1図のヘテロ構造を通常の固体ソースを
用いた分子線エピタキシー法による結晶成長について実
験を行ない、高い電子移動度と良好な表面組織を得るた
めの成長条件と構造の最適化を模索し、成長条件の最重
要項目は、成長温度であり、構造のパラメータとは、工
nxGa1−xAsバッファ層12の厚さであると考え
た。
The present inventor conducted experiments on crystal growth of the heterostructure shown in Figure 1 by molecular beam epitaxy using an ordinary solid source, and determined the optimal growth conditions and structure to obtain high electron mobility and good surface structure. The most important growth condition is the growth temperature, and the structural parameter is the thickness of the nxGa1-xAs buffer layer 12.

まず、InxGa1−xAsバッファ層12の厚さを十
分に厚い膜厚と思われる90Or++++に固定し、f
i、長温度を375℃から520℃まで変化させて成長
実験をくり返し試作したヘテロ構造の表面組織と電子移
動度の評価を行なった。
First, the thickness of the InxGa1-xAs buffer layer 12 is fixed at 90Or++++, which is considered to be a sufficiently thick film thickness, and f
i. The surface structure and electron mobility of the heterostructure were evaluated by repeating the growth experiment while changing the long temperature from 375°C to 520°C.

表面組織は、成長温度を450℃以下とすれば、わずか
なりロスハツチが見られるものの平坦な鏡面で素子作製
に問題がないことがわかった。しかしながら、成長温度
を480℃以上にすると、表面の凹凸が目立ち、表面組
織は劣化した。
It was found that when the growth temperature was set to 450° C. or lower, the surface structure was a flat mirror surface with slight loss hatches, which caused no problem in device fabrication. However, when the growth temperature was increased to 480° C. or higher, surface irregularities became noticeable and the surface structure deteriorated.

第2図は、試作したヘテロ構造で電子移動度の成長温度
依存性を調査した結果を示す特性図である。図かられか
るように、成長温度が450℃以上では、電子移動度が
急激に低下するが、成長温度400℃前後の試料は、電
子移動度が室温で9500a#/V、S、という高い値
を示した。この値は、InP基板上に格子整合をとって
作製されたHEMT構造での値に匹敵するものである。
FIG. 2 is a characteristic diagram showing the results of investigating the growth temperature dependence of electron mobility in a prototype heterostructure. As can be seen from the figure, when the growth temperature is 450°C or higher, the electron mobility decreases rapidly, but the samples grown at a growth temperature of around 400°C have a high electron mobility of 9500a#/V,S at room temperature. showed that. This value is comparable to the value in a HEMT structure fabricated on an InP substrate with lattice matching.

このような良好な値は、工nxGa1−xAsバッファ
層12の採用と、その成長温度の最適化の結果によるも
ので、良好な表面組織と電子移動度が得られる450℃
以下の成長温度で製造すれば良いと結論できる。
Such a good value is due to the adoption of the nxGa1-xAs buffer layer 12 and the optimization of its growth temperature.
It can be concluded that manufacturing can be performed at the following growth temperature.

次に、InxGaよ−z A sバラフッ層12の厚さ
について最適化することを考えたe I nxG a1
+x A sバラフッ層12の厚さは、バッファ層内の
InAsIIi戊の変化率すなわち、格子定数の変化率
に対応し、結晶欠陥の発生の度合いと深く関連するため
重要なパラメータである。
Next, we considered optimizing the thickness of the InxGa y-zAs barrier layer 12.
The thickness of the +x As buffer layer 12 is an important parameter because it corresponds to the rate of change of InAsIIi in the buffer layer, that is, the rate of change of the lattice constant, and is closely related to the degree of occurrence of crystal defects.

InxGa1−xAsバッファ層12の厚さをOnmか
ら1237nmまで変化させた複数個の試料を、成長温
度400℃で作製し、電子移動度の評価を行なった結果
を第3図に示す。同図から明らかなように、I nxG
 a1+x A sバラフッ層12の厚さwbが530
nm以上では、電子移動度は飽和に近付き、wbが35
0nm以下では急激な電子移動度の低下が生じている。
A plurality of samples in which the thickness of the InxGa1-xAs buffer layer 12 was varied from Onm to 1237 nm were prepared at a growth temperature of 400 DEG C., and the electron mobility was evaluated. The results are shown in FIG. As is clear from the figure, I nxG
a1+x A sThe thickness wb of the ballast layer 12 is 530
Above nm, the electron mobility approaches saturation and wb is 35
Below 0 nm, there is a rapid decrease in electron mobility.

しかし、厚さwbが350nmの電子移動度は、室温(
300” K)で7500cn?/V、S、77” K
で25000a#/V、S、と十分に高い値であり、実
用上、wbが350nm以上であればよいと考えられる
a 350nmの厚さwbは、InxGa、−yAsバ
ッファ層12におけるI n A s組成Xの変化率が
1100nあたり0.15となることに相当する。従っ
てXの変化率は、1.5 X 10−” / nm以下
にすればよいと結論できる。
However, the electron mobility when the thickness wb is 350 nm is at room temperature (
300”K) and 7500cn?/V, S, 77”K
25000a#/V, S, which is a sufficiently high value, and it is considered that it is sufficient for wb to be 350 nm or more in practice. This corresponds to a rate of change of composition X of 0.15 per 1100n. Therefore, it can be concluded that the rate of change of X should be 1.5 x 10-''/nm or less.

以上で第1図のヘテロ構造は、450℃以下の成長温度
で形威し、且つInxGaニーX A sバラフッ層1
2におけるInAsnAs組成化率を1.5X10−’
/nm以下とすれば良好な結晶品質を実現できることを
明らかにした。
As described above, the heterostructure shown in FIG.
The InAsnAs composition ratio in 2 was set to 1.5X10-'
It has been revealed that good crystal quality can be achieved by setting the thickness to less than /nm.

しかしながら、一般に450℃以下の温度では、ヘテロ
接合界面の平坦性が悪くなり、電子移動度に悪影響を及
ぼすことが知られている。また、高い成長温度が望まし
いが、分子線エピタキシー法によってInを高濃度に含
む層の結晶成長を行なう際には、Inの付着係数が53
0℃以上の成長温度において徐々に低下し、結晶の品質
低下や組成の設計値からのずれなどを引き起こすことも
知られている。このため、成長温度の上限は、はぼ53
0℃と自動的に定まる。本発明者は成長温度の取り入れ
方を検討した結果、高い成長温度で生じる移動度の低下
や表面組織の劣化は、主としてInxGa1−xAsバ
ッファ層と2を形成する際に生じ、InゆGaミニ−A
 sバッファ7512より上部にある層は、より高温で
成長しても、移動度や表面モホロジーの劣化は生じない
ものと考えた。
However, it is generally known that at temperatures below 450° C., the flatness of the heterojunction interface deteriorates, which adversely affects electron mobility. Furthermore, although a high growth temperature is desirable, when growing a layer containing a high concentration of In by molecular beam epitaxy, the In adhesion coefficient is 53.
It is also known that the growth temperature gradually decreases at a growth temperature of 0° C. or higher, causing deterioration of crystal quality and deviation of the composition from the designed value. Therefore, the upper limit of the growth temperature is 53
It is automatically determined as 0℃. As a result of considering how to incorporate the growth temperature, the present inventor found that the decrease in mobility and the deterioration of the surface structure that occur at high growth temperatures mainly occur when forming the InxGa1-xAs buffer layers and 2. A
It was assumed that the layer above the s-buffer 7512 would not deteriorate in mobility or surface morphology even if grown at a higher temperature.

実際に、第1図のヘテロ構造においてノンドープG a
 A sバフフッ層11およびInxGax、xAsバ
ッファ層12を400℃で成長じた後、成長温度を50
0℃まで上昇し、I no、 52 A、Ql)、 4
@ Asバリア層13からn形In、、、、AQ+、、
1lAs層16までを成長させたところ1表面組織の劣
化や移動度の低下は見られず移動度は、室温で1050
0aJ /V、S、、77@にで49000cj/y、
S、という最高値が得られた。なお、この時の試料では
、InxGaニーx A sバラフッ層12の厚さを1
μmとした。また、2次元電子ガスの濃度は1.8 X
 1012/ cdであった。
In fact, in the heterostructure shown in Figure 1, non-doped Ga
After growing the As buff layer 11 and the InxGax, xAs buffer layer 12 at 400°C, the growth temperature was increased to 50°C.
The temperature rises to 0°C, I no, 52 A, Ql), 4
@ As barrier layer 13 to n-type In, , , AQ+, ,
When up to 16 1lAs layers were grown, no deterioration of the surface structure or decrease in mobility was observed, and the mobility was 1050 at room temperature.
0aJ /V,S,, 77@ni 49000cj/y,
The highest value of S was obtained. In addition, in this sample, the thickness of the InxGa kneexAs rose film layer 12 was set to 1
It was set as μm. Also, the concentration of two-dimensional electron gas is 1.8
It was 1012/cd.

以上の結果をまとめると、G a A s基板上にIn
GaAsやInAlAsからなる良好な結晶品質を有す
る素子活性層を形成するためには、InAs組成比Xを
Oから素子活性層と格子整合する値まで基板側より直線
的に増加させたInxGa1−xAsバッファ層とG 
a A s基板と素子活性層の間に介在させること、こ
のInxGa□−2A sバラフッ層中のInAs組成
の変化率を1.5X10−3/n+a以下とすること、
および、InxGaz−yAsバッファ層の成長温度を
450℃以下とすることが重要であり、活性層の形成に
は、バッファ層の形成温度よりも高い。
To summarize the above results, In
In order to form a device active layer made of GaAs or InAlAs with good crystal quality, an InxGa1-xAs buffer is used in which the InAs composition ratio X is linearly increased from O to a value that lattice matches with the device active layer from the substrate side. layer and G
a As to be interposed between the As substrate and the element active layer, and the rate of change in the InAs composition in this InxGa□-2As barrier layer to be 1.5X10-3/n+a or less;
Furthermore, it is important to keep the growth temperature of the InxGaz-yAs buffer layer at 450° C. or lower, which is higher than the formation temperature of the buffer layer for forming the active layer.

450℃ないし530℃の温度が望ましいということで
ある。このような製造方法により、少なくとも良質のI
 n G a A s / A Q G a A s系
HEMT構造をG a A s基板上に形成することが
可能である。
A temperature of 450°C to 530°C is preferred. By such a manufacturing method, at least good quality I
It is possible to form an nGaAs/AQGaAs-based HEMT structure on a GaAs substrate.

以上述べた本発明の実施例では、HEMT構造を中心に
説明したが、光素子を作製する場合においても1本発明
の工nxGa1−xAsバッファ層とその製法は有効で
あることは言うまでもない。
Although the above-described embodiments of the present invention have been mainly explained with reference to the HEMT structure, it goes without saying that the nxGa1-xAs buffer layer of the present invention and its manufacturing method are also effective when manufacturing optical devices.

なお、本発明によるペテロ構造およびその製造方法をH
EMTに用途を限った場合に、第1図のヘテロ構造にお
けるノンドープの In5,5zAffa1@Asバリア層13は、重要な
働きをする。第1にInxGa1−xAsバッファ層と
2に含まれる結晶欠陥をIn。、5□GaI、、7As
チャンネル層14内に到達するのを防止する事であり、
これは、InxGa、−xAsバッファ層と2とIn6
.5zAQ6.@Asバリア層13のヘテロ接合界面の
働きによるものである。第2の効果として、In、、、
、Gaa4.Asチャンネル層14を流れる電子は、H
EMTのドレイン電極側で基板側へ押しやられるが、こ
のときIn、、、、Af20.□Asバリア層13が無
い場合には、電子がI n X G a L −X A
 sバラフッ層I2まで流れ込み、このバッファ層に存
在する欠陥に捕獲されるため、HEMTの特性に悪影響
を及ぼすことになる。
In addition, the Peter structure and its manufacturing method according to the present invention are
When the application is limited to EMT, the non-doped In5,5zAffal@As barrier layer 13 in the heterostructure shown in FIG. 1 plays an important role. First, the crystal defects contained in the InxGa1-xAs buffer layer and 2 are removed by In. , 5□GaI, , 7As
The purpose is to prevent it from reaching the inside of the channel layer 14.
This is an InxGa, -xAs buffer layer and 2 and In6
.. 5zAQ6. This is due to the function of the heterojunction interface of the @As barrier layer 13. As a second effect, In...
, Gaa4. Electrons flowing through the As channel layer 14 are
At the drain electrode side of the EMT, it is pushed toward the substrate side, but at this time, In, ..., Af20. □When there is no As barrier layer 13, electrons are
s flows into the buffer layer I2 and is captured by defects existing in this buffer layer, thus having an adverse effect on the characteristics of the HEMT.

I no、 s2 AQ6.@ Asバリア層13はこ
の電子のバッファ層への流入を防止することになる。
I no, s2 AQ6. The @As barrier layer 13 prevents these electrons from flowing into the buffer layer.

なお、実際のHEMTの作製には、第1図に示すペテロ
構造に、さらにノンドー・プのIn、、52AQ、、。
In addition, in order to fabricate an actual HEMT, in addition to the Peter structure shown in FIG. 1, undoped In, 52AQ, .

As層を形成し、この上にソース電極、ドレイン電極お
よびゲート電極を形成すればよく、これはInP基板上
に形成したInGaAs/InA(IAs系HEMTで
よく行なわれている公知の技術である。
It is sufficient to form an As layer, and then form a source electrode, a drain electrode, and a gate electrode thereon. This is a well-known technique that is often used in InGaAs/InA (IAs-based HEMTs) formed on InP substrates.

以上本実施例では、チャンネル層のI n G a A
 sのInAsff1成が0.53の場合に限って説明
したが、必ずしもこの組成値に限られるものではなく、
あらゆるInAs組成について適用できるものである。
As described above, in this embodiment, InGaA of the channel layer
Although the explanation is limited to the case where the InAsff1 composition of s is 0.53, it is not necessarily limited to this composition value,
This can be applied to any InAs composition.

また本実施例では、HEMT構造について述べたが+ 
I n11. B AQa、 1m Asバリア層13
上にIn6.53G86.7AI!Asチャンネル層し
、このI no、 5a Gaa、 4? Asチャン
ネル層を用いて金属−絶縁膜一半導体構造(Metal
−Insulator−3amiconductor;
 M I S )の電界効果トランジスタ(MISFE
T)やp−n接合のゲートを用いたJF E T (J
 unction Field−Effect Tra
nsistor)を製造することにも適用できることは
言うまでもない。
Also, in this example, the HEMT structure was described;
I n11. B AQa, 1m As barrier layer 13
In6.53G86.7AI on top! As channel layer, this I no, 5a Gaa, 4? A metal-insulating film-semiconductor structure (Metal
-Insulator-3amiconductor;
MIS field effect transistor (MISFE)
T) and JFET (J
unction Field-Effect Tra
Needless to say, the present invention can also be applied to manufacturing .

(発明の効果) 以上説明したように、本発明によれば、GaAs基板上
にInGaAsやInAlAsからなる電気素子・光素
子の活性層を良好な結晶性を保ちつつ形成できるので、
素子の製造価格を大幅に低減することが可能となる。ま
た、G a A s基板上に、従来のGaAs系電気素
子では達成できなかった特性を有する高性能なトランジ
スタを実現できることや、光素子・電気素子の集積回路
の作製に応用できる。
(Effects of the Invention) As explained above, according to the present invention, an active layer of an electric device or an optical device made of InGaAs or InAlAs can be formed on a GaAs substrate while maintaining good crystallinity.
It becomes possible to significantly reduce the manufacturing cost of the element. Furthermore, it is possible to realize a high-performance transistor on a GaAs substrate with characteristics that could not be achieved with conventional GaAs-based electrical elements, and it can be applied to the production of integrated circuits for optical devices and electrical devices.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明によるペテロ構造の要部拡大断面図、第
2図は1本発明のヘテロ構造における電子移動度と成長
温度の関係を示す特性図、第3図は本発明のヘテロ構造
における電子移動度とInxGa1−xAsバッファ層
と層厚の関係を示す特性図、第4図は、従来のヘテロ構
造の要部拡大断面図である。 1・・・G a A s基板、 2・・・バッファ層、
3・・・InGaAs層、 4・・・ノンドープInG
aAs層、  5.7・・・プレーナドープSi層、 
 6.8・・・ノンドープInA(iAs層、 9− 
n形InGaAs層、 10 ・・・半絶縁性GaAs
基板、 11・・・GaAsバッファ層、 12・・・
ノンドープInxGa□−X A sバッファ層、  
43・・・ノンドープ In6.5zAQy、4@ASバリア層、 14・・・
In、、5.Gao、vAsチャンネル層、 15−・
・ノンドープI no、 sz A Qa、、 A s
スペーサ層、16−n形工n0.52 Al2O,46
As層。
FIG. 1 is an enlarged sectional view of the main part of the Peter structure according to the present invention, FIG. 2 is a characteristic diagram showing the relationship between electron mobility and growth temperature in the heterostructure of the present invention, and FIG. FIG. 4, a characteristic diagram showing the relationship between electron mobility, InxGa1-xAs buffer layer, and layer thickness, is an enlarged sectional view of the main part of a conventional heterostructure. 1...GaAs substrate, 2...buffer layer,
3... InGaAs layer, 4... Non-doped InG
aAs layer, 5.7... planar doped Si layer,
6.8...Non-doped InA (iAs layer, 9-
n-type InGaAs layer, 10...semi-insulating GaAs
Substrate, 11...GaAs buffer layer, 12...
non-doped InxGa□-XAs buffer layer,
43... Non-doped In6.5zAQy, 4@AS barrier layer, 14...
In,,5. Gao, vAs channel layer, 15-.
・Non-doped I no, sz A Qa,, A s
Spacer layer, 16-n shape n0.52 Al2O, 46
As layer.

Claims (4)

【特許請求の範囲】[Claims] (1)GaAs基板上にIn_xGa_1_−_xAs
バッファ層を介してIn_yGa_1_−_yAsを含
む活性層が形成されてなる半導体ヘテロ構造において、
前記 In_xGa_1_−_xAsバッファ層のInAs組
成比xがGaAs基板側から前記活性層の間で0からy
まで厚さ方向に対してほぼ直線的に変化し、かつxの変
化率が1.5×10^−^3/nm以下であることを特
徴とする半導体ヘテロ構造。
(1) In_xGa_1_-_xAs on a GaAs substrate
In a semiconductor heterostructure in which an active layer containing In_yGa_1_-_yAs is formed via a buffer layer,
The InAs composition ratio x of the In_xGa_1_-_xAs buffer layer ranges from 0 to y between the GaAs substrate side and the active layer.
1. A semiconductor heterostructure characterized in that x changes substantially linearly in the thickness direction, and the rate of change in x is 1.5×10^-^3/nm or less.
(2)GaAs基板上にInAs組成比xを0からyま
で厚みと共にほぼ直線的に変化させ、かつxの変化率を
1.5×10^−^3/nm以下としたIn_xGa_
1_−_xAsバッファ層を形成する工程と、この In_xGa_1_−_xAsバッファ層上にIn_y
Ga_1_−_yAsを含む活性層を形成する工程を少
なくとも含み、且つ、上記のIn_xGa_1_−_x
Asバッファ層と上記の活性層が分子線エピタキシー法
により、450℃以下の成長温度で形成されることを特
徴とする半導体ヘテロ構造の製造方法。
(2) In_xGa_ on a GaAs substrate, the InAs composition ratio x is changed almost linearly with the thickness from 0 to y, and the rate of change of x is 1.5×10^-^3/nm or less
1_-_xAs buffer layer forming process, and In_xGa_1_-_xAs buffer layer formed on the In_xGa_1_-_xAs buffer layer.
including at least a step of forming an active layer containing Ga_1_-_yAs, and the above-mentioned In_xGa_1_-_x
A method for manufacturing a semiconductor heterostructure, characterized in that the As buffer layer and the active layer are formed by molecular beam epitaxy at a growth temperature of 450° C. or lower.
(3)GaAs基板上にInAs組成比xを0からyま
で厚みと共にほぼ直線的に変化せしめ、かつxの変化率
を1.5×10^−^3/nm以下としたIn_xGa
_1_−_xAsバッファ層を450℃以下の成長温度
で分子線エピタキシー法を用いて形成する工程と、この
In_xGa_1_−_xAsバッファ層上にIn_y
Ga_1_−_yAsを含む活性層を450℃から53
0℃の成長温度において分子線エピタキシー法により形
成する工程を少なくとも含むことを特徴とする半導体ヘ
テロ構造の製造方法。
(3) In_xGa where the InAs composition ratio x is changed almost linearly with the thickness from 0 to y on a GaAs substrate, and the rate of change of x is 1.5×10^-^3/nm or less
A step of forming an In_xGa_1_-_xAs buffer layer using a molecular beam epitaxy method at a growth temperature of 450°C or lower, and a step of forming an In_xGa_1_-_xAs buffer layer on the
The active layer containing Ga_1_-_yAs was heated to 53°C from 450°C.
A method for manufacturing a semiconductor heterostructure, comprising at least a step of forming the semiconductor heterostructure by molecular beam epitaxy at a growth temperature of 0°C.
(4)半絶縁性GaAs基板上にノンドープのGaAs
バッファ層と、InAs組成比xを0からyまで厚みと
共に1.5×10^−^3/nm以下の変化率でほぼ直
線的に変化せしめたノンドープの In_xGa_1_−_xAsバッファ層と、In_y
Ga_1_−_yAsと格子整合する厚さが200nm
程度のノンドープのInAlAsバリア層と、ノンドー
プの In_yGa_1_−_yAsチャンネル層と、ノンド
ープのInAlAsスペーサ層および、n形InAlA
s層が順次形成されてなるヘテロ構造を少なくとも含む
半導体ヘテロ構造。
(4) Undoped GaAs on a semi-insulating GaAs substrate
A buffer layer, a non-doped In_xGa_1_-_xAs buffer layer in which the InAs composition ratio x is changed almost linearly with the thickness from 0 to y at a rate of change of 1.5 x 10^-^3/nm or less, and In_y.
The thickness that lattice matches with Ga_1_-_yAs is 200 nm.
a non-doped InAlAs barrier layer, a non-doped In_yGa_1_-_yAs channel layer, a non-doped InAlAs spacer layer, and an n-type InAlAs
A semiconductor heterostructure including at least a heterostructure in which S layers are sequentially formed.
JP1180574A 1989-07-14 1989-07-14 Semiconductor heterostructure and manufacturing method thereof Expired - Lifetime JP2530496B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1180574A JP2530496B2 (en) 1989-07-14 1989-07-14 Semiconductor heterostructure and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1180574A JP2530496B2 (en) 1989-07-14 1989-07-14 Semiconductor heterostructure and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JPH0346241A true JPH0346241A (en) 1991-02-27
JP2530496B2 JP2530496B2 (en) 1996-09-04

Family

ID=16085658

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1180574A Expired - Lifetime JP2530496B2 (en) 1989-07-14 1989-07-14 Semiconductor heterostructure and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP2530496B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0774100A (en) * 1993-08-31 1995-03-17 Nec Corp Manufacture of semiconductor device
US6037242A (en) * 1997-03-06 2000-03-14 Mitsubishi Denki Kabushiki Kaisha Method of making hetero-structure
KR100660011B1 (en) * 2006-09-08 2006-12-20 주식회사 유일종합기술단 Structure of breakwater for seashore bank

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5608969B2 (en) * 2008-10-20 2014-10-22 富士通株式会社 Compound semiconductor device and manufacturing method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61268069A (en) * 1985-05-23 1986-11-27 Agency Of Ind Science & Technol Semiconductor device
JPH01158719A (en) * 1987-12-15 1989-06-21 Sharp Corp Compound semiconductor device
JPH02271638A (en) * 1989-04-13 1990-11-06 Hitachi Ltd Semiconductor element

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61268069A (en) * 1985-05-23 1986-11-27 Agency Of Ind Science & Technol Semiconductor device
JPH01158719A (en) * 1987-12-15 1989-06-21 Sharp Corp Compound semiconductor device
JPH02271638A (en) * 1989-04-13 1990-11-06 Hitachi Ltd Semiconductor element

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0774100A (en) * 1993-08-31 1995-03-17 Nec Corp Manufacture of semiconductor device
US6037242A (en) * 1997-03-06 2000-03-14 Mitsubishi Denki Kabushiki Kaisha Method of making hetero-structure
KR100660011B1 (en) * 2006-09-08 2006-12-20 주식회사 유일종합기술단 Structure of breakwater for seashore bank

Also Published As

Publication number Publication date
JP2530496B2 (en) 1996-09-04

Similar Documents

Publication Publication Date Title
US7544963B2 (en) Binary group III-nitride based high electron mobility transistors
WO2011099097A1 (en) Nitride semiconductor device and process for production thereof
KR20040027390A (en) Device having a nitride group hetero structure and method of manufacturing the same
JPH11204778A (en) Nitride-based iii-v compd. semiconductor device
JP2006261642A (en) Field effect transistor and method of fabricating the same
KR20090119849A (en) Gallium nitride epitaxial crystal, method for production thereof, and field effect transistor
JPH06168960A (en) Iii-v group compound semiconductor device
KR940011481B1 (en) Fet
CN112951910A (en) BAlN/GaN high electron mobility transistor and manufacturing method thereof
JPH0346241A (en) Semiconductor heterostructure and manufacture thereof
JP2006032524A (en) Nitride semiconductor heterostructure field-effect transistor and its manufacturing method
JPH10256154A (en) Semiconductor hetero-structure, manufacture thereof and semiconductor device
JPH08306909A (en) Ingaas field effect transistor
JP2004207471A (en) Compound-semiconductor epitaxial substrate and its manufacturing method
US20220020871A1 (en) Stacked buffer in transistors
JP2000196067A (en) Nitride iii-v compound semiconductor device
JPH05102196A (en) Field-effect transistor
JP2730524B2 (en) Field effect transistor and method of manufacturing the same
JPH088354B2 (en) Heterojunction field effect transistor
CN108565285B (en) GaAs-based high-electron-mobility transistor material and preparation method thereof
JP3423812B2 (en) HEMT device and manufacturing method thereof
JPH10284510A (en) Semiconductor substrate
JPS6344774A (en) Compound semiconductor device
JPH028450B2 (en)
JP3121671B2 (en) Method for manufacturing semiconductor device